
Electronic Journal of Qualitative Theory of Differential Equations
2023, No. 31, 1–27; https://doi.org/10.14232/ejqtde.2023.1.31 www.math.u-szeged.hu/ejqtde/

Homoclinic solutions for a class of
asymptotically autonomous Hamiltonian systems

with indefinite sign nonlinearities

Dong-Lun WuB

School of Science, Civil Aviation Flight University of China, Guanghan, 618307, P. R. China

Received 13 October 2022, appeared 6 August 2023

Communicated by Gabriele Bonanno

Abstract. In this paper, we obtain the multiplicity of homoclinic solutions for a class of
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1 Introduction and main results

In this paper, we consider the following second-order planar Hamiltonian systems

ü(t) +∇V(t, u(t)) = 0, (1.1)

where V : R × R2 → R is a C1-map. We say that a solution u(t) of problem (1.1) is nontrivial
homoclinic (to 0) if u ̸≡ 0, u(t) → 0 and u̇(t) → 0 as t → ±∞. Subsequently, ∇V(t, x) denotes
the gradient with respect to the x variable, (·, ·) : R2 × R2 → R denotes the standard inner
product in R2 and | · | is the induced norm.

Hamiltonian system is a classical model in celestial mechanics, fluid mechanics and so
on. Since its importance in physic fields, searching for the solutions of the Hamiltonian
systems has attracted much attention of mathematicians since Poincaré. In a remarkable
paper [31], the periodic solutions are firstly obtained for (1.1) with prescribed energy and
prescribed period cases respectively via variational methods by Rabinowitz. However, to show
homoclinic solutions via variational methods seems difficult since the lack of compactness for

BEmail: wudl2008@163.com

https://doi.org/10.14232/ejqtde.2023.1.31
https://www.math.u-szeged.hu/ejqtde/


2 D.-L. Wu

the Sobolev embedding. In order to regain the compactness, different strategies are adopted.
In 1990, Rabinowitz [32] considered (1.1) with the following potentials

V(t, x) = −1
2
(a(t)x, x) + W(t, x),

where a(t) and W(t, x) are T-periodic in t and homoclinic solution are obtained as the limit
of a sequence of 2kT-periodic solutions. Without periodic hypothesis, Rabinowitz and Tanaka
[23] assumed the least eigenvalues of a(t) go to infinity as t → ∞. Under this condition,
Omana and Willem [28] obtained a compact embedding theorem and showed the multiplicity
of homoclinic solutions for problem (1.1). Without periodic or coercive hypothesis, there are
still some other conditions proposed to obtain the nontrivial homoclinic solutions. In 2007, Lv
and Tang [24] assumed that V(t, x) is even in t and obtained one homoclinic solution for (1.1)
as the limit of the solutions of nil-boundary-value problems. In 2010, Wu, Wu and Tang [43]
showed that (1.1) possesses at least one nontrivial homoclinic solution if there is a nontrivial
perturbation. In detail, they considered the following systems

ü(t)− L(t)u(t)−∇W(t, u(t)) = f (t). (1.2)

When f ̸≡ 0, the authors showed the existence of nontrivial homoclinic solutions for (1.2)
without periodic nor coercive conditions on L and W.

As we know, the growth of W is crucial in determining the geometric structure of the
corresponding functional and the boundedness of the almost critical sequence. Three typi-
cal growth cases are superquadratic, subquadratic and asymptotically quadratic cases. The
following Ambrosetti–Rabinowitz-type condition is a classical superquadratic condition.

(AR) there exists a constant υ > 2 such that

0 < υW(t, x) ≤ (∇W(t, x), x)

for every t ∈ R and x ∈ RN \ {0}.

In 1991, Rabinowitz and Tanaka [33] also obtained the homoclinic solutions for (1.1) under
the following non-quadratic condition

(RT) s−1(∇W(t, sx), x) is an increasing function of s ∈ (0, 1] for all (t, x) ∈ R × RN .

As shown in [25], condition (RT) implies that

(MS) there exists θ ≥ 1 such that
θW̃(t, x) ≥ W̃(t, sx)

for all (t, x) ∈ R × RN and s ∈ [0, 1], where W̃(t, x) = (∇W(t, x), x)− 2W(t, x).

With (MS) Lv and Tang [25] obtained infinitely many homoclinic solutions for (1.1). Besides,
many superquadratic conditions are introduced. In 2004, Ou and Tang [29] considered the
following superquadratic condition

(OT) W(t, x)/|x|2 → +∞ as |x| → ∞ uniformly in t ∈ R.

Based on above results, Ding and Lee [8] introduced the following superquadratic condi-
tion
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(DL) W̃(t, x) > 0 if x ̸= 0, and there exist ϵ ∈ (0, 1) and c > 0 such that

W̃(t, x) ≥ c
(∇W(t, x), x)

|x|2−ϵ
for |x| large enough.

There are also some other superquadratic growth conditions introduced by many mathe-
maticians. The readers are referred to [6, 15, 18, 22, 23, 29, 30, 39, 40, 43–48] for more details.

In this paper, we mainly consider the asymptotically autonomous potentials without peri-
odic, coercive, even assumption or perturbations. In 1999, Carrião and Miyagaki [5] showed
the existence of homoclinic for problem (1.1) by assuming that V(t, x) converges to V∞(x) as
|t| → +∞ and V∞(x) satisfies the (AR) condition. The asymptotically autonomous Hamilto-
nian systems has also been considered by Lv, Xue and Tang [26] with asymptotically quadratic
potentials. They showed the existence of homoclinic solutions for systems (1.1) with a(t) ≡
const. being small enough. In another paper, Lv, etc. [27] also obtained ground state homo-
clinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Their
results generalized the conclusions in [1,5] by replacing the (AR) condition with strict mono-
tonic conditions on W(t, x).

In this paper, we mainly consider the combined nonlinearities. In [6, 26, 36, 37, 44, 46], the
authors also considered the following concave-convex potentials

V(t, x) = −1
2
(a(t)x, x) + λF(t, x) + G(t, x),

where a(t) is coercive, i.e. a(t) → +∞ as t → ∞, F(t, x) is subquadratic and G(t, x) is
superquadratic in x ∈ RN . The coercivity of a(t) is an important assumption which can
guarantee the compactness of Sobolev embedding.

In [46], Yang, Chen and Sun assumed that a(t) is coercive, F(t, x) = m(t)|x|γ and G(t, x) =
d|x|p with m ∈ L

2
2−γ (R, R+) and 1 < γ < 2, d ≥ 0, p > 2. This result is generalized by Chen

and He [6] with the following generalized superquadratic condition

(CH) There exist ρ > 2 and 1 < δ < 2 such that

ρG(t, x)− (∇G(t, x), x) ≤ h(t)|x|δ, ∀(t, x) ∈ R × RN

where h : R → R+ is a positive continuous function such that h ∈ L
2

2−δ (R, R+).

Obviously, (CH) is weaker than (AR) since h(t) > 0 for all t ∈ R. In [42], Wu, Tang and Wu
generalized the above results by relaxing the conditions on G. However, a(t) is also required
to be coercive.

