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For finite-dimensional linear differential systems with bounded coefficients we
prove that their exponential dichotomy on R is equivalent to their Ulam–Hyers stability
on R with uniqueness. We also consider abstract non-autonomous evolution equations
which are exponentially bounded and exponentially dichotomic and prove that Ulam–
Hyers stability with uniqueness is maintained when perturbing them with a nonlinear
term having a sufficiently small Lipschitz constant.
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1 Introduction

Ulam–Hyers stability of different types of equations is intensively studied in the literature,
especially in the last years. The idea of this notion was given by Ulam in 1940. Note that there
exists generalizations of the initial notion (see [15]). As far as we know, the first studies on the
Ulam–Hyers stability of differential equations were presented by Obłoza [12, 13] in 1993 and
1997, and by Alsina–Ger [1] in 1998.

The special case of finite dimensional linear differential systems with constant and, respec-
tively, continuous periodic coefficients, was considered by Jung [10] in 2006, Bus, e–Salieri–
Tabassum [5] in 2014, Barbu–Bus, e–Tabassum [4] in 2015, and, respectively, by Buică–Tőtős
[3] in 2022. These papers emphasized the relation of Ulam–Hyers stability on unbounded
intervals of finite dimensional linear differential systems, with their exponential dichotomy.

Ulam–Hyers stability of some nonlinear differential equations were also studied, especially
on a compact interval of time. Anyway, it seems that Ulam–Hyers stability on a compact
interval is a property of any linear differential system and of the most of the nonlinear ones.
I. A. Rus proved this using the Gronwall Lemma technique and other techniques in [14]. In
[2] we showed that exponentially stable abstract linear evolution equations are Ulam–Hyers
stable on the interval [0, ∞). We also proved that this property is maintained when perturbing
this type of equations with a nonlinear term having a sufficiently small Lipschitz constant.
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In this work we show that exponentially dichotomic on R abstract linear evolution equa-
tions are Ulam–Hyers stable on R with uniqueness. We study the special case of finite dimen-
sional linear differential systems with bounded coefficients and prove that their exponential
dichotomy is equivalent to their Ulam–Hyers stability with uniqueness (Theorem 3.5 in Sec-
tion 3). We also prove that Ulam–Hyers stability with uniqueness is maintained when perturb-
ing this type of linear abstract evolution equations with a nonlinear term having a sufficiently
small Lipschitz constant (Theorem 4.2, Theorem 4.4 and Theorem 4.6 in Section 4).

2 Exponential dichotomy of an evolution family. Definition and
equivalent condition

Let (X, | · |) be a real or complex Banach space. The zero vector in X will be denoted by 0. L(X)

will stand for the space of bounded linear operators from X into itself. The corresponding
norm in L(X) will also be denoted by | · |. The identity operator on X is I ∈ L(X). For
notations, notions and results presented in this section we used [6, 11].

Definition 2.1 ([6, Definition 3.1]). A family of operators {U(θ, τ)}θ≥τ ⊂ L(X), with θ, τ ∈ R,
is called an evolution family if

(i) U(θ, s)U(s, τ) = U(θ, τ) and U(θ, θ) = I for all θ ≥ s ≥ τ; and

(ii) for each x ∈ X, the function (θ, τ) 7→ U(θ, τ)x is continuous for θ ≥ τ.

An evolution family {U(θ, τ)}θ≥τ is said to be exponentially bounded if, in addition,

(iii) there exist real constants C ≥ 1 and γ > 0 such that

|U(θ, τ)| ≤ Ceγ(θ−τ), θ ≥ τ.

We now give the definition of exponential dichotomy for an evolution family. Let P : R→
L(X) be a projection-valued function (i.e. P(θ)P(θ) = P(θ) for each θ ∈ R). The function
whose values are the complementary projections is denoted by Q(θ) = I − P(θ) for each
θ ∈ R. If, for all θ ≥ τ, we have

P(θ)U(θ, τ) = U(θ, τ)P(τ),

then we denote by

UP(θ, τ) := P(θ)U(θ, τ)P(τ), UQ(θ, τ) := Q(θ)U(θ, τ)Q(τ),

the restrictions of the operator U(θ, τ) on Im P(τ) and Im Q(τ), respectively. We stress that
UP(θ, τ) is an operator from Im P(τ) to Im(θ) while UQ(θ, τ) is an operator from Im Q(τ) to
Im Q(θ).

