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Abstract. In this article, we consider the concentration of positive solutions for the
following equation with Trudinger–Moser nonlinearity:{

− ∆Nu− ∆qu + V(εx)(|u|N−2u + |u|q−2u) = f (u), x ∈ RN ,

u ∈W1,N(RN) ∩W1,q(RN), x ∈ RN ,

where V is a positive continuous function and has a local minimum, ε > 0 is a small
parameter, 2 ≤ N < q < +∞, f is C1 with subcritical growth. When V and f satisfy
some appropriate assumptions, we construct the solution uε that concentrates around
any given isolated local minimum of V by applying the penalization method for the
above equation.
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1 Introduction and main result

In this article, we consider the concentration of positive solutions for an (N, q)-Laplacian
equation with Trudinger–Moser nonlinearity:{

− ∆Nu− ∆qu + V(εx)(|u|N−2u + |u|q−2u) = f (u), x ∈ RN ,

u ∈W1,N(RN) ∩W1,q(RN), x ∈ RN ,
(1.1)

where V : RN 7→ R is a function that satisfies continuity and has a local minimum, ε > 0 is a
small parameter, 2 ≤ N < q < +∞, f ∈ C1 is subcritical.

We first introduce some background about (p, q)-Laplacian equation. As described in [14],
problem (1.1) originates from the following reaction-diffusion equation:

ut = C(x, u) + div(D(u)∇u), D(u) = |∇u|q−2 + |∇u|p−2.
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It is widely used in physics or chemistry, such as solid state physics, chemical reaction design,
biophysics and plasma physics. Note that, in general reaction-diffusion equation, the physical
meaning of u is concentration, and the physical meaning of div(D(u)∇u) is the diffusion
generated by D(u). C(x, u) is related to the source and loss process. Generally, C(x, u) is a
polynomial with variable coefficients related to u in chemical and biological applications.

When p < q < N, Zhang et al. in [36] studied the following double phase problem{
(−∆)m

q u + (−∆)m
p u + V(εx)

(
|u|q−2u + |u|p−2u

)
= λ f (u) + |u|r−2u, x ∈ RN ,

u ∈Wm,p (RN) ∩Wm,q (RN) , u > 0, x ∈ RN ,

where ε is a parameter small enough but λ is required to be large enough, 0 < m < 1, r =

q∗m = Nq/(N − mq), 2 6 p < q < N/m, (−∆)m
t is the fractional t-Laplace operator and

the potential V : RN 7→ R is a continuous function. The authors obtained the existence and
concentration properties of multiple positive solutions to the above problem. Note that, [36]
assumed that the nonlinearity satisfies the Ambrosetti–Rabinowitz condition, that is, for all
t > 0, there is θ ∈ (q, q∗m) that satisfies 0 < θF(t) := θ

∫ t
0 f (τ)dτ 6 f (t)t. So the authors can

get the existence and concentration properties of multiple positive solutions by using Nehari
manifold.

When 1 < q < N = p, the authors in [12] investigated the existence of solutions for the
(N, q)-Laplacian equation:

− ∆qu− ∆Nu = f (u) in RN , (1.2)

where the nonlinear term f (u) satisfies exponential critical growth in the sense of Trudinger–
Moser. In order to detect the solution, they used a variational method related to the new
Trudinger–Moser type inequality. Figueiredo and Nunes in [19] used Nehari manifold method
to studied the existence of positive solutions for the following class of quasilinear problems{

− div(a(|∇u|p)|∇u|p−2∇u) = f (u) in Ω,

u = 0 on ∂Ω.

It is worth pointing out that Theorems 1.1 and 1.2 in [19] are valid for the problem (1.2) if RN

is replaced by Ω which is a smooth bounded domain. In [15], Costa and Figueiredo studied a
class of quasilinear equation with exponential critical growth. They used variational methods
and del Pino and Felmer’s technique (del Pino and Felmer 1996) in order to overcome the lack
of compactness, and got the existence of a family nodal solutions, which concentrate on the
minimum points set of the potential function, changes sign exactly once in RN .

When p = N/m < q, Nguyen in [29] studied the following Schrödinger equation involving
the fractional (N, q)-Laplace operator and Trudinger–Moser nonlinear term

(−∆)m
N/mu + (−∆)m

q u + V(εx)
(
|u| N

m−2u + |u|q−2u
)
= f (u) in RN ,

where ε > 0 is a parameter small enough, m ∈ (0, 1), N = pm, 2 ≤ p = N/m < q, the poten-
tial V : RN 7→ R is a continuous function that satisfies some suitable conditions. The nonlinear
term f (u) satisfies exponential growth. In order to obtain existence and concentration proper-
ties of nontrivial nonnegative solutions, the author in [29] used the Ljusternik–Schnirelmann
theory and Nehari manifold.

It is worth mentioning that both the nonlinearities of [12] and [29] satisfy the Ambrosetti–
Rabinowitz condition. Inspired by the above works, it seems quite natural to ask if f (u) does
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not satisfy the Ambrosetti–Rabinowitz condition but satisfies Beresticky–Lions type assump-
tions, do the same results hold for (N, q)-Laplacian problem? In this paper, we give a positive
answer.

In the present paper, we assume that the potential V : RN 7→ R is a continuous function
satisfying the following conditions which are always called del Pino–Felmer type conditions
(cf. [16]).

(V1) V ∈ C(RN , R) such that infx∈RN V(x) = V0 > 0.

(V2) There exists a bounded domain Λ ⊂ RN satisfies

m := inf
x∈Λ

V(x) < min
x∈∂Λ

V(x).

Moreover, we can assume 0 ∈ M := {x ∈ Λ : V(x) = m}.

The nonlinear term f : R → R is a continuous function. Moreover, for t ≤ 0, we assume
that f (t) = 0. Furthermore, f (t) satisfies the following hypotheses:

( f1) limt→0
f (t)
tq−1 = 0;

( f2) ∀α > 0, for t ≥ 0, there is a Cα > 0 satisfies | f (t)| ≤ Cαeαt
N

N−1 ;

( f3) there is T > 0 satisfies F(T) > m
N TN + m

q Tq.

Next, we state the main conclusion as follows:

Theorem 1.1. If (V1)–(V2) and ( f1)–( f3) are true, for small ε > 0, equation (1.1) has a positive
solution uε which has a maximum point xε satisfying

lim
ε→0

dist (xε,M) = 0.

Moreover, for any xε, as ε → 0 (up to a subsequence), vε(x) = uε(εx + xε) converges uniformly to a
least energy solution of the following equation:{

− ∆qu− ∆Nu + m(|u|q−2u + |u|N−2u) = f (u), x ∈ RN ,

u ∈W1,q(RN) ∩W1,N(RN), x ∈ RN .
(1.3)

Furthermore, we have
uε(x) ≤ C1e−C2|x−xε|, ∀x ∈ RN , C1, C2 > 0.

Remark 1.2. Without loss of generality, it can be assumed that V0 = 1.

As far as we know, there is no result on the concentration of positive solutions for (N, q)-
Laplacian problems with Berestycki–Lions nonlinearity.

Finally, we point out that Theorem 1.1 is proved by variational method, and there are four
main difficulties we encounter during the preparation of manuscript:

(1) The nonlinear term f (u) does not satisfy the Ambrosetti–Rabinowitz condition, and
for u > 0, the function f (u)

uq−1 is not increasing. They both prevent us from getting the
boundedness of Palais–Smale sequence and using the Nehari manifold. Moreover, we
can not apply the method in [16].
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(2) Since RN is unbounded, it will lead to the loss of compactness. In the later proof, we
will find that this difficulty will prevent us from directly using the variational method.

(3) When N > 2, the working space Xε is no longer a Hilbert space. This makes it more
complicated to prove the following formula in Lemma 3.11:

Jε (uε) ≥ Jε

(
u1

ε

)
+ Jε

(
u2

ε

)
+ o(1)

as ε→ 0.

(4) Due to N = p < q, we can not use the method of [2] to obtain that bm ≥ cm in Lemma
3.6.

In order to overcome the above difficulties, inspired by [8, 18, 22, 25], we recover the com-
pactness by penalization method described in [10].

The plan of this paper is as follows. In Section 2, we give some definitions of function
spaces and lemmas to be used later. In Section 3, we give the proof of Theorem 1.1.

2 Preliminary

In this section, we will give some definitions of symbols, and review some existing results that
need to be used in the future.

Let u : RN 7→ R. For 2 ≤ N < q < +∞, let us define D1,N(RN) = C∞(RN)
|∇·|N . We denote

the following fractional Sobolev space

W1,N(RN) = {u : |∇u|N < +∞, |u|N < +∞}

equipped with the natural norm

‖u‖W1,N(RN) =
(
|∇u|NN + |u|NN

)1/N
,

where | · |NN :=
∫

RN | · |Ndx.
For all u, v ∈W1,N(RN), we define

〈u, v〉W1,N(RN) =
∫

RN
(|∇u|N−2∇u∇v + |u|N−2uv)dx.

In this article, we need to introduce a work space

X = W1,N(RN) ∩W1,q(RN)
whose norm is defined as

‖u‖X := ‖u‖W1,q(RN) + ‖u‖W1,N(RN).

When V(x) = V0, we define space

X0 :=
{

u ∈ X :
∫

RN
V0(|u|q + |u|N)dx < +∞

}
equipped with the norm as

‖u‖X0 = ‖u‖V0,q + ‖u‖V0,N ,
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where ‖u‖r
V0,r =

∫
RN (|∇u|r + V0|u|r)dx, ∀r ∈ {N, q}. It should be noted that X0 is a separable

reflexive Banach space. Due to the Theorem 6.9 in [28], for any ν ∈ [N,+∞), it is easy to see
that the embedding from X0 into Lν

(
RN) is continuous. Then for all ν ∈ [N,+∞), there exists

Aν,m > 0 satisfies

Aν,m = inf
u 6=0,u∈X0

‖u‖X0

‖u‖Lν(RN)
.