Without coercive assumption, there are also some other papers concerning on this case
with the steep well potentials (see [36, 37]). In [36], the nonlinearities are the combination of
subquadratic and asymptotic quadratic nonlinearities. While in [37], the nonlinearities are the
combination of superquadratic and subquadratic nonlinearities. In [46], Ye and Tang obtained
infinitely many homoclinic solutions for systems (1.1) with

V(t, x) = −1
2
(a(t)x, x) +

h(t)
p

|x|p + d(t)
ν

|x|ν, ∀(t, x) ∈ R × RN ,

where a(t) ≥ 0 and 
h ∈ L2/(2−p) (R, R+)

d ∈ L∞(R, R)

1 < p < 2 < ν.
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By assuming h(t) > 0, the authors in [46] constructed a sequence of negative critical values.
However, in [5, 26, 27], W(t, x) is assumed to be non-negative in R × RN . A natural question
is whether (1.1) possesses homoclinic solutions if W(t, x) change signs without periodic or
coercive assumptions. In this paper, we partially give some answers to this question. Precisely,
we consider the sign-changing and asymptotically autonomous potentials, which have not
been considered before as we know. Hence, we cannot obtain our results as the authors
did in [6, 26, 36, 37, 44, 46]. Concentration-compactness principle(CCP) is adopted to show
the compactness. The crucial step in using the (CCP) is to exclude the dichotomy case by
estimating the critical values. This can be easily done if W satisfies the following monotonic
condition

(MC) the mapping τ →
(∇W(t,τx)

τ , x
)

is strictly increasing in τ ∈ (0, 1] for all x ̸= 0 and t ∈ R.

However, condition (MC) is not valid for our potentials. Hence we need more delicate esti-
mates for the critical values to show the contradictions. The constant for the Sobolev inequality
plays an important role in obtaining our results. In the next section, we show the best constant
for the Sobolev inequality.

2 Best constant for the Sobolev inequality

Let’s make it clear that Lp(R, Rm) and H1(R, Rm) are the Banach spaces of functions on R

valued in Rm under the norms

∥u∥p :=
(∫

R
|u|pdt

)1/p

and

∥u∥ = ∥u∥H1 =

(∫
R

(
|u̇|2 + |u|2

)
dt
)1/2

.

Moreover, let L∞(R, Rm) be the Banach space of essentially bounded measurable functions
from R into Rm under the norm

∥u∥∞ := ess sup{|u(t)| : t ∈ R}.

As we know, for any m > 1, H1(R, Rm) can be embedded into Lν(R, Rm) continuously for
any ν ∈ [2,+∞]. Then we have the following Sobolev inequality

∥u∥ν ≤ Cν∥u∥ for all u ∈ H1(R, Rm), (2.1)

where Cν is the best constant which is defined in the following proof. This inequality is
important in using variational methods to show the existence and multiplicity of differential
equations. However, since the best constant for the Sobolev inequality seems not important
in previous studies of Hamiltonian systems, as we know, there is no paper concerning on the
best constant of Sobolev inequality for (2.1). In this section, we show the best constant for
(2.1).

There have been many papers concerning on the best constant for the Sobolev inequality
in H1(R, R) (see [2–4, 12]). In a remarkable paper, Talenti [38] obtained the best constant for
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Sobolev inequality in H1(RN , R) with N > 1. In 1983, Weinstein obtained the best constant
for the following Gagliardo-Nirenberg-Sobolev inequalities

∥u∥ν
ν ≤ C∗∥∇u∥

N(ν−2)
2

2 ∥u∥ν− N(ν−2)
2

2 for u ∈ H1(RN , R), (2.2)

where N ≥ 2, 2 < ν < 2N
N−2 , C∗ = ν

2∥G∥ν−2
2

is the best constant for (2.2) and G is the unique

positive solution for the following scalar field equation

−N(ν − 2)
4

∆u +

(
1 +

ν − 2
4

(2 − N)

)
u = |u|ν−2u, x ∈ RN .

In a recent paper, Dolbeault, etc. [10] considered the best constant for the one-dimensional
Gagliardo–Nirenberg–Sobolev inequalities in H1(R, Rm)(m = 1) and obtained

1
MGN(ν)

= inf
y∈H1(R,R)\{0}

(∫
R
|y′|2dt

) ν−2
4ν
(∫

R
|y|2dt

) ν+2
4ν(∫

R
|y|νdt

) 1
ν

, (2.3)

where MGN(ν) is defined as

MGN(ν) = 4−
1
ν

(
(ν + 2)ν+2

(ν − 2)ν−2

) 1
4ν

(
2
√

πΓ
( 2

ν−2

)
(ν + 2)Γ

( 2
ν−2 +

1
2

)) ν−2
2ν

. (2.4)

Moreover, MGN(ν) is attained at v⋆, which is the unique optimal function up to translations,
multiplication by a constant and scalings, defined as

v⋆(t) =
1

(cosh t)
2

ν−2
.

The following computation is made by the authors in [10]. For the reader’s convenience, we
write them here. ∫

R
|v⋆|2dt =

√
πΓ
( 2

ν−2

)
Γ
( 2

ν−2 +
1
2

) ,
∫

R
|v⋆|νdt =

4
ν + 2

∫
R
|v⋆|2dt

and ∫
R

∣∣v′⋆∣∣2 dt =
4

(ν − 2)(ν + 2)

∫
R
|v⋆|2dt.

Subsequently, we consider the case m > 1. For any u(t) = (u1(t), . . . , um(t)) ∈ H1(R, Rm) \
{0}, set

y(t) = |u(t)| =
√

m

∑
i=1

u2
i (t) ∈ H1(R, R) \ {0}. (2.5)

Then we have

[y′]2 =
(∑m

i=1 uiu′
i)

2

∑m
i=1 u2

i
. (2.6)

For any ν > 2, let

R = inf
u1,...,um∈H1(R,R)\{0}

(∫
R

(
∑m

i=1 u′2
i
)

dt
) ν−2

4ν(∫
R

(∑m
i=1 uiu′

i)
2

∑m
i=1 u2

i
dt
) ν−2

4ν

. (2.7)
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On one hand, if we choose u1 = . . . = um, it is easy to see that R ≤ 1. On the other hand, we
can also deduce that R ≥ 1 since(

m

∑
i=1

uiu′
i

)2

≤
(

m

∑
i=1

u2
i

)(
m

∑
i=1

u′2
i

)
,

which implies R = 1. Therefore, by (2.3), (2.5)–(2.7), one has

inf
u∈H1(R,Rm)\{0}

(∫
R
|u̇|2dt

) ν−2
4ν
(∫

R
|u|2dt

) ν+2
4ν(∫

R
|u|ν dt

) 1
ν

= inf
u1,...,um∈H1(R,R)\{0}

(∫
R

(
∑m

i=1 u′2
i
)

dt
) ν−2

4ν(∫
R

(∑m
i=1 uiu′

i)
2

∑m
i=1 u2

i
dt
) ν−2

4ν

(∫
R

(∑m
i=1 uiu′

i)
2

∑m
i=1 u2

i
dt
) ν−2

4ν (∫
R

(
∑m

i=1 u2
i
)

dt
) ν+2

4ν

(∫
R

(
∑m

i=1 u2
i

) ν
2 dt
) 1

ν

≥ inf
u1,...,um∈H1(R,R)\{0}

(∫
R

(
∑m

i=1 u′2
1

)
dt
) ν−2

4ν(∫
R

(∑m
i=1 uiu′

i)
2

∑m
i=1 u2

i
dt
) ν−2

4ν

inf
y∈H1(R,R)\{0}

(∫
R
|y′|2dt

) ν−2
4ν
(∫

R
|y|2dt

) ν+2
4ν(∫

R
|y|νdt

) 1
ν

=
1

MGN(ν)
.

Hence, for any ν > 2(∫
R
|u|νdt

) 1
ν

≤ MGN(ν)

(∫
R
|u̇|2dt

) ν−2
4ν
(∫

R
|u|2dt

) ν+2
4ν

for all u ∈ H1(R, Rm),

where MGN(ν) is the best constant defined in (2.4) and attained at

V = (k1, . . . , km)v⋆ (2.8)

with ki ≥ 0 and k2
1 + . . . + k2

m = 1. Moreover, for any ∆ ⊂ R, there holds(∫
∆
|u|νdt

) 1
ν

≤ MGN(ν)

(∫
∆
|u̇|2dt

) ν−2
4ν
(∫

∆
|u|2dt

) ν+2
4ν

for all u ∈ H1
0(∆, Rm) (2.9)

and MGN(ν) is the best constant which can be attained if and only if ∆ = R. For any u ∈
H1(R, Rm) \ {0} and τ > 0, let qτ(t) = u(τt) with

Qτ(u) =

(∫
R

(
|q̇τ|2 + |qτ|2

)
dt
) 1

2(∫
R
|qτ|νdt

) 1
ν

and

τu =

√
(ν − 2)

∫
R
|u|2dt

(ν + 2)
∫

R
|u̇|2dt

.