Definition 2.2 ([6, Definition 3.6]). An evolution family {U(θ, τ)}θ≥τ is said to have an ex-
ponential dichotomy (with constants M > 0 and ω > 0 if there exists a projection-valued
function P : R → L(X) such that, for each x ∈ X, the function θ 7→ P(θ)x is continuous and
bounded, and, for all θ ≥ τ, the following conditions hold.

(i) P(θ)U(θ, τ) = U(θ, τ)P(τ).
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(ii) UQ(θ, τ) is invertible as an operator from Im Q(τ) to Im Q(θ).

(iii) |UP(θ, τ)| ≤ Me−ω(θ−τ).

(iv) |[UQ(θ, τ)]−1| ≤ Me−ω(θ−τ).

Denote by Cb(R, X) = {g : R → X continuous and bounded}. It is known that Cb(R, X)

with the norm ‖u‖ = maxt∈R |u(t)| is a Banach space.

Condition (M). For every g ∈ Cb(R, X), there exists a unique function u ∈ Cb(R, X) such that

u(θ) = U(θ, τ)u(τ) +
∫ θ

τ
U(θ, s)g(s)ds, θ ≥ τ. (2.1)

Theorem 2.3 (Theorem 4.28 in [6]). An exponentially bounded evolution family has an exponential
dichotomy if and only if Condition (M) is satisfied. Moreover, if this is the case, for each g ∈ Cb(R, X)

the solution u∗ ∈ Cb(R, X) of the integral equation (2.1) is given by

u∗(θ) =
∫ θ

−∞
UP(θ, τ)g(τ)dτ −

∫ ∞

θ
[UQ(τ, θ)]−1g(τ)dτ, θ ∈ R. (2.2)

Proposition 2.4. In the hypotheses of Theorem 2.3, the function given by (2.2) satisfies

‖u∗‖ ≤ 2M
ω
‖g‖. (2.3)

When either P(t) = I for all t ∈ R, or Q(t) = I for all t ∈ R, the estimation can be improved as

‖u∗‖ ≤ M
ω
‖g‖. (2.4)

Proof. For any t ∈ R we have

|u∗(t)| ≤
∣∣∣∣∫ t

−∞
UP(t, s)g(s)ds

∣∣∣∣+ ∣∣∣∣∫ ∞

t
[UQ(s, t)]−1g(s)ds

∣∣∣∣
≤
∣∣∣∣∫ t

−∞
|UP(t, s)| · |g(s)|ds

∣∣∣∣+ ∣∣∣∣∫ ∞

t
|[UQ(s, t)]−1| · |g(s)|ds

∣∣∣∣
≤ M‖g‖

[∫ t

−∞
e−ω(t−s)ds +

∫ ∞

t
e−ω(s−t)ds

]
=

2M
ω
‖g‖.

In each of the particular cases P = I or Q = I, only one of the two integrals appear in the
expression (2.2) of u∗. Thus, also in the last line of the display above appears only one of the
two integrals, each of them being equal to 1/ω.

3 Exponential dichotomy and Ulam–Hyers stability of finite dimen-
sional linear differential systems

Let A ∈ C(R,L(Cn)). We consider the differential system in X = Cn

x′ = A(t)x. (3.1)

We present now the notion of Ulam–Hyers stability on the time interval R of the finite dimen-
sional linear differential system (3.1).
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Definition 3.1. We say that the equation (3.1) is Ulam–Hyers stable when there exists a con-
stant m > 0 such that, for any ε > 0 and any ϕ ∈ C1(R, Cn) with

|ϕ′(t)− A(t)ϕ(t)| ≤ ε, t ∈ R,

there exists ψ ∈ C1(R, Xn) a solution of (3.1), such that (ϕ− ψ) ∈ Cb(R, Cn) and

‖ϕ− ψ‖ ≤ mε.

We say that the equation (3.1) is Ulam–Hyers stable with uniqueness when, for a given ϕ as
above, there exists a unique ψ.

Remark 3.2. Assume, in addition, that there exists T > 0 such that A(T + t) = A(t) for all
t ∈ R. It is known that, in this particular case, if equation (3.1) is Ulam–Hyers stable then it is
Ulam–Hyers stable with uniqueness. One can see, for example [3].

An important result proved in [3] is the following.

Lemma 3.3 ([3]). The equation x′ = A(t)x is Ulam–Hyers stable if and only if for any g ∈ Cb(R, Cn)

there is a solution in Cb(R, Cn) ∩ C1(R, Cn) of x′ = A(t)x + g.