This implies
‖u‖Lν(RN) ≤ A−1

ν,m‖u‖X0 for all u ∈ X0. (2.1)

Fix ε ≥ 0, we also need to introduce the following space

Xε :=
{

u ∈ X :
∫

RN
V(εx)(|u|q + |u|N)dx < +∞

}
whose norm is defined as

‖u‖Xε := ‖u‖Vε,q + ‖u‖Vε,N ,

where ‖u‖1,r
Vε,r =

∫
RN (|∇u|r + V(εx)|u|r)dx, ∀r ∈ {N, q}. According to Lemma 10 in [31],

we obtain that Xε is uniformly convex Banach space. Moreover, for any ν ∈ [N,+∞), the
embedding

Xε ↪→ Lν
(
RN)

is continuous. Then for all ν ∈ [N,+∞), there is Sν,ε > 0 satisfies:

Sν,ε = inf
u 6=0,u∈Xε

‖u‖Xε

‖u‖Lν(RN)
.

It can be seen that
‖u‖Lν(RN) ≤ S−1

ν,ε ‖u‖Xε , ∀u ∈ Xε. (2.2)

Finally, we consider
Xrad := {u ∈ X : u(x) = u(|x|)} .

Lemma 2.1 (see [34, Theorem 2.8]). Assume that X is a Banach space, M0 is a closed subspace of
the metric space M, Γ0 ⊂ C(M0, X). Consider

Γ := {γ ∈ C(M, X) : γ|M0 ∈ Γ0}.

Assume ϕ ∈ C1(X, R) satisfies

∞ > c := inf
γ∈Γ

sup
u∈M

ϕ(γ(u)) > a := sup
γ0∈Γ0

sup
u∈M0

ϕ(γ0(u)).

For any ε ∈ (0, (c− a)/2), δ > 0 and γ ∈ Γ such that supM ϕ ◦ γ ≤ c + ε, there is u ∈ X satisfies

(a) c− 2ε ≤ ϕ(u) ≤ c + 2ε;

(b) dist(u, γ(M)) ≤ 2δ;

(c) ‖ϕ′(u)‖ ≤ 8ε
δ .

Now, we recall follow Lemma 2.2 from J. M. do Ó [17] (or see [11]). The Lemma 2.3 follows
from Adachi and Tanaka [1].
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Lemma 2.2 (see [17]). Assume N ≥ 2, u ∈W1,N (RN) and α > 0, we have∫
RN

(
exp

(
α|u|N/(N−1)

)
− SN−2(α, u)

)
dx < ∞,

where

SN−2(α, u) =
N−2

∑
k=0

αk

k!
|u|

kN
(N−1) .

In addition, when α < αN , for ∀M > 0, there is C = C(α, N, M) satisfies∫
RN

(
exp

(
α|u|N/(N−1)

)
− SN−2(α, u)

)
dx ≤ C, ∀u ∈W1,N(RN).

We also have ‖u‖N ≤ M and ‖∇u‖N ≤ 1.

Lemma 2.3 (see [1]). Assume N ≥ 2, α ∈ (0, αN), there is a constant Cα > 0 that satisfies

‖∇u‖N
N

∫
RN

ΨN

(
u

‖∇u‖N

)
dx ≤ Cα‖u‖N

N , ∀u ∈W1,N(RN) \ {0}.
Here ΨN(t) = eα|t|N/(N−1) − SN−2(α, t).

3 Proof of Theorem 1.1

For ∀B ⊂ RN , ε > 0, Bε can be define as Bε := {x ∈ RN : εx ∈ B}. Next, we will use the
method in [16, 21] to modify f . According to ( f1), there exists a > 0 such that

f (t) ≤ tN−1

2
, ∀t ∈ (0, a).

For t ∈ R, x ∈ RN , assume that

g(x, t) = (1− χΛ(x)) f̃ (t) + χΛ(x) f (t),

where

f̃ (t) =

{
f (t), t ≤ a,

min
{

f (t), 1
2 tN−1} , t > a

and

χΛ(x) =

{
1, x ∈ Λ,

0, x /∈ Λ.

Obviously, ∀x ∈ RN , t ∈ [0, a], we have g(x, t) = f (t). Moreover, for ∀x ∈ RN , t ≥ 0, we also
obtain that g(x, t) ≤ f (t). Now, considering the modified problem{

− ∆Nu− ∆qu + Vε(|u|N−2u + |u|q−2u) = g(εx, u), x ∈ RN ,

u ∈ Xε, u > 0, x ∈ RN ,
(3.1)

where g(εx, t) = (1− χΛε
(x)) f̃ (t) + χΛε

(x) f (t). Clearly, for x ∈ RN\Λε, if uε satisfies uε(x) ≤
a and it is a solution of (3.1), we know that uε is the solution of the original problem (1.1).
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As to u ∈ Xε, we assume that

Iε(u) =
1
q

∫
RN

(|∇u|q + Vε|u|q)dx +
1
N

∫
RN

(
|∇u|N + Vε|u|N

)
dx−

∫
RN

G(εx, u)dx,

where G(x, t) =
∫ t

0 g(x, $)d$. For ∀µ > 0, define

χε(x) =

{
ε−µ, x ∈ RN\Λε,

0, x ∈ Λε,

Qε(u) =
(∫

RN
χε|u|Ndx− 1

)2

+

.

This penalization first appeared in [10] (or see [8]). It has the advantage that it can make the
concentration phenomena to occur in Λ. Now, we define Jε : Xε → R as follows:

Jε(u) = Qε(u) + Iε(u).

Clearly, Jε ∈ C1 (Xε). Next, to find the solutions of equation (3.1) concentrated around the
local minimum of potential function as ε→ 0, we will find the critical points of Jε which make
Qε zero.

3.1 Limit problem

First, considering the limit problem, i.e.{
− ∆qu− ∆Nu + m(|u|q−2u + |u|N−2u) = f (u), x ∈ RN ,

u ∈ X, x ∈ RN .
(3.2)

The energy functional corresponding to (3.2) is defined as follows

Im(u) =
1
N

∫
RN

(
|∇u|N + m|u|N

)
dx +

1
q

∫
RN

(|∇u|q + m|u|q)dx−
∫

RN
F(u)dx.

In view of [30], assuming that u ∈ X0 is the weak solution of problem (3.2), it is easy to get
the Pohozǎev identity:

Pm(u) =
N − q

q

∫
RN
|∇u|qdx + m

∫
RN
|u|Ndx +

Nm
q

∫
RN
|u|qdx− N

∫
RN

F(u)dx.

Lemma 3.1. Im has the Mountain-Pass geometry.

Proof. According to ( f1), ∀|t| ≤ δ, ∃ε > 0 and δ > 0 such that

| f (t)| ≤ ε|t|q−1.

In addition, by using the condition ( f1) and f is a function that satisfies continuity, ∀τ > q,
∀|t| ≥ δ, it is easy to find a constant C = C(τ, δ) > 0 satisfies

| f (t)| ≤ C|t|τ−1ΨN (t) .

Combining the above two formulas, we get

| f (t)| ≤ ε|t|q−1 + C|t|τ−1ΨN (t) , ∀t ≥ 0.
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Then
|F(t)| ≤ ε|t|q + C|t|τΨN (t) .

So, for 2 ≤ N < q < q∗,

Im(u) =
1
q

∫
RN

(|∇u|q + m|u|q)dx +
1
N

∫
RN

(
|∇u|N + m|u|N

)
dx−

∫
RN

F(u)dx

≥ 1
N

∫
RN

(|∇u|N + m|u|N)dx +
1
q

∫
RN

(|∇u|q + m|u|q)dx− ε|u|qq

− C
∫

RN
|t|τΨN(u)dx.

Using Hölder’s inequality, we have

∫
RN

ΨN (u) |u|τdx ≤ ‖u‖τ
Lτt′ (RN)

(∫
RN

(ΦN (u))t dx
) 1

t

,

where 1
t +

1
t′ = 1(t′ > 1, t > 1). Due to Lemma 2.3, we may find a constant D > 0 satisfies

(∫
RN

(ΦN (u))t dx
) 1

t

≤ D.

By using (2.1), we obtain that

‖u‖Lν(RN) ≤ A−1
ν,m‖u‖X0 for all u ∈ X0.

Hence, when ‖u‖X0 is small enough, we obtain that

Im(u) ≥
1
q

∫
RN

(|∇u|q + m|u|q)dx +
1
N

∫
RN

(|∇u|N + m|u|N)dx

− C
∫

RN
|t|τΨN(u)dx− ε|u|qq

≥ 1
q · 2q−1 ‖u‖

q
X0
− εA−q

q,m‖u‖
q
X0
− CDA−τ

τt′,m‖u‖
τ
X0

= ‖u‖q
X0

(
1

q · 2q−1 − εA−q
q,m − CDA−τ

τt′,m‖u‖
τ−q
X0

)
.

From which we deduce that 1
q·2q−1 − εA−q

q,m > 0 for ε small enough. Let

h(t) =
1

q · 2q−1 − εA−q
q,m − CDA−τ

τt′,mtτ−q, t ≥ 0.

Next, we will prove there is t0 > 0 small enough such that 1
2

( 1
q·2q−1 − εA−q

q,m
)
≤ h (t0). Obvi-

ously, if t ∈ [0,+∞), h is a continuous function. Note that limt→0+ h(t) = 1
q·2q−1 − εA−q

q,m, then

we can find t0 that satisfies h(t) ≥ 1
q·2q−1 − εA−q

q,m− ε1, ∀t ∈ (0, t0), t0 is small enough. Choosing

ε1 = 1
2

( 1
q·2q−1 − εA−q

q,m
)
, we have

h(t) ≥ 1
2

(
1

q · 2q−1 − εA−q
q,m

)
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for all 0 ≤ t ≤ t0. In particularly,

h(t0) ≥
1
2

(
1

q · 2q−1 − εA−q
q,m

)
.

So, for ‖u‖X0 = t0, we get

Im(u) ≥
tq
0
2
·
(

1
q · 2q−1 − εA−q

q,m

)
= ρ0 > 0.

Now, ∀R > 0, define wR(x, y) as follows:

wR(x, y) :=


T, x ∈ B+

R (0),

0, x ∈ RN
+\B+

R+1(0),

T
(

R + 1−
√
|x|
)

, x ∈ B+
R+1(0)\B

+
R (0).