It is easy to see that

inf
τ>0

Qτ(u) = Qτu(u) ≤ Q1(u) =
∥u∥
∥u∥ν

(2.10)
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and

inf
u∈H1(R,Rm)\{0}

Qτu(u) = inf
u∈H1(R,Rm)\{0}

(
ν + 2
ν − 2

) ν−2
4ν
(

2ν

ν + 2

) 1
2
(∫

R
|u̇|2dt

) ν−2
4ν
(∫

R
|u|2dt

) ν+2
4ν(∫

R
|u|νdt

) 1
ν

=
1

MGN(ν)

(
ν + 2
ν − 2

) ν−2
4ν
(

2ν

ν + 2

) 1
2

. (2.11)

It follows from (2.10) and (2.11) that

inf
u∈H1(R,Rm)\{0}

∥u∥
∥u∥ν

≥ 1
MGN(ν)

(
ν + 2
ν − 2

) ν−2
4ν
(

2ν

ν + 2

) 1
2

(2.12)

and
∥VτV ∥
∥VτV ∥ν

=
1

MGN(ν)

(
ν + 2
ν − 2

) ν−2
4ν
(

2ν

ν + 2

) 1
2

. (2.13)

Then, we infer that (2.1) holds and

Cν = MGN(ν)

(
ν − 2
ν + 2

) ν−2
4ν
(

ν + 2
2ν

) 1
2

(2.14)

is the best constant. Moreover, we also need to consider the best constant when ν = +∞. It
follows from (2.14) that Cν → 1√

2
as ν → +∞. It has been shown by Janczewska in [16] that

C∞ = 1√
2
, which is the best constant for (2.1) when ν = ∞.

3 Solutions for the limit systems

In this section, we consider the solutions for the limit systems of (1.1). In the rest of this paper,
we only consider the systems in R2. The potential V is defined as

V(t, x) = −1
2

a(t)|x|2 + λF(t, x) + d(t)|x|ν,

where a, d ∈ C(R, R), λ > 0, ν > 2 and the following conditions hold

(V1) there exists a0 > 0 such that a(t) ≥ a0 for all t ∈ R;

(V2) there exist a∞, d∞ > 0 such that a(t) → a∞ and d(t) → d∞ as |t| → +∞;

(V3) ∥a∥∞ ≥ 1, d(0) = ∥d∥∞;

(V4) F(t, 0) = 0 and F(t, x) ∈ C1(R × R2, R);

(V5) for any (t, x) ∈ R × R2, there exist 1 < r1 ≤ r2 < 2 such that

|∇F(t, x)| ≤ b1(t)|x|r1−1 + b2(t)|x|r2−1,

where b1(t) ∈ Lβ1(R, R+) and b2(t) ∈ Lβ2(R, R+) for some β1 ∈ (1, 2
2−r1

) and β2 ∈
(1, 2

2−r2
);

(V6) there exist t̄ ∈ R, r ∈ (1, 2) and b0 > 0 such that F(t̄, x) > b0|x|r for all x ∈ R2.
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Here Qν : R → R+ is the unique positive ground state solution(up to translations) for the
following equation

ü(t)− u(t) + uν−1(t) = 0 for t ∈ R. (3.1)

Let us consider the following systems
∆uj − a∞uj + νd∞

(
∑m

i=1 u2
i
) ν−2

2 uj = 0 in Rn,

u̇j(0) = 0, j = 1, . . . , m,

uj(y) → 0 as |y| → +∞.

(3.2)

The existence of solutions for systems (3.2) has been considered by many mathematicians via
the variational methods. A solution (u1, . . . , um) for (3.2) is said to be positive if u1, . . . , um > 0.
When m = 1, (3.2) reduces to a differential equation and the uniqueness of positive ground
state solution for (3.2) has been shown by M. K. Kwong [19] with ν > 2. The readers are also
referred to [17, 34] for more general cases.

When m > 1, (3.2) is related to the coupled nonlinear Schrödinger equations. In last
decades, there have been many mathematicians devoting themselves to the uniqueness of
positive solutions for the coupled nonlinear Schrödinger equations and obtained many signif-
icant results (see [9, 19, 26, 41]). In a recent paper [41], Wei and Yao considered the following
systems 

ü(r) + n−1
ν u̇(r)− λ1u + µ1u3 + βuv2 = 0, in [0, ∞)

v̈(r) + n−1
r v̇(r)− λ2v + µ2v3 + βu2v = 0, in [0, ∞)

u(r), v(r) > 0 in [0, ∞)

u̇(0) = v̇(0) = 0, and u(r), v(r) → 0 as r → ∞.

(3.3)

When λ1 = λ2 = λ with 0 ≤ β /∈ [min {µ1, µ2} , max {µ1, µ2}], they showed the uniqueness of
positive solutions for system (3.3), defined as

(u0, v0) =

(√
λ (β − µ2)

β2 − µ1µ2
w0(

√
λx),

√
λ (β − µ1)

β2 − µ1µ2
w0(

√
λx)

)

where w0 is the unique positive solution of

∆w − w + w3 = 0 in R, w(0) = max
x∈RN

w(x), w(x) → 0 as |x| → ∞.

q When λ1 = λ2 = λ and µ1 = µ2 = β, it has also been shown in [41] that all the positive
solutions of system (3.3) have the following form

(u(x), v(x)) =

(√
λ

β
w(

√
λx) cos θ,

√
λ

β
w(

√
λx) sin θ

)
, θ ∈ (0, π/2).

For the high dimension cases, i.e. n = 2, 3 and m = 2, the readers are referred to another
paper by Dai, Tian and Zhang [11]. However, the case n = 1 is not considered. We can see
that (3.2) reduces to (3.3) if ν = 4. Motivated by above papers, we obtain the uniqueness of
solutions for (3.2) when m = 2, n = 1 and ν > 2. More precisely, we obtain the following
lemma.
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Lemma 3.1. Suppose m = 2, n = 1, a∞, d∞ > 0 and ν > 2. Then system (3.2) possesses at least
one positive solution. Let Uν : R → R+ × R+ be a positive solution for systems (3.2), then there exits
ω ∈ (0, π/2) such that

Uν =

(
a∞

νd∞

) 1
ν−2

Qν (
√

a∞t) (cos ω, sin ω) (3.4)

and Uν is the ground state solution for (3.2).

Proof. Since n = 1, the critical exponent equals to +∞. The existence of positive solutions for
the subcritical problems have been considered in [7, 13, 35, 41]. Subsequently, we only show
(3.4) holds and Uν is the ground state solution for (3.2). Let

Mν(t) =
(

a∞

νd∞

)− 1
ν−2

Uν

(
t√
a∞

)
.

Then Mν = (M1(t),M2(t)) is the positive solution for the following system
üj(t)− uj(t) +

(
u2

1(t) + u2
2(t)

) ν−2
2 uj(t) = 0, j = 1, 2, for t ∈ R,

u̇1(0) = u̇2(0) = 0,

u1(t), u2(t) → 0 as |t| → ∞,

which implies
M̈1 −M1 + (M2

1 +M2
2)

ν−2
2 M1 = 0, (3.5)

M̈2 −M2 + (M2
1 +M2

2)
ν−2

2 M2 = 0. (3.6)

Subtracting (3.5) by (3.6), one infers that

d
dt
(
Ṁ1M2 −M1Ṁ2

)
= 0,

which implies
Ṁ1M2 −M1Ṁ2 = C for some C ∈ R.