Let Y(t) ∈ L(Cn) be the fundamental matrix solution of (3.1) such that Y(0) is the identity
matrix, and define

U(θ, τ) = Y(θ)Y−1(τ), θ, τ ∈ R.

It is known (or it can be easily checked) that {U(θ, τ)}θ≥τ is an evolution family and we have
[U(θ, τ)]−1 = U(τ, θ) for all θ, τ ∈ R.

We say that the equation x′ = A(t)x has an exponential dichotomy whenever {U(θ, τ)}θ≥τ

defined above has an exponential dichotomy (as in Definition 2.2).

In addition, we have the following.

Lemma 3.4 ([7]). If A is a bounded function then {U(θ, τ)}θ≥τ is exponentially bounded.

Proof. Fix τ ∈ R. Then U(·, τ) is a matrix solution of the initial value problem x′ = A(t)x,
x(τ) = In (the identity matrix). Then

U(θ, τ) = In +
∫ θ

τ
A(s)U(s, τ)ds, θ ≥ τ.

Applying the Gronwall inequality we immediately obtain |U(θ, τ)| ≤ eγ(θ−τ), θ ≥ τ, where
γ > 0 is such that |A(t)| ≤ γ for all t ∈ R.

As a consequence of Lemma 3.3, Lemma 3.4 and Theorem 2.3 we obtain the following
characterizations, which is the main result of this section.

Theorem 3.5. Let A ∈ C(R,L(Cn)) be a bounded function. The following conditions are equivalent.

(i) The equation (3.1) is Ulam–Hyers stable with uniqueness.

(ii) Condition (M) is satisfied for the equation (3.1).

(iii) The equation (3.1) has an exponential dichotomy.
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Using Remark 3.2, Theorem 3.5, and a result from [7] we obtain the following corollary. In
the statement appears the fundamental matrix solution Y(t) defined before.

Corollary 3.6. Let A ∈ C(R,L(Cn)) be a T-periodic function. The following conditions are equiva-
lent.

(i) The equation (3.1) is Ulam–Hyers stable with uniqueness.

(ii) Condition (M) is satisfied for the equation (3.1).

(iii) The equation (3.1) has an exponential dichotomy.

(iv) No eigenvalue of Y(T) lies on the unit circle.

In the case when A ∈ L(Cn) (is constant) Corollary 3.6 holds true with condition (iv)
replaced by “No eigenvalue of A has zero real part.”. These two corollaries are known, but they
were justified using other tools. One can see [3, 4].

4 Main abstract result and applications

The main result of this section concludes the Ulam–Hyers stability of mild solutions of some
nonlinear abstract nonautonomous evolution equations. We start by proving a lemma which
is essential in the proof of the main result. We present with details two applications of the
main abstract result for finite dimensional nonautonomous differential systems and for an
abstract autonomous evolution equation whose linear part is the generator of a C0-semigroup.

Lemma 4.1. Let {U(θ, τ)}θ≥τ be an exponentially bounded evolution family on X. In addition,
assume that it has an exponential dichotomy and let the constants M > 0 and ω > 0 be like in
Definition 2.2.

Let L > 0, g ∈ Cb(R, X) and F ∈ C(R× X, X) with F(s, 0) = 0 for any s ∈ R. Assume that

(i) |F(s, u1)− F(s, u2)| ≤ L|u1 − u2|, s ∈ R, u1, u2 ∈ X,

(ii) 2L < ω/M.

Then there exists a unique solution u∗ ∈ Cb(R, X) of the following integral equation.

u(t) =
∫ t

−∞
UP(t, s)[F(s, u(s)) + g(s)]ds−

∫ ∞

t
[UQ(s, t)]−1[F(s, u(s)) + g(s)]ds. (4.1)

Moreover, we have

‖u∗‖ ≤ M
ω/2− LM

‖g‖. (4.2)

When either P(t) = I for all t ∈ R, or Q(t) = I for all t ∈ R, condition (ii) can be replaced by (ii)’
L < ω/M and the estimation (4.2) can be improved as

‖u∗‖ ≤ M
ω− LM

‖g‖. (4.3)
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Proof. Consider the operator
B : Cb(R, X)→ C(R, X)

defined for any u ∈ Cb(R, X) and for any t ∈ R by

B(u)(t) =
∫ t

−∞
UP(t, s)[F(s, u(s)) + g(s)]ds−

∫ ∞

t
[UQ(s, t)]−1[F(s, u(s)) + g(s)]ds.

