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Abstract. We present several classes of nonlinear difference equations solvable in closed
form, which can be obtained from some known iteration processes, and for some of
them we give some generalizations by presenting methods for constructing them. We
also conduct several analyses and give many comments related to the difference equa-
tions and iteration processes.
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1 Introduction

The sets of natural numbers, nonnegative integers, integers, real numbers and complex num-
bers, we denote by N, N0, Z, R and C, respectively, whereas the notation l = s, t, when
s, t ∈ Z and s ≤ t is used instead of writing s ≤ l ≤ t, l ∈ Z. By Cn

j , n ∈ N and j = 0, n, we
denote the binomial coefficients. Recall that

Cn
j =

n!
j!(n − j)!

,

where we regard that 0! = 1 (some information on the coefficients can be found, e.g., in
[4, 22, 32, 34, 43]).

Difference equations and systems naturally appear in many areas of science and mathe-
matics [9,12–14,18,19,22,26,27,29,34,43,51,59]. The problem of finding formulas for their solu-
tions in closed form appeared long time ago, and was treated by many known mathematicians
such as D. Bernoulli, de Moivre, Euler, Lagrange and Laplace (see, e.g., [9, 13–15, 17, 23–28]).
Unfortunately, for a great majority of the equations and systems it is impossible to find such
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formulas, especially if they are nonlinear. In [1,10,16,17,19,22,30,31,33–35] can be found some
classical solvable nonlinear difference equations, as well as systems of difference equations.

Several classes of solvable nonlinear difference equations can be obtained by using some
known iteration processes. Some of them can be found, for example, in [11, 12, 55, 56].

Motivated by some recent investigations on solvability of difference equations and systems
of difference equations (see, e.g., [3, 40, 42, 53, 54, 57, 58] and the references therein) and some
examples in [12], we have studied recently connections between some difference equations
obtained from known iteration processes and their solvability. Related equations and topics
such as finding invariants and studying equations obtained from solvable ones can be found
in [5–8, 21, 36–39, 46, 47, 49, 50, 52].

Here we continue the investigation of solvability of difference equations and their relation-
ships with known iteration processes. We deal with some equations of the form

xn+1 = f̂ (xn), n ∈ N0,

the autonomous difference equation of first order.
First we show that the Newton–Raphson iteration process for finding roots of quadratic

equations produces a solvable nonlinear difference equation extending a known example of
such a difference equation. Recall that the Newton–Raphson iteration process is given by

xn+1 = xn −
f (xn)

f ′(xn)
, n ∈ N0, (1.1)

(see, e.g., [12, 18]), where f is a given function.
Based on it and another known difference equation, we present a related class of solvable

nonlinear difference equations. Then we present a solvable class of nonlinear difference equa-
tions generalizing two known ones which are obtained by the Newton–Raphson iteration
process for calculating reciprocals. We also present an interesting method for constructing
a class of solvable nonlinear difference equations generalizing a solvable equation obtained
from the Halley iteration process for finding square roots. We also conduct several analy-
ses and give many comments related to solvable nonlinear difference equations and iteration
processes.

2 Some analyses and main results

In this section we conduct some analyses related to the relationships between solvable differ-
ence equations and some known iteration processes, and state and prove our main results.

2.1 Newton–Raphson iteration process for quadratic equations and solvability

Let
f (x) = x2 + px + q, (2.1)

be a quadratic function.
By using function (2.1) in (1.1) we get

xn+1 = xn −
x2

n + pxn + q
2xn + p

, n ∈ N0,
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that is,

xn+1 =
x2

n − q
2xn + p

, n ∈ N0. (2.2)

If a solution to equation (2.2) converges to a point x∗, then it is clear that x∗ must be equal to
one of the zeros of function (2.1).