Since Ṁ1(0) = Ṁ2(0) = 0, we obtain

Ṁ1M2 −M1Ṁ2 = 0 for all t ∈ R.

By the ordinary differential equation theory, one can deduce

M1 = KM2 for some K > 0. (3.7)

Combining (3.6) and (3.7), we obtain

M̈2 −M2 + (K2 + 1)
ν−2

2 Mν−1
2 = 0.

Letting T(t) =
(
K2 + 1

) 1
2 M2(t), we see T(t) > 0 satisfies (3.1). By the uniqueness, one has

T = Qν, which implies M2 =
(
K2 + 1

)− 1
2 Qν. Then it follows that

Mν(t) = Qν(t)
(
K2 + 1

)− 1
2 (K, 1),
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which implies (3.4). We also show that Uν is a ground state solution for systems (3.2). Actually,
the corresponding functional of (3.2) is defined as

I∞(u) =
1
2

∫
R

(
|u̇|2 + a∞|u|2

)
dt − d∞

∫
R
|u|νdt.

Set N = {u ∈ H1(R, R2) \ {0} : ⟨I′∞(u), u⟩ = 0} and c∞ = infu∈N I∞(u). Moreover, the
corresponding functional of (3.1) is defined as

J∞(q) =
1
2

∫
R

(
|q̇|2 + |q|2

)
dt − 1

ν

∫
R
|q|νdt.

Let N = {q ∈ H1(R, R) \ {0} : ⟨J′∞(q), q⟩ = 0} and C∞ = infq∈N J∞(q). By the definition of Qν,
we deduce that

J∞ (Qν) = C∞.

Obviously, for any q(t) ∈ N and e ∈ R2 with |e| = 1, we have that
( a∞

νd∞

) 1
ν−2 q(

√
a∞t)e ∈ N .

In turn, for any u(t) ∈ N we have
(

νd∞
a∞

) 1
ν−2
∣∣u( t√

a∞

)∣∣ ∈ N. Therefore, we infer that c∞ =

a
ν+2

2(ν−2)
( 1

νd∞

) 2
ν−2C∞. Moreover, it follows from (3.4) and the definition of Qν that∫

R

(
|Q̇ν|2 + |Qν|2

)
dt =

∫
R
|Qν|νdt (3.8)

and

c∞ = I∞(Uν) =
ν − 2

2ν

(
1

νd∞

) 2
ν−2

a
ν+2

2(ν−2)
∞

∫
R
|Qν|νdt. (3.9)

Remark 3.2. When ν = 4, Theorem 3.1 reduces to the results in [41].

4 Main results

In this section, we prove our main result.

Theorem 4.1. Suppose that ν > 2, (V1)–(V5) hold. Then there exist λ0, d0 > 0 such that problem
(1.1) possesses at least one homoclinic solution for all λ ∈ (0, λ0) and d∞ ∈ (0, d0). Moreover, (1.1)
possesses another homoclinic solution if (V6) holds.

Remark 4.2. In [36, 37], Sun and Wu also considered (1.1) with mixed nonlinearities. In both
papers, the infimum of a(t) cannot be attained at infinity, which is different from our result.

Remark 4.3. In Theorem 4.1, there are no periodic, coercive or symmetric assumptions on
a(t), which is different from the results in [6, 14, 32, 39, 44]. According to our conditions, both
of the superquadratic and subquadratic parts of V can change signs, then we can not obtain
the compactness as the authors did in [46].

Remark 4.4. In [26, 27], W(t, x) is required to satisfy

(∇W(t, x), x) ≥ (∇W∞(x), x) ≥ 0 for all t ∈ R, x ∈ RN , (4.1)
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and
(∇W(t, x), x) ≥ 2W(x) for all t ∈ R, x ∈ RN , (4.2)

where W∞ is the limit function of W as t → ∞. In our theorem, we have

W(t, x) = λF(t, x) + d(t)|x|ν. (4.3)

Since F(t, x) and d(t) can change signs, we infer that (4.1) and (4.2) are not valid for (4.3).
Moreover, since (4.1), (4.2) and (MC) hold in [27], the authors can show that for any u ∈
H1(R, R2), there exists unique su > 0 such that suu ∈ L and sups≥0 I(su) = I(suu), where
L = {u ∈ H1(R, R2) \ {0} : ⟨I′(u), u⟩ = 0}. This conclusion is crucial in using the (CCP)
to show the contradictions. However, we can not obtain this conclusion by our conditions.
Therefore, the Nehari-manifold method is not applicable for our theorem.

4.1 Preliminaries

The corresponding functional of (1.1) is defined by

I(u) =
1
2

∫
R

(
|u̇|2 + a(t)|u|2

)
dt − λ

∫
R

F(t, u)dt −
∫

R
d(t)|u|νdt. (4.4)

Lemma 4.5. Under (V1)–(V5), I is of C1 class and weakly lower semi-continuous. Moreover, we
have

⟨I′(u), v⟩ =
∫

R
((u̇, v̇) + a(t)(u, v))dt − λ

∫
R
(∇F(t, u), v)dt − ν

∫
R

d(t)|u|ν−2(u, v)dt,

which implies that

⟨I′(u), u⟩ =
∫

R

(
|u̇|2 + a(t)|u|2

)
dt − λ

∫
R
(∇F(t, u), u)dt − ν

∫
R

d(t)|u|νdt.

Proof. The proof is similar to Lemma 2.3 in [6].

Lemma 4.6. The critical points of I are homoclinic solutions for problem (1.1).

Proof. Since ∥a∥∞ ≥ a(t) > a0 > 0, the proof is similar to Lemma 3.1 in [49].

We will show the existence of two critical points of I by the Mountain Pass Theorem and
the following critical point lemma respectively.

Lemma 4.7 (Lu [22]). Let X be a real reflexive Banach space and Ω ⊂ X be a closed bounded convex
subset of X. Suppose that φ : X → R is a weakly lower semi-continuous (w.l.s.c. for short) functional.
If there exists a point x0 ∈ Ω \ ∂Ω such that

φ(x) > φ(x0), ∀ x ∈ ∂Ω,

then there must be an x∗ ∈ Ω \ ∂Ω such that

φ(x∗) = inf
x∈Ω

φ(x).
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4.2 The Mountain Pass Structure

In this section, we mainly show the Mountain Pass structure of I and obtain some crucial
estimates.

Lemma 4.8. Suppose the conditions of Theorem 4.1 hold, then there exist ϱ0, α > 0 such that I|∂Sϱ0
≥

α, where Sϱ0 = {u ∈ H1 : ∥u∥ ≤ ϱ0}.

Proof. By (V4) and (V5), we can deduce that

|(∇F(t, x), x)| ≤ b1(t)|x|r1 + b2(t)|x|r2 (4.5)

and
|F(t, x)| ≤ 1

r1
b1(t)|x|r1 +

1
r2

b2(t)|x|r2 (4.6)

for all (t, x) ∈ R × R2. By (2.1), (4.4), (4.6) and (V1), for all u ∈ ∂Sϱ, we have

I(u) =
1
2

∫
R

(
|u̇|2 + a(t)|u|2

)
dt − λ

∫
R

F(t, u)dt −
∫

R
d(t)|u|νdt

≥ min{1, a0}
2

∥u∥2 − λ

(
1
r1

∫
R

b1(t)|u|r1 dt +
1
r2

∫
R

b2(t)|u|r2 dt
)
− Cν

ν∥d∥∞∥u∥ν

≥ min{1, a0}
2

∥u∥2 − λ

(
1
r1

Cr1
r1β∗

1
∥b1∥β1∥u∥r1 +

1
r2

Cr2
r2β∗

2
∥b2∥β2∥u∥r2

)
− Cν

ν∥d∥∞∥u∥ν.