It is easy to get that wR ∈ Xrad
(
RN). It is worth noting that, for R > 0 large enough, according

to ( f3), we have that ∫
RN

[
F (wR(x))− m

N
wN

R (x)− m
q

wq
R(x)

]
dx ≥ 0.

Next, consider wR,θ(x) := wR
( x

eθ

)
. Fix R > 0, then we have

Im (wR,θ) =
1
q

e(N−q)θ
∫

RN
+

|∇u|qdx− eNθ
∫

RN

[
F (wR(x))− m

N
wN

R (x)− m
q

wq
R(x)

]
dx

→ −∞ as θ → ∞.

This ends the proof.

Therefore, according to Lemma 3.1, we may define cm as follows:

cm := inf
γ∈Γm

sup
t∈[0,1]

Im(γ(t)). (3.3)

Here Γm is defined by

Γm := {γ ∈ C([0, 1], X0) : γ(0) = 0 and Im(γ(1)) < 0}. (3.4)

Clearly, cm > 0. Moreover, similar to [2], we note that

cm = cm,rad,

where
cm,rad := inf

γ∈Γm,rad

max
t∈[0,1]

Im(γ(t))

and
Γm,rad :=

{
γ ∈ C

(
[0, 1], Xrad(R

N)
)

: Im(γ(1)) < 0, γ(0) = 0
}

.

Next, we will construct a (PS) sequence {wn}∞
n=1 for Im at the level cm that satisfies

I′m(wn)→ 0 as n→ ∞, that is
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Proposition 3.2. There exists a sequence {wn}∞
n=1 in X0 that satisfies, as n→ ∞,

Im(wn)→ cm, I′m(wn)→ 0, Pm(wn)→ 0. (3.5)

Proof. For (θ, u) ∈ R× Xrad (RN), define Ĩm(θ, u) := (Im ◦Φ) (θ, u), where Φ(θ, u) := u( x
eθ ).

The standard norm of R× Xrad(R
N) is defined as

‖(θ, u)‖R×X0 =
(
‖u‖2

X0
+ |θ|2

) 1
2 .

According to Lemma 3.1, Ĩm has a mountain pass geometry, so we can define c̃m as follows:

c̃m = inf
γ̃∈Γ̃m

max
t∈[0,1]

Ĩm(γ̃(t)),

where
Γ̃m =

{
γ̃ ∈ C

(
[0, 1], R× Xrad(R

N)
)

: Ĩm(γ̃(1)) < 0, γ̃(0) = (0)
}

.

It is easy to prove that c̃m = cm(see [3,23]). Then according to Lemma 2.1, we obtain that there
exists a sequence (θn, un) ⊂ R× Xrad(R

N) such that, as n→ ∞,

(i) (Im ◦Φ)(θn, un)→ cm,

(ii) (Im ◦Φ)′(θn, un)→ 0,

(iii) θn → 0.

In fact, let δ = δn = 1
n , ε = εn = 1

n2 in Lemma 2.1, by using (a) and (c) in Lemma 2.1, we can
obtain (i) and (ii). Due to (3.3) and (3.4), for ε = εn = 1

n2 , it is easy to find that γn ∈ Γm such
that supt∈[0,1] Im(γn(t)) ≤ cm + 1

n2 . Now define γ̃n(t) = (0, γn(t)), we obtain

sup
t∈[0,1]

(Im ◦Φ)(γ̃n(t)) = sup
t∈[0,1]

Im(γn(t)) ≤ cm +
1
n2 .

According to (b) in Lemma 2.1, then there is (θn, un) ∈ R× X0 such that

dist
R×X0

((0, γn(t)) , (θn, un)) ≤
2
n

,

so (iii) holds. Now, for A ⊂ R× X0, define

dist
R×X0

((θ, u), A) = inf
(τ,v)∈R×X0

(
‖u− v‖2

X0
+ |θ − τ|2

) 1
2 .

So, for (h, w) ∈ R× X0, we have〈
(Im ◦Φ)′ (θn, un) , (h, w)

〉
= Pm (Φ (θn, un)) h +

〈
I′m (Φ (θn, un)) , Φ′ (θn, w)

〉
. (3.6)

Now, put w = 0 and h = 1, it is easy to get

Pm (Φ (θn, un))→ 0.

Moreover, for all v ∈ X0, we only take h = 0 and w(x) = v
(
eθn x

)
in (3.6), by using (ii), (iii),

we get
o(1)‖v‖X0 = o(1)

∥∥∥v
(

eθn x
)∥∥∥

X0
=
〈

I′m (Φ (θn, un)) , v
〉

.

Hence, wn = Φ (θn, un) is just the sequence we need.
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Lemma 3.3. The sequence (wn) that satisfies (3.5) is bounded in X0.

Proof. According to (3.5), we have

cm + on(1) = Im (wn)−
1
N

Pm (wn)

=
1
N

∫
RN
|∇wn|Ndx +

1
q

∫
RN
|∇wn|qdx +

1
N

∫
RN

m|wn|Ndx +
1
q

∫
RN

m|wn|qdx

−
∫

RN
F(wn)dx− 1

N

(
N − q

q

∫
RN
|∇wn|qdx + m

∫
RN
|wn|pdx

+
N
q

∫
RN

m|wn|qdx− N
∫

RN
F(wn)dx

)
=

1
N

(∫
RN
|∇wn|Ndx +

∫
RN
|∇wn|qdx

)
.

Hence, we get that
∫

RN |∇wn|Ndx and
∫

RN |∇wn|qdx are bounded in R. Moreover, Pm (wn) =

on(1) and ( f1)–( f2) show that

N − q
q

∫
RN
|∇wn|qdx +

∫
RN

m|wn|Ndx +
N
q

∫
RN

m|wn|qdx

= on(1) + N
∫

RN
F(wn)dx

≤ on(1) + εN|wn|qq + NC
∫

RN
|wn|τΨN(wn)dx.

According to the boundedness of
∫

RN |wn|τΨN(wn)dx and choosing ε > 0 small enough, we
can deduce that (|wn|N) and (|wn|q) are bounded in R. Therefore, (wn) is bounded in X0.

According to the method in [33], we have:

Lemma 3.4 (see [33]). Assume that (un) is a bounded sequence in X0, if there exist for some R >

0, t ≥ N such that
lim
n→∞

sup
y∈RN

∫
BR(y)

|un(x)|t dx = 0,

then for all ξ ∈ (t,+∞), un → 0 in Lξ(RN) .

Lemma 3.5. Assume (wn) satisfies Proposition 3.2, then there exist a sequence (xn) ⊂ RN and
constants R > 0, β > 0 satisfy ∫

BR(xn)
wq

n(x)dx ≥ β.

Proof. In fact, we assume that the conclusion is not true. According to Lemma 3.4, it is easy to
get

wn(·)→ 0 in Lξ
(

RN
)

, ∀ξ ∈ (t,+∞). (3.7)

Therefore, due to ( f1) and ( f2), we obtain that∫
RN

f (wn(x))wn(x)dx = on(1).

According to 〈I′m (wn) , wn〉 = on(1), we can obtain that∫
RN
|∇wn|Ndx +

∫
RN
|∇wn|qdx +

∫
RN

m|wn|Ndx +
∫

RN
m|wn|qdx−

∫
RN

f (wn)wndx = on(1),

and so we deduce that ‖wn‖X0
→ 0. Therefore, Im (wn) → 0 and then we get contradiction

since cm > 0.



12 L. Wang, J. Wang and B. Zhang

Next, define

Tm :=
{

u ∈ X(RN)\{0} : max
x∈RN

u(x) = u(0), I′m(u) = 0
}

,

bm := inf
u∈Tm

Im(u),

and
Sm := {u ∈ TV0 : Im(u) = bm} .

Lemma 3.6. There exists u ∈ Sm.

Proof. Assume (wn) satisfies Proposition 3.2. Let w̃n(x) := wn(xn + x), here xn comes from
Lemma 3.5. According to Lemma 3.4, we can see that (wn) is bounded in Xrad(R

N), that is,
for all n ∈ N, we have ‖wn‖Xrad(RN) ≤ C . Going if necessary to a subsequence, for some
w̃ ∈ Xrad(R

N) \ {0}, we assume that w̃n ⇀ w̃ in Xrad(R
N), then

w̃n(x)→ w̃(x) in Lξ(RN), ∀ξ ∈ (N,+∞).

So ∫
RN

f (w̃n)w̃n →
∫

RN
f (w̃)w̃. (3.8)

Moreover, w̃ satisfies

(−∆)Nw̃ + (−∆)qw̃ + m(|w̃|N−2w̃ + |w̃|q−2w̃) = f (w̃) in RN . (3.9)

From (3.8) we have∫
RN
|∇w̃|Ndx +

∫
RN
|∇w̃|qdx +

∫
RN

m|w̃|Ndx +
∫

RN
m|w̃|qdx

≤ lim inf
n→∞

[∫
RN
|∇w̃n|Ndx +

∫
RN
|∇w̃n|qdx +

∫
RN

m|w̃n|Ndx +
∫

RN
m|w̃n|qdx

]
≤ lim sup

n→∞

[∫
RN
|∇w̃n|Ndx +

∫
RN

m|w̃n|Ndx +
∫

RN
|∇w̃n|qdx +

∫
RN

m|w̃n|qdx
]

= lim sup
n→∞

[∫
RN
|∇wn|Ndx +

∫
RN

m|wn|Ndx +
∫

RN
|∇wn|qdx +

∫
RN

m|wn|qdx
]

= lim sup
n→∞

∫
RN

f (wn)wndx

= lim sup
n→∞

∫
RN

f (w̃n)w̃ndx

=
∫

RN
f (w̃)w̃dx

=
∫

RN
|∇w̃|Ndx +

∫
RN
|∇w̃|qdx +

∫
RN

m|w̃|pdx +
∫

RN
m|w̃|qdx,

which implies that ‖w̃n‖X0
→ ‖w̃‖X0 and thus w̃n → w̃ in X0. Therefore, by Im (wn) =

Im (w̃n) → cm and I′m (wn) = I′m (w̃n) → 0, we obtain that Im(w̃) = cm and I′m(w̃) = 0. Due to
w̃ 6= 0, we get that cm ≥ bm.