We claim that B is a contraction with the Lipschitz constant 2LM/ω. For any u1, u2 ∈ Cb(R, X)

and t ∈ R we have

|B(u1)(t)− B(u2)(t)| ≤
∣∣∣∣∫ t

−∞
UP(t, s)[F(s, u1(s))− F(s, u2(s))]ds

∣∣∣∣
+

∣∣∣∣∫ ∞

t
[UQ(s, t)]−1[F(s, u1(s))− F(s, u2(s))]ds

∣∣∣∣
≤ L

∣∣∣∣∫ t

−∞
|UP(t, s)| · |u1(s)− u2(s)|ds

∣∣∣∣
+ L

∣∣∣∣∫ ∞

t
|[UQ(s, t)]−1| · |u1(s)− u2(s)|ds

∣∣∣∣
≤ LM‖u1 − u2‖

[∫ t

−∞
e−ω(t−s)ds +

∫ ∞

t
e−ω(s−t)ds

]
≤ 2LM

ω
‖u1 − u2‖.

Then

‖B(u1)− B(u2)‖ ≤
2LM

ω
‖u1 − u2‖, u1, u2 ∈ Cb(R, X). (4.4)

Thus, the claim is proved.
By Theorem 2.3 we have B(0) ∈ Cb(R, X) since its expression is given by (2.2). Then using

(2.3) from Proposition 2.4 we have

‖B(0)‖ ≤ 2M
ω
‖g‖. (4.5)

Relation (4.4) implies that

‖B(u)‖ ≤ 2LM
ω
‖u‖+ ‖B(0)‖, u ∈ Cb(R, X). (4.6)

Then
Bu ∈ Cb(R, X), u ∈ Cb(R, X),

meaning that Cb(R, X) is invariant for B. The Contraction Mapping Principle assures the
existence of a unique fixed point, denoted u∗, of B in Cb(R, X). Moreover, from (4.6) we
deduce that

‖u∗‖ ≤ 2LM
ω
‖u∗‖+ ‖B(0)‖,

which, together with (4.5) implies (4.2).
For the last part one needs to use (2.4) instead of (2.3).
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Theorem 4.2. Let {U(θ, τ)}θ≥τ be an exponentially bounded evolution family on X. In addition,
assume that it has an exponential dichotomy and let the constants M > 0 and ω > 0 be like in
Definition 2.2.

Let f ∈ C(R× X, X), L > 0 be such that

(i) | f (s, u1)− f (s, u2)| ≤ L|u1 − u2|, s ∈ R, u1, u2 ∈ X,

(ii) 2L < ω/M.

Let g ∈ Cb(R, X). If ϕ ∈ C(R, X) is a solution of

y(θ) = U(θ, τ)y(τ) +
∫ θ

τ
U(θ, s)[ f (s, y(s) + g(s)]ds, θ ≥ τ, (4.7)

then there exists a unique solution ψ ∈ C(R, X) of

x(θ) = U(θ, τ)x(τ) +
∫ θ

τ
U(θ, s) f (s, x(s)ds, θ ≥ τ, (4.8)

such that (ϕ− ψ) ∈ Cb(R, X) and

‖ϕ− ψ‖ ≤ M
ω/2− LM

‖g‖. (4.9)

When either P(t) = I for all t ∈ R, or Q(t) = I for all t ∈ R, condition (ii) can be replaced by (ii)’
L < ω/M and the estimation (4.9) can be improved as

‖ϕ− ψ‖ ≤ M
ω− LM

‖g‖. (4.10)

Proof. Consider the function F : R× X → X defined by

F(s, u) = f (s, ϕ(s))− f (s, ϕ(s)− u), (s, u) ∈ R× X.

It is not difficult to see that F satisfies the hypotheses of Lemma 4.1. In fact, all the hypotheses
of this theorem are fulfilled. Then let u∗ ∈ Cb(R, X) be the unique bounded solution of
equation (4.1). Consider the function g∗(s) = F(s, u∗(s)) + g(s), s ∈ R which satisfies g∗ ∈
Cb(R, X). Then, from (4.1) we have that

u∗(θ) =
∫ θ

−∞
UP(θ, τ)g∗(τ)dτ −

∫ ∞

θ
[UQ(τ, θ)]−1g∗(τ)dτ, θ ∈ R. (4.11)

By Theorem 2.3, the above relation implies that u∗ is the unique bounded solution of

u(θ) = U(θ, τ)u(τ) +
∫ θ

τ
U(θ, s)g∗(s)ds, θ ≥ τ. (4.12)