For any ϱ > 0, set

h(ϱ) =
min{1, a0}

2
ϱ2 − ∥d∥∞Cν

νϱν.

It is easy to see that h′(ϱ0) = 0 and ϱ0 is the unique critical point of h defined as

ϱ0 =

(
min{1, a0}
νCν

ν∥d∥∞

) 1
ν−2

.

Then there exists λ1 > 0 such that for any λ ∈ (0, λ1) with ∥u∥ = ϱ0, we have

I(u) ≥ 1
2

h(ϱ0)
.
= α.

We obtain our conclusion.

Lemma 4.9. Suppose the conditions of Theorem 4.1 hold, then for λ small enough, there exists e0 ∈ H1

such that ∥e0∥ > ϱ0 and I(e0) ≤ α, where ϱ0, α are defined in Lemma 4.8.

Proof. it follows from the definition of Qν, (3.8) and (2.14) that

J∞(Qν) = E(ν) = inf
u∈H1(R,R)\{0}

(ν − 2)
(
∥u̇∥2

2 + ∥u∥2
2
) ν

ν−2

2ν∥u∥
2ν

ν−2
ν

=
(ν − 2)

(
∥Q̇ν∥2

2 + ∥Qν∥2
2
) ν

ν−2

2ν∥Qν∥
2ν

ν−2
ν

=
ν − 2

2ν

∫
R
|Qν|νdt

≥ ν − 2
2ν

C
− 2ν

ν−2
ν ,
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which implies ∫
R
|Qν|νdt ≥ C

− 2ν
ν−2

ν .

It follows from (V3) that, there exist T > 0 such that |d(t)− ∥d∥∞| ≤ ε0 for all t ∈ (−T, T).
For any u ∈ H1

0((−T, T), R2), let

L(u) =

(∫ T
−T

(
|u̇|2 + |u|2

)
dt
) ν

ν−2

(∫ T
−T |u|νdt

) 2
ν−2

.

Let χ ∈ H1
0((−T, T), R2) and

u(t) = (χ(
√
∥a∥∞ + ε0t), 0),

which implies u ∈ H1(R, R2). For any t ∈ (−T, T), it follows from ∥a∥∞ ≥ 1 that t√
∥a∥∞+ε0

∈
(−T, T). Then

I(θu) ≤ θ2
√
∥a∥∞ + ε0

2

∫ T

−T

(
|χ̇|2 + |χ|2

)
dt − θν√

∥a∥∞ + ε0

∫ T

−T
d

(
t√

∥a∥∞ + ε0

)
|χ|νdt

− λ
∫ T

−T
F(t, θu)dt

≤ θ2
√
∥a∥∞ + ε0

2

∫ T

−T

(
|χ̇|2 + |χ|2

)
dt − (∥d∥∞ − ε0)θν√

∥a∥∞ + ε0

∫ T

−T
|χ|νdt

+ λ

(
θr1

r1
∥a∥

− 1
2β∗1

∞ Cr1
r1β∗

1
∥b1∥β1∥χ∥r1 +

θr2

r2
∥a∥

− 1
2β∗2

∞ Cr2
r2β∗

2
∥b2∥β2∥χ∥r2

)
.

Choose θ0 > 0 large enough such that I(θ0u) < 0 and θ0∥u∥ > ϱ0. Letting e0 = θ0u, we see
that there exists λ2 ∈

(
0, λ1

)
such that for any λ ∈ (0, λ2), I(e0) < 0 and ∥e0∥ > ϱ0. We obtain

the conclusion of this lemma.

By the Mountain Pass theorem, there exists a sequence {un} and c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], E) | g(0) = O, g(1) = e0}.

such that
I(un) → c (4.7)

and for any v ∈ H1 (R, R2)
o(1)∥v∥ = ⟨I′(un), v⟩ =

∫
R
((u̇n, v̇) + a(t)(un, v))dt − λ

∫
R
(∇F(t, un), v)dt

− ν
∫

R
d(t)|un|ν−2(un, v)dt. (4.8)

Next, we show an important relation between c and c∞, which is crucial in the following
concentration compactness study.
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Lemma 4.10. Suppose λ and d∞ are small enough, then

c∞ − c ≥ 2λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1∥vn∥r1 +

r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2∥vn∥r2

)
. (4.9)

Proof. First, we estimate the critical value of I along the sequence {un}. For s ∈ [0, 1], set

g0(s) = se0 = sθ0u,

which implies g0(s) ∈ Γ. It follows from the definition of c that

c = inf
g∈Γ

max
s∈[0,1]

I(g(s))

≤ max
s∈[0,1]

I(g0(s))

≤ max
s∈[0,1]

[
(sθ0)2

√
∥a∥∞ + ε0

2

∫ T

−T

(
|χ̇|2 + |χ|2

)
dt − (∥d∥∞ − ε0)(sθ0)ν√

∥a∥∞ + ε0

∫ T

−T
|χ|νdt

]

+ λ

(
θr1

0
r1

∥a∥
− 1

2β∗1
∞ Cr1

r1β∗
1
∥b1∥β1∥χ∥r1 +

θr2
0

r2
∥a∥

− 1
2β∗2

∞ Cr2
r2β∗

2
∥b2∥β2∥χ∥r2

)

≤ ν − 2
2ν

(
1

ν(∥d∥∞ − ε0)

) 2
ν−2

(∥a∥∞ + ε0)
ν+2

2(ν−2) L(χ)

+ λ

(
θr1

0
r1

∥a∥
− 1

2β∗1
∞ Cr1

r1β∗
1
∥b1∥β1∥χ∥r1 +

θr2
0

r2
∥a∥

− 1
2β∗2

∞ Cr2
r2β∗

2
∥b2∥β2∥χ∥r2

)
. (4.10)

Moreover, there exists d0 > 0 small enough such that for any d∞ ∈ (0, d0), one has

a
ν+2

2(ν−2)
∞

(
1

d∞

) 2
ν−2 ∫

R
|Qν|νdt ≥ a

ν+2
2(ν−2)
∞

(
1

d∞

) 2
ν−2

C
− 2ν

ν−2
ν

= a
ν+2

2(ν−2)
∞

(
1

d∞

) 2
ν−2
(

MGN(ν)

(
ν − 2
ν + 2

) ν−2
4ν
(

ν + 2
2ν

) 1
2
)− 2ν

ν−2

>

(
1

∥d∥∞ − ε0

) 2
ν−2

(∥a∥∞ + ε0)
ν+2

2(ν−2) L(χ).

By (3.9) and (4.10), there exists λ3 ∈ (0, λ2) such that for any λ ∈ (0, λ3) and ε0 > small
enough

c∞ − c ≥ ν − 2
2ν

(
1
ν

) 2
ν−2
(

a
ν+2

2(ν−2)
∞

(
1

d∞

) 2
ν−2 ∫

R
|Qν|νdt

−
(

1
∥d∥∞ − ε0

) 2
ν−2

(∥a∥∞ + ε0)
ν+2

2(ν−2) L(χ)

)

− λ

(
θr1

0
r1

a
− 1

2β∗1
∞ Cr1

r1β∗
1
∥b1∥β1∥χ∥r1 +

θr2
0

r2
a
− 1

2β∗2
∞ Cr2

r2β∗
2
∥b2∥β2∥χ∥r2

)

> 2λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1(4D)r1 +

r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2(4D)r2

)
≥ 2λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1∥vn∥r1 +

r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2∥vn∥r2

)
.