Now, let w ∈ X0\{0} be an arbitrary solution of (3.2). We define

wt(x) :=

{
w
( x

t

)
for t > 0,

0 for t = 0.
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Next, choosing the real number θ1 > t1 > 1 > t0 > 0, we denote the curve γ consisting of
three parts as follows:

γ(θ) =


θwt0 , θ ∈ [0, t0] ,

θwθ , θ ∈ [t0, t1] ,

θwt1 , θ ∈ [t1, θ1] .

Due to w is a weak solution, then∫
RN

f (w)wdx =
∫

RN
|∇w|Ndx +

∫
RN
|∇w|qdx +

∫
RN

m|w|Ndx +
∫

RN
m|w|qdx > 0.

Hence, we can find θ1 > 1 such that∫
RN

f (θw)wdx > 0, ∀θ ∈ [1, θ1] .

Let ϕ(s) = f (s)
sq−1 . Due to ( f1), we know that ϕ ∈ C(R, R). Hence, we have∫

RN
ϕ(θw)wqdx > 0, ∀θ ∈ [1, θ1] . (3.10)

Moreover,

d
dθ

Im (θwt) = 〈I′m (θwt) , wt〉

= θN−1
∫

RN
|∇wt|Ndx + θq−1

∫
RN
|∇wt|qdx + θN−1

∫
RN

m|wt|Ndx

+ θq−1
∫

RN
m|wt|qdx− θq−1

∫
RN

ϕ (θwt)wq
t dx

= θN−1
∫

RN
|∇wt|Ndx + θq−1

∫
RN
|∇wt|qdx + θN−1

∫
RN

m|wt|Ndx

+ θq−1
∫

RN
m|wt|qdx− θq−1

2

∫
RN

ϕ (θwt)wq
t dx− θq−1

2

∫
RN

ϕ (θwt)wq
t dx

= θN−1
(∫

RN
|∇w|Ndx + tN

∫
RN

m|w|Ndx− θq−NtN

2

∫
RN

ϕ (θw)wqdx
)

+ θN−1 · tN−q
(∫

RN
|∇w|qdx + tq

∫
RN

m|w|qdx− tq

2

∫
RN

ϕ (θw)wqdx
)

.

Selecting t0 ∈ (0, 1) small enough, we obtain

∫
RN
|∇w|Ndx + tN

0

∫
RN

m|w|Ndx− θq−NtN
0

2

∫
RN

ϕ (θw)wqdx > 0 for all θ ∈ [1, θ1] (3.11)

and ∫
RN
|∇w|qdx + tq

0

∫
RN

m|w|qdx−
tq
0
2

∫
RN

ϕ (θw)wqdx > 0 for all θ ∈ [1, θ1] . (3.12)

According to (3.10), for all θ ∈ [1, θ1], we select t1 > 1 such that

∫
RN
|∇w|Ndx + tN

1

∫
RN

m|w|Ndx− θq−NtN
1

2

∫
RN

ϕ (θw)wqdx ≤ − N
θN

1 − 1

∫
RN
|∇w|Ndx, (3.13)
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and

∫
RN
|∇w|qdx + tq

1

∫
RN

m|w|qdx−
tq
1
2

∫
RN

ϕ (θw)wqdx ≤ −
Ntq−N

1

(θN
1 − 1)

∫
RN
|∇w|qdx. (3.14)

Therefore, according to (3.11) and (3.12), we know I(γ(θ)) increases at the interval [0, t0], then
takes its maximum value at θ = 1. According to the Pohozǎev identity:

Pm(u) =
N − q

q

∫
RN
|∇u|qdx + m

∫
RN
|u|Ndx +

Nm
q

∫
RN
|u|qdx− N

∫
RN

F(u)dx.

Consequently,

Im(wt1(x)) ≤ Im(w(x))

=
1
N

∫
RN
|∇w|Ndx +

1
q

∫
RN
|∇w|qdx +

m
N

∫
RN
|w|Ndx +

m
q

∫
RN
|w|qdx

− 1
N

(
N − q

q

∫
RN
|∇w|qdx + m

∫
RN
|w|Ndx +

N
q

∫
RN

m|w|qdx
)

=
1
N

(∫
RN
|∇w|Ndx +

∫
RN
|∇w|qdx

)
.

Now by using (3.13) and (3.14), we have

Im (θ1wt1) = Im (wt1) +
∫ θ1

1

d
dθ

I (θwt1)dθ

≤ 1
N

(∫
RN
|∇wn|Ndx +

∫
RN
|∇wn|qdx

)
− N

θN
1 − 1

∫
RN
|∇w|Ndx

∫ θ1

1
θN−1dθ

−
Ntq−N

1

(θN
1 − 1)

∫
RN
|∇w|qdx · tN−q

1

∫ θ1

1
θN−1dθ

=

(
1
N
− 1
) ∫

RN
|∇wn|Ndx +

(
1
N
− 1
) ∫

RN
|∇wn|qdx < 0.

So we know γ(θ) ∈ Γm. According to the definition of cm, we have Im(γ(θ)) ≥ cm. Due to w is
arbitrary, we obtain that bm ≥ cm and this means bm = cm.

Selecting w− = min{w, 0} as a test function of (3.2), we infer that w ≥ 0 in RN . Using ( f1)–
( f2) and according to the Moser iteration (see [3, 13]), it is easy to obtain that w ∈ L∞ (RN) .
By means of Corollary 2.1 in [4], we can see that w ∈ Cσ(RN) for some σ ∈ (0, 1). Similar to
the proof of Theorem 1.1-(ii) in [24], we obtain that w > 0 in RN .

Remark 3.7. As to m > 0, we define

Im′(u) =
1
p

∫
RN
|∇u|pdx +

1
q

∫
RN
|∇u|qdx +

m′

p

∫
RN
|u|pdx +

m′

q

∫
RN
|u|qdx−

∫
RN

F(u)dx,

the mountain pass level is cm′ . By using standard method, we can prove that cm′1
> cm′2

when
m′1 > m′2.

In the following, we will prove that SV0 is compact in X0.

Lemma 3.8. SV0 is compact in X0.
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Proof. For any U ∈ SV0 , we have that

cm + on(1) = Im (U)− 1
N

Pm (U)

=
1
N

∫
RN
|∇U|Ndx +

1
q

∫
RN
|∇U|qdx +

m
N

∫
RN
|U|Ndx +

m
q

∫
RN
|U|qdx

−
∫

RN
F(U)dx− 1

N

(
N − q

q

∫
RN
|∇U|qdx + m

∫
RN
|U|pdx

+
Nm

q

∫
RN
|U|qdx− N

∫
RN

F(U)dx
)

=
1
N

(∫
RN
|∇U|Ndx +

∫
RN
|∇U|qdx

)
.

So Sm is bounded in X0.
For any sequence {Uk} ⊂ SV0 , up to a subsequence, we can find a U0 ∈ X0 satisfies

Uk ⇀ U0 in X0 (3.15)

and U0 satisfies

−∆NU0 − ∆qU0 + m(|U0|N−2U0 + |U0|q−2U0) = f (U0), in RN , U0 ≥ 0.

Next, we will prove that U0 is nontrivial. Note that, up to a subsequence, we have

Uk → U0 in Lt
loc(R

N), t ∈ (N,+∞). (3.16)

By using (3.16), any bounded region in RN , (Ut
k) is uniformly integrable. According to

Lemma 2.2 (i) in [22], ‖Uk‖L∞
loc(R

N) ≤ C. In view of [26], there exists α ∈ (0, 1) such that
‖Uk‖C1,α

loc (R
N)
≤ C. Due to (Uk) ⊂ SV0 , by Lemma 3.6, we have that Uk > 0. We can prove that

lim infk→∞ ‖Uk‖∞ > 0 because of limt→0
f (t)
tq−1 = 0. In fact, since Uk satisfies (3.1), we have that

−∆NUk − ∆qUk + m(|Uk|N−2Uk + |Uk|q−2Uk) = f (Uk),

that is∫
RN
|∇Uk|Ndx +

∫
RN
|∇Uk|qdx + m

∫
RN
|Uk|Ndx + m

∫
RN
|Uk|qdx =

∫
RN

f (Uk)Ukdx.

According to limt→0
f (t)
tq−1 = 0, ∀ε > 0, we can find δ > 0 satisfies

f (t) < εtq−1, |t| < δ,

then f (Uk)Uk < ε|Uk|q. Assume by contradiction, we have lim infk→∞ ‖Uk‖∞ = 0, then for δ

given above, we have |Uk| < δ. Therefore,∫
RN
|∇Uk|Ndx +

∫
RN
|∇Uk|qdx =

∫
RN

f (Uk)Ukdx−m
∫

RN
|Uk|Ndx−m

∫
RN
|Uk|qdx < 0,

which leads to a contradiction. Noting that Uk(0) = ‖Uk‖∞, we get that U0 6≡ 0. Therefore,
there exists ∃C0 > 0 such that Uk(0) ≥ C0 > 0, then U0(0) ≥ C0 > 0, this means that U0 is
nontrivial. Using the same method as Lemma 3.6, we get Im (U0) = cm and Uk → U0 in X0.
Therefore, Sm is compact in X0.
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3.2 Proof of Theorem 1.1

This section will prove Theorem 1.1. For U ∈ Sm, set cm = Im(U) and 10δ = dist
{
M, RN\Λ

}
.

Now, fix a β ∈ (0, δ) and a cut-off function ϕ ∈ C∞
c
(
RN) satisfies

ϕ :=

{
1, |x| ≤ β,

0, |x| ≥ 2β

and |∇ϕ| ≤ C/β. Moreover, let y ∈ RN , ϕε(y) = ϕ(εy). For ε > 0 small enough, we will look
for solutions of (1.1) near the set

Yε :=
{

ϕ (εy− x)U
(

y− x
ε

)
: x ∈ Mβ, U ∈ Sm

}
,

whereMβ :=
{

y ∈ RN : infz∈M |z− y| ≤ β
}

. Moreover, as to A ⊂ Xε, define

Aa :=
{

u ∈ Xε : inf
v∈A
‖u− v‖Xε ≤ a

}
.