Now define
ψ = ϕ− u∗

and note that ψ ∈ C(R, X) is a solution of (4.7) which, in addition, by Lemma 4.1, satisfies
(4.9). The uniqueness of ψ with mentioned properties follows by the uniqueness of u∗ as in
Theorem 2.3.
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4.1 Application. Finite dimensional differential systems

Let A ∈ C(R,L(Cn)) and f ∈ C(R× Cn, Cn). We consider the nonlinear differential system
in X = Cn

x′ = A(t)x + f (t, x). (4.13)

Recall that we refer to the linear system x′ = A(t)x in Section 3.

Definition 4.3. We say that the equation (4.13) is Ulam–Hyers stable when there exists a
constant m > 0 such that, for any ε > 0 and any ϕ ∈ C1(R, Cn) with

|ϕ′(t)− A(t)ϕ(t)− f (t, ϕ(t)| ≤ ε, t ∈ R,

there exists ψ ∈ C1(R, Cn) a solution of (4.13), such that (ϕ− ψ) ∈ Cb(R, Cn) and

‖ϕ− ψ‖ ≤ mε.

We say that the equation (4.13) is Ulam–Hyers stable with uniqueness when, for a given ϕ as
above, there exists a unique ψ.

As a consequence of Theorem 4.2, using also Lemma 3.4, we obtain the following result.

Theorem 4.4. Assume that A is a bounded function and that the system x′ = A(t)x has an exponen-
tial dichotomy. Let M > 0 and ω > 0 be like in Definition 2.2. Assume that there exists L > 0 with
2L < ω/M and such that

| f (s, y)− f (s, x)| ≤ L|x− y|, for all s ∈ R, x, y ∈ Cn.

Then system (4.13) is Ulam–Hyers stable with uniqueness and with constant

m = M/(ω/2− LM).

4.2 Application. Semigroups

For the definition of a C0-semigroup and other useful results we used [8, 9].

Definition 4.5. If the evolution family {U(θ, τ)}θ≥τ on the Banach space X satisfies in addition

U(θ, τ)x = U(θ − τ, 0)x, θ ≥ τ, x ∈ X,

then it is called a C0-semigroup.

Assume from now that {U(θ, τ)}θ≥τ is a C0-semigroup. An important remark is that there
exists a dense set D ⊂ X and a linear operator A : D → X such that if x ∈ D,

lim
θ↓0

U(θ, 0)x− x
θ

= Ax.

The mapping A is in general unbounded and is called the infinitesimal generator of the semi-
group. Sometimes the following notation is used

etA := U(t, 0), t ≥ 0
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and it is said that {etA}t≥0 is a one-parameter C0-semigroup.
Let f ∈ C(R× X, X) and consider the abstract evolution equation

x′ + Ax = f (t, x), (4.14)

and the abstract evolution inequation

|x′ + Ax− f (t, x)| ≤ ε. (4.15)

We say that ψ ∈ C(R, X) is a mild solution of equation (4.14) if ψ is a solution of the integral
equation (4.8).

We say that ϕ ∈ C(R, X) is a mild solution of inequation (4.15) if there exists g ∈ C(R, X)

with |g(s)| ≤ ε, s ∈ R such that ϕ is a solution of the integral equation (4.7).
Let m > 0. We say that the evolution equation (4.14) is Ulam–Hyers stable with constant m if

for any ε > 0 and for any mild solution ϕ ∈ C(R, X) of inequation (4.15) there exists a mild
solution ψ ∈ C(R, X) of (4.14) such that (ϕ− ψ) ∈ Cb(R, X) and

‖ϕ− ψ‖ ≤ mε.

We say that the equation (4.14) is Ulam–Hyers stable with uniqueness when, for a given ϕ as
above, there exists a unique ψ.

As a consequence of Theorem 4.2 we obtain the following result.

Theorem 4.6. Let A : D ⊂ X → X be the infinitesimal generator of an exponentially bounded and
exponentially dichotomic C0-semigroup {U(θ, τ)}θ≥τ. Let M and ω be like in Definition 2.2. Assume
that there exists L > 0 with 2L < ω/M such that

| f (s, y)− f (s, x)| ≤ L|x− y|, for all s ∈ R, x, y ∈ X.

Then the abstract evolution equation (4.14) is Ulam–Hyers stable with uniqueness and with con-
stant m = M/(ω/2− LM).
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