We obtain our conclusion.
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4.3 The compactness property

In this section, we show that {un} converges to a nontrivial solution for problem (1.1). We will
utilize the concentration-compactness principle by P. L. Lions [20] to obtain the compactness.

Lemma 4.11 (See [20, Lemma1.1]). Let {ρn} be a sequence of nonnegative L1 functions on R sat-
isfying

∫
R

ρn(t)dt = κ, where κ is a fixed constant. Then there exists a subsequence which we still
denote by {ρn}, satisfying one of the three following possibilities:

(i) (Vanishing): for all R > 0, it follows

lim
n→∞

sup
y∈R

∫
BR(y)

ρndt = 0;

(ii) (Compactness): there exists {yn} ⊂ R such that, for any ε > 0, there exists R > 0 satisfying∫
BR(yn)

ρndt ≥ κ − ε;

(iii) (Dichotomy): there exist α ∈ (0, κ), ρ1
n ≥ 0, ρ2

n ≥ 0, and ρ1
n, ρ2

n ∈ L1(R) such that

(a)
∥∥ρn −

(
ρ1

n + ρ2
n
)∥∥

L1 → 0 as n → ∞;

(b)
∫

R
ρ1

ndt → α as n → ∞;

(c)
∫

R
ρ2

ndt → κ − α as n → ∞;

(d) dist
(
supp ρ1

n, supp ρ2
n
)
→ ∞ as n → ∞.

Lemma 4.12 (See [21]). Let {un} be bounded sequence in Lq(R) for 1 ≤ q < +∞ such that {u̇n} is
bounded in Lp(R) for 1 < p ≤ +∞. If there exists R > 0 such that

sup
y∈R

∫
BR(y)

|un|qdt → 0 as n → ∞,

then un → 0 in Lr(R) for all r ∈ (q,+∞).

First, we show the boundedness of ∥un∥. It follows from (4.4), (4.5), (4.7), (4.8) and (4.10)
that

νc + o(1)

≥ νI(un)− ⟨I′(un), un⟩

=
(ν

2
− 1
) ∫

R

(
|u̇n|2 + a(t)|un|2

)
dt − λ

∫
R
((∇F(t, un), un)− νF(t, un)) dt

≥ min{1, a0}
(ν

2
− 1
)
∥un∥2 − λ

(
r1 + ν

r1
Cr1

r1β∗
1
∥b1∥β1∥un∥r1 +

r1 + ν

r2
Cr2

r2β∗
2
∥b2∥β2∥un∥r2

)
.

Hence there exists D > 0 such that

∥un∥ ≤ D for all n ∈ N. (4.11)

Without loss of generality, we assume that

lim
n→∞

∥un∥ =
√

κ. (4.12)
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We have that κ > 0. If not, assuming by contradiction that ∥un∥ → 0, there will be a contra-
diction. It follows from ∥un∥ → 0 that ∥un∥∞ → 0. It is easy to see that∣∣∣∣λ ∫

R
F(t, un)dt +

∫
R

d(t)|un|νdt
∣∣∣∣ dt → 0 as n → ∞,

which contradicts to (4.7). Then (4.12) holds.

Lemma 4.13. The sequence {un} converges to a nontrivial function u0 in H1(R, R2), which is the
homoclinic solution for systems (1.1).

Proof. In order to prove this lemma, we consider three cases of behavior for {un}, which are
classified in Lemma 4.11. Set ρn(t) = |u̇n(t)|2 + |un(t)|2. The proof is divided into three steps.

Step 1: Vanishing does not occur.

Suppose by contradiction, for all R > 0,

lim
n→∞

sup
y∈R

∫
BR(y)

ρndt = 0.

We deduce from Lemma 4.12 that

lim
n→∞

∫
R
|un|νdt = 0. (4.13)

By (4.8), for n large enough, we can conclude that∫
R

(
|u̇n|2 + a(t)|un|2

)
dt ≤ λ

∫
R
(∇F(t, un), un)dt + ν

∫
R

d(t)|un|νdt +
1
2

c. (4.14)

It follows from (4.4), (4.5), (4.6), (4.7), (4.8), (4.13) and (4.14) that there exists λ4 ∈ (0, λ3) such
that for any λ ∈ (0, λ4)

0 <
1
2

c

≤ I(un)

=
1
2

∫
R

(
|u̇n|2 + a(t)|un|2

)
dt − λ

∫
R

F(t, un)dt −
∫

R
d(t)|un|νdt

≤ 1
2

(
λ
∫

R
(∇F(t, un), un)dt + ν

∫
R

d(t)|un|νdt +
1
2

c
)
− λ

∫
R

F(t, un)dt −
∫

R
d(t)|un|νdt

≤ λ

(
r1 + 2

2r1
∥b1∥β1∥un∥r1

r1β∗
1
+

r1 + 2
2r2

∥b2∥β2∥un∥r2
r2β∗

2

)
+ ∥d∥∞

(ν

2
− 1
) ∫

R
|un|νdt +

1
4

c

→ 1
4

c as n → ∞,

which is a contradiction. Then we see that vanishing case does not occur.

Step 2: Dichotomy does not occur.

There exist R0 > 0 and sequences {yn} ⊂ R, {Rn} ⊂ R+, with R0 < R1 < · · · < Rn <

Rn+1 → ∞, Ωn = BRn(yn) \ BR0(yn) such that∫
Ωn

ρndt → 0,
∫

BR0 (yn)
ρndt → α and

∫
R\B2Rn (yn)

ρndt → κ − α (4.15)
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as n → ∞. Set ξ ∈ C1(R+, R+) with 0 ≤ ξ ≤ 1, ξ(s) ≡ 1 for s ≤ 1; ξ(s) ≡ 0 for s ≥ 2 and
|ξ̇(s)| ≤ 2. Let

vn(t) = ξ

(
|t − yn|

R0

)
un(t) and wn(t) =

(
1 − ξ

(
|t − yn|

Rn

))
un(t).

On one hand, we can easily deduce that

∥wn∥2 =
∫

R
|ẇn|2dt +

∫
R
|wn|2dt

=
∫

R

(
1

R2
n

∣∣∣∣ξ̇ ( |t − yn|
Rn

)
un

∣∣∣∣2 + ∣∣∣∣(1 − ξ

(
|t − yn|

Rn

))
u̇n

∣∣∣∣2
)

dt

− 2
Rn

∫
R

ξ̇

(
|t − yn|

Rn

)(
1 − ξ

(
|t − yn|

Rn

))
(un, u̇n)dt +

∫
R

∣∣∣∣(1 − ξ

(
|t − yn|

Rn

))
un

∣∣∣∣2 dt

≥
∫

R\B2Rn (yn)
ρndt − 2

Rn
∥un∥2,

which implies that

lim
n→∞

∥wn∥2 ≥ κ − α.