For any U ∈ Sm, define Wε,t(x) := ϕ(εx)U
( x

t

)
.

Next, we show that Jε has the Mountain-Pass geometry. Let Ut(x) := U( x
t ), by using the

same proof as in Lemma 3.1, we have

Im(Ut) =
1
N

∫
RN
|∇U|Ndx +

tN

N

∫
RN

m|U|Ndx +
tN−q

q

∫
RN
|∇U|qdx

+
tN

q

∫
RN

m|U|qdx− tN
∫

RN
F(U)dx

→ −∞ as t→ ∞.

So there exists t0 > 0 such that Im(Ut0) < −3.
Clearly, Qε(Wε,t0) = 0. As to ε > 0 sufficiently small, by using the Dominated Convergence

Theorem, one has

Jε(Wε,t0) = Iε(Wε,t0)

=
1
N

∫
RN
|∇Wε,t0 |Ndx +

1
q

∫
RN
|∇Wε,t0 |qdx +

1
N

∫
RN

V(εx)|Wε,t0 |pdx

+
1
q

∫
RN

V(εx)|Wε,t0 |qdx−
∫

RN
F(Wε,t0)dx

x̃= x
t0=

1
N

∫
RN

∣∣εt2
0∇ϕ(εt0 x̃)U(x̃) + ϕ(εx̃)∇U(x̃)

∣∣N dx̃

+
tN−q
0
q

∫
RN

∣∣εt2
0∇ϕ(εt0 x̃)U(x̃) + ϕ(εt0 x̃)∇U(x̃)

∣∣q dx̃

+
tN
0
N

∫
RN

V(εt0 x̃)|ϕ(εt0 x̃)U(x̃)|Ndx̃

+
tN
0
q

∫
RN

V(εt0 x̃)|ϕ(εt0 x̃)U(x̃)|qdx̃

− tN
∫

RN
F(ϕ(εt0 x̃)U(x̃)dx̃

= Im(Ut0) + o(1) < −2. (3.17)
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According to ( f1) and ( f2), it is easy to see that

|F(t)| ≤ ε|t|q + C|t|τΨN (t) .

So, for 2 ≤ N < q < q∗, we get

Jε(u) ≥ Iε(u)

=
1
q

∫
RN

(|∇u|q + Vε|u|q)dx +
1
N

∫
RN

(
|∇u|N + Vε|u|N

)
dx−

∫
RN

F(u)dx

≥ 1
N

∫
RN

(|∇u|N + Vε|u|N)dx +
1
q

∫
RN

(|∇u|q + Vε|u|q)dx− ε|u|qq − C
∫

RN
|t|τΨN(u)dx.

Using Hölder’s inequality, it is easy to get

∫
RN
|u|τΨN (u)dx ≤ ‖u‖τ

Lτt′ (RN)

(∫
RN

(ΦN (u))t dx
) 1

t

,

where 1
t +

1
t′ = 1(t′ > 1, t > 1). Due to Lemma 2.3, we can find a constant D > 0 satisfies(∫

RN
(ΦN (u))t dx

) 1
t

≤ D.

From (2.2), we have
‖u‖Lν(RN) ≤ S−1

ν,ε ‖u‖Xε , ∀u ∈ Xε.

Hence, when ‖u‖Xε is small, we get

Jε(u) ≥
1
q

∫
RN

(|∇u|q + Vε|u|q)dx +
1
N

∫
RN

(|∇u|N + Vε|u|N)dx

− ε|u|qq − C
∫

RN
|t|τΨN(u)dx

≥ 1
q · 2q−1 ‖u‖

q
Xε
− εS−q

q,ε ‖u‖
q
Xε
− CDS−τ

τt′,ε‖u‖
τ
Xε

= ‖u‖q
Xε

(
1

q · 2q−1 − εS−q
q,ε − CDS−τ

τt′,ε‖u‖
τ−q
Xε

)
.

We see 1
q·2q−1 − εS−q

q,ε > 0 for ε small enough. Let

h(t) =
1

q · 2q−1 − εS−q
q,ε − CDS−τ

τt′,εt
τ−q, t ≥ 0.

Next, we will find t0 > 0 small that satisfies h (t0) ≥ 1
2

( 1
q·2q−1 − εS−q

q,ε
)
. Clearly, limt→0+ h(t) =

1
q·2q−1 − εS−q

q,ε and h is continuous function on [0,+∞), so there exists t0 satisfies h(t) ≥ 1
q·2q−1 −

εS−q
q,ε − ε1, ∀t ∈ (0, t0), t0 is small enough. Choosing ε1 = 1

2

( 1
q·2q−1 − εS−q

q,ε
)
, we get that

h(t) ≥ 1
2

(
1

q · 2q−1 − εS−q
q,ε

)
for all 0 ≤ t ≤ t0. In particularly,

h(t0) ≥
1
2

(
1

q · 2q−1 − εS−q
q,ε

)
.
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So, for ‖u‖Xε = t0, we have

Jε(u) ≥
tq
0
2
·
(

1
q · 2q−1 − εS−q

q,ε

)
= ρ0 > 0.

Therefore, we can define cε as follows:

cε := inf
γ∈Γε

max
s∈[0,1]

Jε(γ(s)).

Here Γε is defined by

Γε := {γ ∈ C ([0, 1], Xε) | γ(1) = Wε,t0 , γ(0) = 0} .

Lemma 3.9. There holds
lim
ε→0

cε ≤ cm.

Proof. Denote Wε,0 = limt→0 Wε,t in Xε sense, then it is easy to get Wε,0 = 0. Consequently, let
γ(s) := Wε,st0(0 ≤ s ≤ 1 ), then γ(s) ∈ Γε, so

cε ≤ max
s∈[0,1]

Jε(γ(s)) = max
t∈[0,t0]

Jε (Wε,t) .

Now, we only need to prove
lim
ε→0

max
t∈[0,t0]

Jε (Wε,t) ≤ cm.

In fact, similar to (3.17), we obtain that

max
t∈[0,t0]

Jε (Wε,t) = max
t∈[0,t0]

Im (Ut) + o(1)

≤ o(1) + max
t∈[0,∞)

Im (Ut)

= Im (U) + o(1) = o(1) + cm.

This finishes the proof.

Lemma 3.10. There holds
lim
ε→0

cε ≥ cm.

Proof. Assuming limε→0 cε < cm, we can find δ0 > 0, γn ∈ Γεn and εn → 0 satisfy, for s ∈ [0, 1],
Jεn (γn(s)) < cm − δ0. Now, fixed an εn > 0, we have

1
N

mεn

(
1 + (1 + cm)

1/2
)
< min {δ0, 1} . (3.18)

Due to Iεn (γn(0)) = 0 and Iεn (γn(1)) ≤ Jεn (γn(1)) = Jεn (Wεn,t0) < −2, we can look for an
sn ∈ (0, 1) such that Iεn (γn(s)) ≥ −1 for s ∈ [0, sn] and Iεn (γn (sn)) = −1. Moreover, for any
s ∈ [0, sn], we have that

Qεn (γn(s)) = Jεn (γn(s))− Iεn (γn(s)) ≤ 1 + cm − δ0,

which implies that∫
RN\(Λ/εn)

γN
n (s)dx ≤ εn

(
1 + (1 + cm)

1/2
)

for s ∈ [0, sn] .
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So for s ∈ [0, sn], we have

Iεn (γn(s))

= Im (γn(s)) +
1
N

∫
RN

(V (εnx)−m) γN
n (s)dx +

1
q

∫
RN

(V (εnx)−m) γ
q
n(s)dx

≥ Im (γn(s)) +
1
N

∫
RN\(Λ/εn)

(V (εnx)−m) γN
n (s)dx +

1
q

∫
RN\(Λ/εn)

(V (εnx)−m) γ
q
n(s)dx

≥ Im (γn(s)) +
1
N

∫
RN\(Λ/εn)

(V (εnx)−m) γN
n (s)dx

≥ Im (γn(s))−
1
N

mεn

(
1 + (1 + cm)

1/2
)

.

Then
Im (γn (sn)) ≤ Iεn (γn (sn)) +

1
N

mεn

(
1 + (1 + cm)

1/2
)

= −1 +
1
N

mεn

(
1 + (1 + cm)

1/2
)
< 0,

and recalling (3.3), we obtain that

max
s∈[0,sn]

Im (γn(s)) ≥ cm.

Therefore, we get that

cm − δ0 ≥ max
s∈[0,1]

Jεn (γn(s)) ≥ max
s∈[0,1]

Iεn (γn(s)) ≥ max
s∈[0,sn]

Iεn (γn(s))

≥ − 1
N

mεn

(
1 + (1 + cm)

1/2
)
+ max

s∈[0,sn]
Im (γn(s)) ,

that is 0 < δ0 ≤ 1
N mεn

(
1 + (1 + cm)

1/2 ), which contradicts (3.18). As desired.

By using Lemmas 3.9 and 3.10, it follows

0 = lim
ε→0

(
max
s∈[0,1]

Jε (γε(s))− cε

)
.

Here ∀s ∈ [0, 1], γε(s) = Wε,st0 . Denote

c̃ε := max
s∈[0,1]

Jε (γε(s)) .

Clearly, cε ≤ c̃ε,
cm = lim

ε→0
c̃ε = lim

ε→0
cε.

Now define
Jα
ε = {u ∈ Xε | Jε(u) ≤ α} .

For α > 0 and ∀A ⊂ Xε, set Aα =
{

u ∈ Xε | infv∈A ‖u− v‖Xε ≤ α
}

.

Lemma 3.11. Assume {ε i}∞
i=1 satisfies limi→∞ ε i = 0, {uεi(·)} ⊂ Yd

εi
and

lim
i→∞

J′εi
(uεi(·)) = 0, lim

i→∞
Jεi (uεi(·)) ≤ cm.

Then, ∀d > 0 small enough, up to a subsequence, there exist x ∈ M, {yi}∞
i=1 ⊂ RN , U ∈ Sm satisfy

lim
i→∞
‖ϕεi (· − yi)U (· − yi)− uεi(·)‖Xεi

= 0 and lim
i→∞
|x− ε iyi| = 0.
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Proof. Now, write ε i as ε. According to

Yε :=
{

ϕ (εy− x)U
(

y− x
ε

)
: x ∈ Mβ, U ∈ Sm

}
,

we can find {Uε} ⊂ Sm and {xε} ⊂ Mβ satisfy∥∥∥ϕε

(
· − xε

ε

)
Uε

(
· − xε

ε

)
− uε(·)

∥∥∥
Xε

≤ d.

Due to Sm, Mβ are compact, there exist Z ∈ Sm, x ∈ Mβ satisfy Uε → Z in Xε and xε → x.
Hence, for ε > 0 small enough,∥∥∥ϕε

(
· − xε

ε

)
Z
(
· − xε

ε

)
− uε(·)

∥∥∥
Xε

≤ 2d. (3.19)

In addition, according to ( f2), we can suppose that sup ‖uε‖Xε
≤ 1.

Step 1. First we will prove

0 = lim inf
ε→0

sup
y∈Aε

∫
B(y,1)

|uε|N dx, (3.20)

here Aε = B
( xε

ε , 3β
ε

)
\B
( xε

ε , β
2ε

)
.

Assume the formula (3.20) is true, according to Lions’ lemma, for any ξ > N, we have that
uε → 0 in Lξ

(
Bε

)
, where Bε = B

( xε
ε , 2β

ε

)
\B
( xε

ε , β
ε

)
.

Now, we assume the formula (3.20) is not true, then we can find r > 0 that satisfies

lim inf
ε→0

sup
y∈Aε

∫
B(y,1)

|uε|N dx = 2r > 0.

So, for ε > 0 small enough, we also can find that yε ∈ Aε satisfies
∫

B(yε,1)
|uε|N dx ≥ r. It

is necessary to mention that, there is x0 ∈ M4β ⊂ Λ satisfying εyε → x0. Assume vε(y) =

uε (y + yε), it is easy to obtain that

− ∆Nvε − ∆qvε + Vε (y + yε) |vε|N−2 vε − g (εy + εyε, vε) + Vε (y + yε) |vε|q−2 vε

= hε − 2NQ1/2
ε (uε) χε (y + yε) |vε|N−2 vε.

(3.21)

Taking ε adequately small, we have ∫
B(0,1)

|vε|N dy ≥ r. (3.22)

Going if necessary to a subsequence, then we get vε ⇀ v in Xε, and almost everywhere in RN .
Note that the embedding Xε ↪→ LN(B(0, 1)) is compact, by using (3.22), we get v 6≡ 0. Next,
we will prove v satisfies

− ∆qv− ∆Nv + V (x0) |v|q−2v + V (x0) |v|N−2v = f (v) in RN . (3.23)

Indeed, for any ϕ ∈ C∞
0
(
RN), in (3.21), we use (vε − v) ϕ as a test function. For ε small

enough, according to χ and g, we have that

χε (y + yε) |vε|N−2 vε (vε − v) ϕ = 0, ∀y ∈ RN ,
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g (εy + εyε, vε) (vε − v) ϕ = f (vε) (vε − v) ϕ, ∀y ∈ RN ,

χε (y + yε) |vε|q−2 vε (vε − v) ϕ = 0, ∀y ∈ RN .

∀ξ ≥ N, we know that the embedding Xε ↪→ Lξ
(
RN) is local compact. Hence,∫

RN
Vε (y + yε) |vε|N−2 vε ϕdy→

∫
RN

V (x0) |v|N−2vϕdy

and ∫
RN

Vε (y + yε) |vε|q−2 vε ϕdy→
∫

RN
V (x0) |v|q−2vϕdy.

By Lemma 2.2, ( f1), and ‖ f (vε)‖N < ∞, we obtain that∫
RN

f (vε) (vε − v) ϕdy =
∫

RN
g (εy + εyε, vε) (vε − v) ϕdy→ 0.

Therefore, similar to the proof of Lemma 3 in [6], we have that∫
RN
|∇vε|N−2∇vε∇ϕdy→

∫
RN
|∇v|N−2∇v∇ϕdy

and ∫
RN
|∇vε|q−2∇vε∇ϕdy→

∫
RN
|∇v|q−2∇v∇ϕdy.

According to ( f1), ( f2), the compactness lemma of Strauss [32] and Lemma 2.2, we get that∫
RN

g (εy + εyε, vε) ϕdy→
∫

RN
f (v)ϕdy.

Therefore, (3.23) has a nontrivial solution v. According to definition, IV(x0)(v) ≥ cV(x0). For
R > 0 large enough, because of Fatou’s lemma, it is easy to get

lim inf
ε→0

∫
B(xε,R)

|∇uε|N dy ≥ 1
2

∫
RN
|∇v|Ndy, (3.24)

and
lim inf

ε→0

∫
B(xε,R)

|∇uε|q dy ≥ 1
2

∫
RN
|∇v|qdy. (3.25)

Now, recalling from Remark 3.7 that ca > cb when a > b, it is easy to see that cV(x0) ≥ cm

because of V (x0) ≥ m. According to Pohozǎev identity, for any U ∈ Sm,

1
N

(∫
RN
|∇U|Ndx +

∫
RN
|∇U|qdx

)
= Im(U). (3.26)

Thus,it follows from (3.24), (3.25) and (3.26) that

lim inf
ε→0

∫
B(yε,R)

|∇uε|N dy + lim inf
ε→0

∫
B(yε,R)

|∇uε|q dy ≥ N
2

IV(x0)(v) ≥
N
2

cm > 0.

When d is small enough, this is a contradiction with (3.19) .

Step 2. Define u2
ε = uε − u1

ε , where u1
ε (y) = ϕε (y− xε/ε) uε(y). For d > 0 small enough, we

will prove, Jε

(
u2

ε

)
≥ 0 and

Jε (uε) ≥ o(1) + Jε

(
u1

ε

)
+ Jε

(
u2

ε

)
as ε→ 0. (3.27)
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Clearly, for small enough ε > 0, we have Qε

(
u1

ε

)
= 0 and Qε (uε) = Qε

(
u2

ε

)
. Moreover,

∀y ∈ RN , u1
ε (y)u2

ε (y) ≥ 0, we get

|uε(y)|q =
(∣∣∣u1

ε (y)
∣∣∣2 + ∣∣u2

ε (y)
∣∣2 + 2u1

ε (y)u
2
ε (y)

)q/2

≥
(∣∣∣u1

ε (y)
∣∣∣2 + ∣∣u2

ε (y)
∣∣2)q/2

≥
∣∣∣u1

ε (y)
∣∣∣q + ∣∣u2

ε (y)
∣∣q

and

|uε(y)|N =

(∣∣∣u1
ε (y)

∣∣∣2 + ∣∣u2
ε (y)

∣∣2 + 2u1
ε (y)u

2
ε (y)

)N/2

≥
(∣∣∣u1

ε (y)
∣∣∣2 + ∣∣u2

ε (y)
∣∣2)N/2

≥
∣∣∣u1

ε (y)
∣∣∣N +

∣∣u2
ε (y)

∣∣N .

So ∫
RN

Vε

∣∣∣u1
ε

∣∣∣N dy +
∫

RN
Vε

∣∣u2
ε

∣∣N dy ≤
∫

RN
Vε |uε|N dy

and ∫
RN

Vε |uε|q dy ≥
∫

RN
Vε

∣∣∣u1
ε

∣∣∣q dy +
∫

RN
Vε

∣∣u2
ε

∣∣q dy.

Moreover, it is easy to verify that∫
RN

∣∣∣∇u1
ε

∣∣∣N dy =
∫

RN
ϕN

ε

(
· − xε

ε

)
|∇uε|N dy + o(1),∫

RN

∣∣∇u2
ε

∣∣N dy =
∫

RN

(
1− ϕε

(
− xε

ε

))N
|∇uε|N dy + o(1),∫

RN

∣∣∇u2
ε

∣∣q dy =
∫

RN

(
1− ϕε

(
− xε

ε

))q
|∇uε|N dy + o(1),∫

RN

∣∣∣∇u1
ε

∣∣∣q dy =
∫

RN
ϕN

ε

(
· − xε

ε

)
|∇uε|q dy + o(1).

Obviously, for any y ∈ RN , we have

ϕ2
ε (y− xε/ε) |∇uε(y)|2 + (1− ϕε (y− xε/ε))2 |∇uε(y)|2 ≤ |∇uε(y)|2 .

Therefore, we have∫
RN
|∇uε|N dy ≥

∫
RN

∣∣∣∇u1
ε

∣∣∣N dy +
∫

RN

∣∣∇u2
ε

∣∣N dy + o(1)

and ∫
RN
|∇uε|q dy ≥

∫
RN

∣∣∣∇u1
ε

∣∣∣q dy +
∫

RN

∣∣∇u2
ε

∣∣q dy + o(1).

Hence, we have that

Jε (uε) ≥ o(1)−
∫

Bε

(
G (εy, uε)− G(εy, u1

ε )− G
(
εy, u2

ε

))
dy + Jε(u1

ε ) + Jε(u2
ε ).
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According to ( f1) and ( f2), then we obtain

ε|t|q + C|t|τΨN (t) ≥ |F(t)|. (3.28)

Using the same proof as that in Lemma 3.1, we get

∫
RN
|u|τΨN (u)dx ≤ ‖u‖τ

Lτt′ (RN)

(∫
RN

(ΦN (u))t dx
) 1

t

.

By using Step 1, we know that uε → 0 in Lq (Bε), so

lim sup
ε→0

∫
Bε

(
G (εy, uε)− G

(
εy, u2

ε

)
− G

(
εy, u1

ε

))
dy

= lim sup
ε→0

∣∣∣∣∫Bε

(
F (uε)− F

(
u1

ε

)
− F

(
u2

ε

))
dy
∣∣∣∣

≤ lim sup
ε→0

∫
Bε

(
C |uε|τ ΨN (uε) + ε |uε|q

)
dy

≤ cε.