On the other hand, it can be easily deduce from (4.15) that

∫
Ωn

d(t)|un|νdt → 0,
∫

R
[(u̇n, ω̇n)− |ω̇n|2]dt → 0 as n → ∞, (4.16)

and ∫
BRn (yn)

(∇F(t, un), wn)dt → 0,
∫

BRn (yn)
(∇F(t, wn), wn)dt → 0 as n → ∞. (4.17)

Then one has

∥wn∥2 =
∫

R

(
1

R2
n

∣∣∣∣ξ̇ ( |t − yn|
Rn

)
un

∣∣∣∣2 + ∣∣∣∣(1 − ξ

(
|t − yn|

Rn

))
u̇n

∣∣∣∣2
)

dt

− 2
Rn

∫
R

ξ̇

(
|t − yn|

Rn

)(
1 − ξ

(
|t − yn|

Rn

))
(un, u̇n)dt +

∫
R

∣∣∣∣(1 − ξ

(
|t − yn|

Rn

))
un

∣∣∣∣2 dt

≤ 4
R2

n

∫
Ωn

|un|2 dt +
2

Rn
∥un∥2 +

∫
Ωn

ρndt +
∫

R\B2Rn (yn)
ρndt,

which implies that

lim
n→∞

∥wn∥2 = κ − α. (4.18)

Subsequently, for any u ∈ H1(R, R2) and t ∈ R, set

G(t, u) = |u̇|2 + a(t)|u|2 − λ(∇F(t, u), u)− νd(t)|u|ν.
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Hence, it follows from the definition of v, w and (4.16) that∫
R
|F(t, un)− F(t, vn)− F(t, wn)| dt

=
∫

Ωn

|F(t, un)− F(t, vn)− F(t, wn)| dt

≤
∫

Ωn

|F(t, un)|dt +
∫

Ωn

|F(t, vn)|dt +
∫

Ωn

|F(t, wn)|dt

≤ 1
r1

∫
Ωn

b1(t)|un|r1 dt +
1
r2

∫
Ωn

b2(t)|un|r2 dt

+
1
r1

∫
Ωn

b1(t)|vn|r1 dt +
1
r2

∫
Ωn

b2(t)|vn|r2 dt

+
1
r1

∫
Ωn

b1(t)|wn|r1 dt +
1
r2

∫
Ωn

b2(t)|wn|r2 dt

≤ 3
r1

∫
Ωn

b1(t)|un|r1 dt +
3
r2

∫
Ωn

b2(t)|un|r2 dt

≤ 3
(∥b1∥β1

r1
+

∥b2∥β2

r2

)((∫
Ωn

|un|r1β∗
1 dt
) 1

β∗1
+

(∫
Ωn

|un|r2β∗
2 dt
) 1

β∗2

)
→ 0 as n → ∞ (4.19)

and ∣∣∣∣∫
R

d(t) ||un|ν − |vn|ν − |wn|ν| dt
∣∣∣∣ = ∫

Ωn

d(t) ||un|ν − |vn|ν − |wn|ν| dt

≤ 3∥d∥∞∥un∥ν−2
∞

∫
Ωn

|un|2dt

≤ 3 × 2−
ν−2

2 Dν−2∥d∥∞

∫
Ωn

|un|2dt

→ 0 as n → ∞. (4.20)

Furthermore, we can deduce that∣∣∥un∥2 − ∥vn∥2 − ∥wn∥2∣∣ ≤ ∫
Ωn

∣∣|u̇n|2 − |v̇n|2 − |ẇn|2
∣∣ dt +

∫
Ωn

∣∣|un|2 − |vn|2 − |wn|2
∣∣ dt

→ 0 as n → ∞. (4.21)

Together with (4.19), (4.20) and (4.21), we have

I(un) ≥ I(vn) + I(wn)− o(1). (4.22)

The discussion for this step is divided into two cases.

Case 1. {yn} ⊂ R is bounded.

First, we show the following claim.

Claim 1: I(wn) ≥ c∞ − o(1).
By (V2), for any ε > 0, there exists r∞ > 0 such that

|a(t)− a∞| ≤ ε
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for all |t| ≥ r∞. Since {yn} is bounded, then there exists y > y > 0 such that {yn} ⊂ [y, y]
for all n ∈ N and min{Rn − y, Rn + y} → +∞ as n → ∞. By the definition of wn, for n large
enough, we obtain∣∣∣∣∫

R
(a∞ − a(t))|wn|2dt

∣∣∣∣ ≤ ∫
R\BRn (yn)

|a∞ − a(t)|
(

1 − ξ

(
|t − yn|

Rn

))2

|un|2dt

≤
(∫ y−Rn

−∞
+
∫ +∞

y+Rn

)
|a∞ − a(t)||un|2dt

≤ 2ε
∫

R
|un|2dt

≤ 2εD2.

By the arbitrariness of ε, we can see that∣∣∣∣∫
R
(a∞ − a(t))|wn|2dt

∣∣∣∣→ 0 as n → ∞. (4.23)

Similarly, we have ∣∣∣∣∫
R
(d∞ − d(t))|wn|νdt

∣∣∣∣→ 0 as n → ∞. (4.24)

Moreover, we have∣∣∣∣∫
R

F(t, wn)dt
∣∣∣∣ ≤ 1

r1

∫
R

b1(t)|wn|r1 dt +
1
r2

∫
R

b2(t)|wn|r2 dt

≤ 1
r1

(∫
R\BRn (yn)

|b1|β1 dt
) 1

β1
(∫

R\BRn (yn)
|wn|r1β∗

1 dt
) 1

β∗1

+
1
r2

(∫
R\BRn (yn)

|b2|β2 dt
) 1

β2
(∫

R\BRn (yn)
|wn|r2β∗

2 dt
) 1

β∗2

≤ 1
r1

((∫ y−Rn

−∞
+
∫ +∞

y+Rn

)
|b1|β1 dt

) 1
β1
(∫

R\BRn (yn)
|un|r1β∗

1 dt
) 1

β∗1

+
1
r2

((∫ y−Rn

−∞
+
∫ +∞

y+Rn

)
|b2|β2 dt

) 1
β2
(∫

R\BRn (yn)
|un|r2β∗

2 dt
) 1

β∗2

→ 0 as n → ∞. (4.25)

Similarly, ∣∣∣∣∫
R
(∇F(t, wn), wn)dt

∣∣∣∣→ 0 as n → ∞. (4.26)

Combining (4.23) and (4.25), we can obtain

I(wn) ≥ I∞(wn)− o(1). (4.27)

It follows from (4.23), (4.24), (4.26) that∣∣⟨I′(wn), wn⟩ − ⟨I′∞(wn), wn⟩
∣∣

≤
∫

R
|a∞ − a(t)||wn|2dt + λ

∫
R
|(∇F(t, wn), wn)| dt + ν

∫
R
|d∞ − d(t)||wn|νdt

→ 0 as n → ∞. (4.28)
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We can also infer from (4.16), (4.17) that∣∣⟨I′(un), wn⟩ − ⟨I′(wn), wn⟩
∣∣

≤
∫

R
[(u̇n, ω̇n)− |ω̇n|2]dt + λ

(∣∣∣∣∫Ωn

(∇F(t, ωn), ωn)dt
∣∣∣∣+ ∣∣∣∣∫Ωn

(∇F(t, un), ωn)dt
∣∣∣∣)

+ ν∥d∥∞

(∣∣∣∣∫Ωn

(1 − ξ)ν|ωn|νdt
∣∣∣∣+ ∣∣∣∣∫Ωn

(1 − ξ)|un|νdt
∣∣∣∣)

→ 0 as n → ∞. (4.29)

Together with (4.8), (4.18), (4.28) and (4.29), one has

⟨I′∞(wn), wn⟩ → 0 as n → ∞. (4.30)

It follows from (4.18) that∫
R
(|ẇn|2 + a∞|wn|2)dt ≥ min{1, a∞}

2
(κ − α) > 0

for n large enough. Letting

An =
⟨I′∞(wn), wn⟩∫

R
(|ẇn|2 + a∞|wn|2)dt

and

σn =

(
1

1 − An

) 1
ν−2

,

we deduce that An → 0 and σn → 1 as n → ∞. Setting zn = σnwn(t), we have

⟨I′∞(zn), zn⟩ = σ2
n

(∫
R
|wn|2 dt +

∫
R

a∞ |wn|2 dt − σν−2
n νd∞

∫
R
|wn|νdt

)
= σ2

n
(
1 − σν−2

n (1 − An)
) (∫

R
|wn|2 dt +

∫
R

a∞ |wn|2 dt
)

= 0,

which implies zn ∈ N . Furthermore, we have

I∞(zn) =
σ2

n
2

(∫
R
|wn|2 dt +

∫
R

a∞ |wn|2 dt
)
− σν

nd∞

∫
R
|wn|νdt

=
σ2

n − σν
n

2

(∫
R
|wn|2 dt +

∫
R

a∞ |wn|2 dt
)
+ σν

n I∞(wn)

≥ c∞,

which implies

I∞(wn) ≥
σν

n − σ2
n

2σν
n

(∫
R
|wn|2 dt +

∫
R

a∞ |wn|2 dt
)
+

1
σν

n
c∞

≥ c∞ − o(1).

By (4.27), we can finish the proof of Claim 1.
Similar to (4.28), (4.29) and (4.30), we get ⟨I′(vn), vn⟩ → 0 as n → ∞. By the definition of

vn and (4.11), we have
∥vn∥ ≤ 4∥un∥ ≤ 4D.
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Therefore,

I(vn) =
1
2

∫
R
|v̇n|2dt +

1
2

∫
R

a(t)|vn|2dt − λ
∫

R
F(t, vn)dt −

∫
R

d(t)|vn|νdt

=
1
2

(∫
R
|v̇n|2dt +

∫
R

a(t)|vn|2dt
)
− λ

∫
R

F(t, vn)dt

− 1
ν

((∫
R
|v̇n|2dt +

∫
R

a(t)|vn|2dt
)
− λ

∫
R
(∇F(t, vn), vn) dt − ⟨I′(vn), vn⟩

)
≥
(

1
2
− 1

ν

)(∫
R
|v̇n|2dt +

∫
R

a(t)|vn|2dt
)

+ λ

(
1
ν

∫
R
(∇F(t, vn), vn) dt −

∫
R

F(t, vn)dt
)
+ o(1)

≥ − λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1∥vn∥r1 +

r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2∥vn∥r2

)
+ o(1). (4.31)

It follows from (4.7), (4.22), (4.31) and Claim 1 that

λ

(
r1 + ν

νr1
Cr1

r1β∗
1
∥b1∥β1∥vn∥r1 +

r1 + ν

νr2
Cr2

r2β∗
2
∥b2∥β2∥vn∥r2

)
≥ c∞ − c − o(1). (4.32)

This is an obvious contradiction to Lemma 4.10 when λ > 0 and d∞ > 0 are small enough.
Then the dichotomy does not occur when {yn} is bounded.

Case 2: {yn} ⊂ R is unbounded. Then, passing to a subsequence if necessary, we can assume
that |yn| → ∞ as n → ∞. In this case, we can choose a suitable sequence {Rn} ⊂ R such that
Rn ± yn → +∞ as n → ∞ and arguing similarly as above. Then we conclude that dichotomy
does not occur when {yn} is unbounded.

Step 3: Compactness.
It can be see from Theorem 4.1 that there exists {yn} ⊂ R such that, for any ε > 0, there

exists R1 > 0 satisfying ∫
BR1 (yn)

ρndt ≥ κ − ε. (4.33)

Since
∫

R
ρndt = κ, then we have ∫

R\BR1 (yn)
ρndt ≤ ε

for all n ∈ N. If {yn} is unbounded, similar to the arguments in Step 2, we can obtain a
contradiction. Then we conclude that {yn} is bounded. Since {un} is bounded in H1(R, R2),
there exists u0 in H1 such that un ⇀ u0. It follows from the continuity of the embedding
H1(R, R2) ↪→ Lν(R, R2) for any ν ∈ [2,+∞] that there exists R2 > 0 such that∫

R\BR2 (0)
|un|νdt ≤ ε and

∫
R\BR2 (0)

|u0|νdt ≤ ε. (4.34)

It is clear that un → u0 in Lν(BR2(0), R2) and it follows from (4.33) and (4.34) that∫
R
|un − u0|νdt =

∫
BR2 (0)

|un − u0|νdt +
∫

R\BR2 (0)
|un − u0|νdt

≤
∫

BR2 (0)
|un − u0|νdt + 2ν−1

(∫
R\BR2 (0)

|u0|νdt +
∫

R\BR2 (0)
|un|νdt

)
≤
∫

BR2 (0)
|un − u0|νdt + 2νε,
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which implies that

un → u0 as n → ∞ in Lν(R) for any ν ∈ [2,+∞).

On one hand, by Lebesgue Dominated Convergence Theorem, we can deduce that∫
R
|un|ν−2(un, u0)dt →

∫
R
|u0|νdt as n → ∞.

By ⟨I′(un), u0⟩ → 0 as n → ∞, we obtain

o(1) = ⟨I′(un), un − u0⟩

= ∥un − u0∥2 +
∫

R
(u̇0, u̇n − u̇0)dt +

∫
R

a(t)(u0, un − u0)dt −
∫

R
|un − u0|2dt

− λ
∫

R
(∇F(t, un), un − u0)dt − ν

∫
R

d(t)|un|ν−2(un, un − u0)dt. (4.35)

On one hand, for i = 1, 2, set

∆i,1 = (1, 2] , ∆i,2 =

(
2

3 − ri
,

2
2 − ri

)
.

It is easy to see that
(
1, 2

2−ri

)
= ∆i,1

⋃
∆i,2 and ∆i,1

⋂
∆i,2 ̸= ∅. Hence, we deduce that there

exists ηi ∈ [2,+∞) such that 1
βi
+ ri−1

ξi
+ 1

ηi
= 1. Moreover, let

ξi =

{
+∞ if βi ∈ ∆i,1,

2 if βi ∈ ∆i,2 \ ∆i,1.

By (V5), we show∫
R
(∇F(t, un), un − u0)dt ≤

∫
R

∑
i=1,2

bi(t)(|un|ri−1 + |u0|ri−1)dt

≤ ∑
i=1,2

∥bi∥βi(∥un∥ri−1
ξi

+ ∥u0∥ri−1
ξi

)∥un − u0∥ηi

→ 0 as n → ∞.

On the other hand, it is easy to see∣∣∣∣∫
R

d(t)|un|ν−2(un, un − u0)dt
∣∣∣∣ ≤ ∥d∥∞

∫
R
|un|ν−1 |un − u0| dt

≤ ∥d∥∞ ∥un∥ν−1
2(ν−1) ∥un − u0∥2

2

→ 0 as n → ∞.

We conclude from (4.35) that ∥un − u0∥ → 0 as n → ∞, which implies that u0 is a homoclinic
solution for problem (1.1).

4.4 Proof of Theorem 4.1

In this section, we look for the second homoclinic solution corresponding to negative critical
value with the following lemma.
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Lemma 4.14 (See [22]). Let X be a real reflexive Banach space and Ω ⊂ X be a closed bounded convex
subset of X. Suppose that φ : X → R is a weakly lower semi-continuous (w.l.s.c. for short) functional.
If there exists a point x0 ∈ Ω \ ∂Ω such that

φ(x) > φ(x0), ∀ x ∈ ∂Ω

then there must be a x∗ ∈ Ω \ ∂Ω such that

φ(x∗) = inf
x∈Ω

φ(x).

It follows from (V4) and (V6) that there exists δ > 0 such that

F(t, x) >
1
2

b0|x|r0 (4.36)

for all t ∈ (t̄ − δ, t̄ + δ) and x ∈ R2. Choose ψ ∈ C∞
0 ((t0 − δ, t0 + δ), R2) \ {0}. It follows from

(4.36) and r0 ∈ (0, 2) that

I(ϑψ) =
ϑ2

2
∥ψ∥2 − λ

∫
R

F(t, ψ)dt − ϑν
∫

R
d(t)|ψ|νdt

≤ ϑ2

2
∥ψ∥2 − λb0ϑr0

∫ t0+δ

t0−δ
|ψ|r0 dt − ϑνd∞

∫
R
|ψ|νdt

< 0

for ϑ > 0 small enough. By Lemma 4.14, we can see there exists a critical point of I corre-
sponding to negative critical value. □
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