Due to ε being arbitrary, as ε → 0 we get
∫

Bε

(
F (uε)− F

(
u1

ε

)
− F

(
u2

ε

))
dy = o(1). So there is

C > 0 satisfies

Jε

(
u2

ε

)
≥ I

(
u2

ε

)
≥ 1

N
∥∥u2

ε

∥∥N
Xε

+
1
q
∥∥u2

ε

∥∥q
Xε
− C

∫
RN
|uε|τ ΨN

(
u2

ε

)
dy− ε

∥∥u2
ε

∥∥q
Xε

≥ 1
q · 2q−1 ‖u

2
ε‖

q
Xε
− C

∥∥u2
ε

∥∥τ

Xε
.

Hence, by using τ > q, we get that Jε

(
u2

ε

)
≥ 0 for d > 0 small.

Step 3. Now, assume wε(y) := u1
ε

(
y + xε

ε

)
= ϕε(y)uε

(
y + xε

ε

)
. Up to a subsequence, we have

wε ⇀ w in Xε, wε → w almost everywhere in RN . Next, we will prove that

wε → w in Lτ
(
RN),

where τ is given in (3.28). By contradiction, if there is r > 0 that satisfies

0 < 2r = lim inf
ε→0

sup
z∈RN

∫
B(z,1)

|wε − w|τ dy.

So there is zε ∈ RN that satisfies

lim inf
ε→0

∫
B(zε,1)

|wε − w|τ > r.

It is easy to see that (zε) is unbounded. We may assume that |zε| = ∞ as ε→ 0, then,

r ≤ lim inf
ε→0

∫
B(zε,1)

|wε|τ dy,

i.e.
lim inf

ε→0

∫
B(zε,1)

∣∣∣ϕε(y)uε

(
y +

xε

ε

)∣∣∣τ dy ≥ r.

Using the same proof method as [9], for ε small enough, we have that |zε| ≤ β
2ε . Assume that

εzε → z0 ∈ B(0, β/2),
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w̃ε = wε (y + zε) ⇀ w̃ in Xε,

w̃ε → w̃ a.e. in RN .

So w̃ 6≡ 0 and according to Step 1, w̃ satisfies

− ∆qw̃(y)− ∆Nw̃(y) + V (x + z0) |w̃(y)|q−2w̃(y) + V (x + z0) |w̃(y)|N−2w̃(y)

= f (w̃(y)), y ∈ RN .

Using the same approach as Step 1, we obtain a contradiction for d > 0 small enough. There-
fore, wε → w in Lτ

(
RN).

Step 4. According to Step 3, it follows that

lim
ε→0

∫
RN

G
(

εx, u1
ε

)
dx = lim

ε→0

∫
RN

G (εx + xε, wε)dx

= lim
ε→0

∫
Λε−xε/ε

F (wε)dx =
∫

RN
F(w)dx.

(3.29)

By using wε ⇀ w in Xε, we have

lim
ε→0

Jε

(
u1

ε

)
≥ lim inf

ε→0
Iε

(
u1

ε

)
= lim inf

ε→0

1
N

∫
RN

(|∇wε(y)|N + Vε|wε(y)|N)dy +
1
q

∫
RN

(|∇wε(y)|q + Vε|wε(y)|q)dy

−
∫

RN
F (wε(y))dy

≥ 1
N

∫
RN

(|∇w|N + m|w|N)dy−
∫

RN
F (w)dy +

1
q

∫
RN

(|∇w|q + m|w|q)dy

≥ cm. (3.30)

On the other hand, since limε→0 Jε (uε) ≤ cm, Jε

(
u2

ε

)
≥ 0 and (3.27), we have

lim sup
ε→0

Jε

(
u1

ε

)
≤ cm. (3.31)

Combining (3.30) and (3.31), we obtain that Jε(w) = cm. Similar to [25], we can obtain that
x ∈ M. So it is easy to see that w(y) = U(y− z), U ∈ Sm, z ∈ RN .

Lastly, due to (3.29) and (3.31) and V(y) ≥ m on Λ, by using (3.30), we have∫
RN

(
|∇w|N + m|w|N

)
dy ≥ lim sup

ε→0

∫
RN

(∣∣∣∇u1
ε (y)

∣∣∣N + V(εy)|u1
ε (y)|N

)
dy

≥ lim sup
ε→0

∫
RN

(∣∣∣∇u1
ε (y)

∣∣∣N + m|u1
ε (y)|N

)
dy

≥ lim sup
ε→0

∫
RN

(
|∇wε(y)|N + m|wε(y)|N

)
dy

and ∫
RN

(|∇w|q + m|w|q)dy ≥ lim sup
ε→0

∫
RN

(∣∣∣∇u1
ε (y)

∣∣∣q + V(εy)|u1
ε (y)|q

)
dy

≥ lim sup
ε→0

∫
RN

(∣∣∣∇u1
ε (y)

∣∣∣q + m|u1
ε (y)|q

)
dy

≥ lim sup
ε→0

∫
RN

(
|∇wε(y)|q + m|wε(y)|q

)
dy.
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Moreover, by using weak lower semi-continuity, we prove u1
ε → w in Xε. Especially, let

yε = z + x
ε , then u1

ε → U (· − yε) ϕε (· − yε) in Xε. So we get u1
ε → U (· − yε) ϕε (· − yε) in Xε.

In order to prove the desired conclusion, we only prove that u2
ε → 0 in Xε. Since {uε}ε is

bounded, for small ε > 0, it is easy to see from (3.19) that
∥∥u2

ε

∥∥
ε
≤ 4d. Now, using (3.27),

limε→0 Jε

(
u1

ε

)
= cm and the estimation of Jε

(
u2

ε

)
, we have that for some C > 0,

cm ≥ lim
ε→0

Jε (uε) ≥ cm +
∥∥u2

ε

∥∥q
Xε

(
1

q · 2q−1 − C(4d)τ−q
)
+ o(ε).

This proves that u2
ε → 0 in Xε, which completes the proof.

Lemma 3.12. For 0 < d2 < d1 small enough, there exist ω > 0 and ε0 > 0 that satisfy |J′ε(u)| ≥ ω,
where ε ∈ (0, ε0), u ∈ J c̃ε

ε ∩ (Yd1
ε \Yd2

ε ).

Proof. By contradiction, we can suppose 0 < d2 < d1 small enough, there are {ε i}∞
i=1 with

limi→∞ ε i = 0 and uεi ∈ Yd1
εi \Y

d2
εi satisfying limi→∞ Jεi (uεi) ≤ cm and limi→∞

∣∣J′εi
(uεi)

∣∣ = 0. For
the convenience of description, we write ε for ε i. Due to Lemma 3.11, for some U ∈ Sm and
x ∈ M, there is {yε}ε ⊂ RN such that

lim
ε→0
‖ϕε (· − yε)U (· − yε)− uε‖Xε

= 0 and lim
ε→0
|x− εyε| = 0.

It follows from Yε that limε→0 dist (Yε, uε)=0. Obviously contradictory because of uε /∈Yd2
ε .

According to Lemma 3.12, fix a d > 0 small enough, there exist ω > 0 and ε0 > 0 that
satisfy |J′ε(u)| ≥ ω, where ε ∈ (0, ε0), u ∈ J c̃ε

ε ∩ (Yd1
ε \Yd2

ε ). So we have

Lemma 3.13. For ε > 0 small enough, we can find α > 0 satisfies Jε (γε(s)) ≥ cε − α, then γε(s) ∈
Yd/2

ε where γε(s) = Wε,st0(s).

Proof. For each s ∈ [0, 1], due to M2β
ε ⊃ supp (γε(s)), we have Iε (γε(s)) = Jε (γε(s)). In

addition, it is easy to see that

Iε (γε(s)) =
1
q

∫
RN

(|∇γε(s)|q + Vε|γε(s)|q)dx +
1
N

∫
RN

(|∇γε(s)|N + Vε|γε(s)|N)dx

−
∫

RN
F(γε(s))dx

=
1
q

∫
RN

(|∇γε(s)|q + m|γε(s)|q)dx +
1
N

∫
RN

(|∇γε(s)|N + m|γε(s)|N)dx

+
1
q

∫
RN

(Vε(x)−m)|γε(s)|q)dx +
1
N

∫
RN

(Vε(x)−m)|γε(s)|N)dx

−
∫

RN
F(γε(s))dx

=
1
N

∫
RN
|∇U|Ndx +

(st0)
N−q

q

∫
RN
|∇U|qdx +

(st0)
N

N

∫
RN

m|U|Ndx

+
(st0)

N

q

∫
RN

m|U|qdx− (st0)
N
∫

RN
F(U)dx + O(ε).
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Using the Pohozǎev identity, we have

Jε (γε(s)) = Iε (γε(s))

=
1
N

∫
RN
|∇U|Ndx +

(st0)
N−q

q

∫
RN
|∇U|qdx− N − q

Nq
(st0)

N
∫

RN
|∇U|qdx + O(ε)

=
1
N

∫
RN
|∇U|Ndx +

(
(st0)

N−q

q
− N − q

Nq
(st0)

N

) ∫
RN
|∇U|qdx + O(ε).

Note that

cm =

(
tN−q

q
− N − q

Nq
tN
) ∫

RN
|∇U|qdx +

1
N

∫
RN
|∇U|Ndx

and limε→0 cε = cm. Denote g1(t) = −N−q
Nq tN + tN−q

q , then

g′1(t)


< 0, t > 1,

= 0, t = 1,

> 0, t ∈ (0, 1).

So we have g′′1 (1) = q− N < 0, the conclusion follows.

Lemma 3.14. For ε > 0 small enough, we can find {un}∞
n=1 ⊂ Yd

ε ∩ J c̃ε
ε satisfies as n → ∞,

J′ε (un)→ 0.

Proof. According to Lemma 3.13, for ε > 0 small enough, due to ∃α > 0 satisfies Jε (γε(s)) ≥
cε − α. So γε(s) ∈ Yd/2

ε . Now, we assume that Lemma 3.14 is not true, then for ε > 0 small
enough, we can find a(ε) > 0 satisfies |J′ε(u)| ≥ a(ε) on Yd

ε ∩ J c̃ε
ε . Moreover, by using Lemma

3.12, we also can find ω > 0, independent of ε > 0, satisfies for u ∈ J c̃ε
ε ∩

(
Yd

ε \Yd/2
ε

)
, |J′ε(u)| ≥

ω. Therefore, recalling that limε→0 (cε − c̃ε) = 0, according to a deformation lemma, for ε > 0
small enough, we can construct a path γ ∈ Γε satisfying Jε(γ(s)) < cε, s ∈ [0, 1]. Obviously
contradictory.

Lemma 3.15. For ε > 0 sufficiently small, uε ∈ Yd
ε ∩ J c̃ε

ε is a critical point of Jε.

Proof. For ε > 0 sufficiently small. According to Lemma 3.14, there exists a sequence
{un,ε}∞

n=1 ⊂ Yd
ε ∩ J c̃ε

ε that satisfies, as n → ∞, |J′ε (un,ε)| → 0. Due to Yd
ε is bounded, so as

n→ ∞, un,ε ⇀ uε in Xε. Using the same proof as [10, Proposition 3], we obtain that

0 = lim
R→∞

sup
n≥1

∫
|x|≥R

(
Vε |un,ε|N + |∇un,ε|N

)
dx (3.32)

and
0 = lim

R→∞
sup
n≥1

∫
|x|≥R

(
Vε |un,ε|q + |∇un,ε|q

)
dx, (3.33)

so as n → ∞, un,ε → uε in Lr (RN) (N ≤ r < +∞). In addition, using ( f1)–( f2), we have
sup ‖ f (un,ε)‖ < ∞. Now, ∀ϕ ∈ C∞

0 (RN),∫
RN

f (un,ε) (un,ε − uε) ϕdx → 0, n→ ∞.

Using the same argument as in [21, Proposition 5.3], we have un,ε → uε in Xε as n → ∞.
Hence, uε ∈ Yd

ε ∩ J c̃ε
ε and J′ε (uε) = 0 in Xε. This completes the proof.
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Next, we will use Moser iteration in [27] to obtain L∞-estimate.

Lemma 3.16. Let (un) is the sequence in Lemma 3.11. Then, Jεn (un) → cm in R as n → ∞, and
there is some sequence (ŷn) ⊂ RN that satisfies vn(·) := un (·+ ŷn) ∈ L∞ (RN) and |vn|L∞(RN) 6 C
for all n ∈N.

Proof. Proceeding as in the proof of Lemmas 3.9 and 3.10, as n→ ∞, we know that Jεn (un)→
cm in R. According to Lemma 3.11, as n → ∞, we can find (ŷn) ⊂ RN satisfies vn(·) :=
un (·+ ŷn)→ v(·) ∈ Xε and yn := εnŷn → y0 ∈ M.

For all L > 0 and β > 1, consider

φ (vn) = φL,β (vn) = vnvN(β−1)
L,n ∈ Xε, vL,n = min {vn, L} .

Set

Φ(t) =
∫ t

0

(
φ′(t)

) 1
N dτ, Υ(t) =

|t|N
N

.

According to [5], we have

|Φ(a)−Φ(b)|N ≤ Υ′(a− b)(φ(a)− φ(b)), ∀a ∈ R, b ∈ R. (3.34)

According to (3.34), we have

|Φ (vn(x))−Φ (vn(y))|N

≤ (vn(x)− vn(y))
((

vnvN(β−1)
L,n

)
(x)−

(
vnvN(β−1)

L,n

)
(y)
)
|vn(x)− vn(y)|N−2 .

(3.35)

Therefore, taking φ (vn) = vnvN(β−1)
L,n as a test function, we obtain that∫

RN
|∇vn|N−1φ (vn)dx +

∫
RN
|∇vn|q−1φ (vn)dx

+
∫

RN
V (yn + εnx) |vn|N−2 vnφ (vn)dx +

∫
RN

V (εnx + yn) |vn|q−2 vnφ (vn)dx

=
∫

RN
f (εnx + yn, vn) φ (vn)dx.

Due to ( f1) and ( f2), ∀ε > 0, we can find C(ε) > 0 satisfies

| f (t)| ≤ ε|t|q−1 + C(ε)|t|N−1ΨN (t) , ∀t ∈ R.

According to method of [5], it is easy to get∫
RN
|∇vn|Nvp(β−1)

L,n dx +
∫

RN
V (εnx + yn) |vn|N vp(β−1)

L,n dx ≤
∫

RN
f (vn) vnvN(β−1)

L,n dx.

Since Φ (vn) ≥ 1
β vnvβ−1

L,n , vnvβ−1
L,n ≥ Φ (vn) and the embedding from Xε → LN∗ (RN) (N∗ > N)

is continuous, so we can find S∗ > 0 that satifies

1
βN S∗

∥∥∥vnvβ−1
L,n

∥∥∥N

LN∗ (RN)
≤ S∗ ‖Φ (vn)‖N

LN∗(RN) ≤ ‖Φ (vn)‖N
Xε

. (3.36)

Since Xε → Lν
(
RN) (ν ≥ N) is continuous, there exists Sν satisfying

Sν = inf
u 6=0,u∈Xε

‖u‖Xε

‖u‖Lν(RN)
, ν ≥ N.



28 L. Wang, J. Wang and B. Zhang

This implies
‖u‖LN(RN) ≤ S−1

N ‖u‖Xε , ∀u ∈ Xε. (3.37)

Then we obtain

‖Φ (vn)‖N
m,X(RN) ≤ ε

∫
RN

∣∣∣vnvβ−1
L,n

∣∣∣N dx + C(ε)
∫

RN
ΨN (vn)

∣∣∣vnvβ−1
L,n

∣∣∣p dx

≤ εβN
∫

RN
|Φ (vn)|N dx + C(ε)

∫
RN

ΨN (vn)
∣∣∣vnvβ−1

L,n

∣∣∣N dx

≤ εβNS−N
N ||Φ (vn) ‖N

m,X(RN) + C(ε)
∫

RN
ΨN (vn)

∣∣∣vnvβ−1
L,n

∣∣∣N dx.

(3.38)

Choose 0 < ε < β−NSN
N , then (3.38) implies

1
βN S∗

(
1− εβNS−N

N

) ∥∥∥vnvβ−1
L,n

∥∥∥N

LN∗ (RN)

≤ C(ε)
(∫

RN
(ΨN (vn))

q′ dx
) 1

q′
(∫

RN

∣∣∣vnvβ−1
L,n

∣∣∣qN
dx
) 1

q

.

Now, by the Trudinger–Moser inequality with N << q such that N∗ > qN = N∗∗. Note that,
q′ near 1 but q′ > 1. So we can find D > 0 satisfies∥∥∥vnvβ−1

L,n

∥∥∥N

LN∗ (RN)
≤ DβN

∥∥∥vnvβ−1
L,n

∥∥∥N

LqN(RN)
.

Let L→ +∞, we obtain
‖vn‖LN∗β ≤ D

1
Nβ β

1
β ‖vn‖LN∗∗β(RN) . (3.39)

Let β = N∗
N∗∗ > 1. Then β2N∗∗ = βN∗. Replace β with β2, (3.39) holds. Hence,

‖vn‖LN∗β2 ≤ D
1

Nβ2 β
2

β2 ‖vn‖LN∗∗ β2(RN)

= D
1

Nβ2 β
2

β2 ‖vn‖LN∗β(RN)

≤ D
1
N

(
1
β+

1
β2

)
β

1
β+

2
β2 ‖vn‖LN∗∗β(RN) .

(3.40)

Now iterating the process, as shown in (3.40), for any positive integer m, we get that

‖vn‖LN∗βσ ≤ D

σ

∑
j=1

1
Nβj

β

σ

∑
j=1

jβ−j

‖vn‖LN∗∗β(RN) . (3.41)

Taking the limit in (3.41) as σ→ ∞, we have

‖vn‖L∞(RN) ≤ C

for all n, where C = D

∞
∑

j=1

1
Nβj

β∑∞
j=1 jβ−j

sup
n
‖vn‖LN∗∗β(RN) < +∞.

Proof of Theorem 1.1. For ε ∈ (0, ε0), according to Lemma 3.15, there are d, ε0 > 0 that satisfy
Jε has a critical point uε ∈ Yd

ε ∩ Γc̃ε
ε . Since uε satisfies

−∆Nuε − ∆quε + V(εx)(|uε|N−2uε + |uε|q−2uε) = f (uε) + 4
(∫

RN
χεu

p
ε dx− 1

)
+

χεuε in RN .
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When t ≤ 0, we know f (t) = 0. So uε > 0 in RN . In addition, by using Lemma 3.16, it is easy
to get {‖uε‖L∞}ε is bounded. Now by using Lemma 3.11, we have

lim
ε→0

[
1
N

(∫
RN\M2δ

ε

|∇uε|N + Vε (uε)
N dx

)
+

1
q

(∫
RN\M2δ

ε

|∇uε|q + Vε (uε)
q dx

)]
= 0.

According to elliptic estimates in [20], we know

lim
ε→0
‖uε‖L∞(RN\M2δ

ε ) = 0.

Similar to [35], there are C > 0, c > 0 that satisfy

u(x) ≤ Ce−c|x|.

In fact, by using the Radial Lemma in [7], one has

u(x) ≤ C
‖u‖LN

|x| , ∀x 6= 0,

here C is related to N, p. Therefore, for u ∈ Sm, we have lim|x|→∞ u(x) = 0 uniformly.
According to the comparison principle, we have that C > 0, c > 0 satisfy

u(x) ≤ Ce−c|x|, ∀x ∈ RN .

According to a comparison principle, for some C, c > 0, we obtain that

uε(x) ≤ C exp
(
−c dist

(
x,M2δ

ε

))
.

So Qε (uε) = 0, then uε satisfies (1.1). Lastly, assume uε has a maximum point xε. According
to Lemma 3.8 and Lemma 3.11, for some x ∈ M, we get that εxε → x as ε → 0. Moreover, as
to C > 0, c > 0,

uε(x) ≤ Ce−c|x−xε|.

This completes the final proof.
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