From the numerical point of view the interesting case is when q ̸= 0 (if q = 0, then the
roots of (2.1) are obviously 0 and −p). Assume additionally that p2 ̸= 4q. Then the function
has two different zeros, say, a and b, and equation (2.2) can be rewritten in the form

xn+1 =
x2

n − ab
2xn − a − b

, n ∈ N0. (2.3)

First, assume that a ̸= b. We consider the cases a + b = 0 and a + b ̸= 0 separately.

Case a + b = 0. In this case we have b = −a. Hence, equation (2.3) becomes

xn+1 =
1
2

(
xn +

a2

xn

)
, n ∈ N0. (2.4)

It is well known that the equation is solvable in closed form [12, 22], and that its general
solution is given by

xn = a
1 + ( x0−a

x0+a )
2n

1 − ( x0−a
x0+a )

2n , n ∈ N0. (2.5)

Recall that the difference equation in (2.4) serves for calculating a square root of number a2.

Case a + b ̸= 0. From (2.3) and by some simple calculations, it follows that

xn+1 − a =
x2

n − 2axn + a2

2xn − a − b
, n ∈ N0, (2.6)

and

xn+1 − b =
x2

n − 2bxn + b2

2xn − a − b
, n ∈ N0. (2.7)

From (2.6) and (2.7) we have

xn+1 − a
xn+1 − b

=

(
xn − a
xn − b

)2

, n ∈ N0,

and consequently
xn − a
xn − b

=

(
x0 − a
x0 − b

)2n

, n ∈ N0,

from which it easily follows that

xn =
b( x0−a

x0−b )
2n − a

( x0−a
x0−b )

2n − 1
, n ∈ N0. (2.8)

The sequence defined in (2.8) is a solution to equation (2.3). Indeed, let

yn :=
(

x0 − a
x0 − b

)2n

, n ∈ N0.
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Then we have

x2
n − ab

2xn − a − b
=

( byn−a
yn−1 )

2 − ab

2 byn−a
yn−1 − a − b

=
b2y2

n − 2abyn + a2 − aby2
n + 2abyn − ab

(yn − 1)(2byn − 2a − (a + b)yn + a + b)

=
b(b − a)y2

n − a(b − a)
(yn − 1)(b − a)(yn + 1)

=
by2

n − a
y2

n − 1
=

b( x0−a
x0−b )

2n+1 − a

( x0−a
x0−b )

2n+1 − 1

= xn+1

as claimed.

Remark 2.1. Note that from (2.8) with b = −a is obtained formula (2.5).

From (2.8) we easily obtain the following corollary.

Corollary 2.2. Consider equation (2.3) where a ̸= b and ab ̸= 0. Then the following statements are
true.

(a) If | x0−a
x0−b | < 1, then limn→+∞ xn = a.

(b) If | x0−a
x0−b | > 1, then limn→+∞ xn = b.

(c) If x0−a
x0−b = −1, that is, x0 = a+b

2 , then x1 is not defined.

Remark 2.3. Note that the case
x0 − a
x0 − b

= 1

is excluded, since we assume a ̸= b.

Case a = b. If a = b and x0 = a, then since in this case equation (2.3) becomes

xn+1 =
x2

n − a2

2(xn − a)
, n ∈ N0, (2.9)

we have that x1 is not defined, so that in this case the solution to the equation is not well-
defined.

If xn0 = a for some n0 ∈ N, and

xj ̸= a, j = 0, n0 − 1,

then from (2.9) we have

a = xn0 =
x2

n0−1 − a2

2(xn0−1 − a)
=

xn0−1 + a
2

,

and consequently xn0−1 = a, which is a contradiction. Therefore, if x0 ̸= a we have that

xn ̸= a for n ∈ N0. (2.10)

Hence, if a = b and x0 ̸= a, then from (2.9) and (2.10) we have that equation (2.3) becomes

xn+1 =
xn

2
+

a
2

, n ∈ N0,

from which it follows that

xn =
x0

2n + a
(

1 − 1
2n

)
, n ∈ N0, (2.11)

(for the original source see [25]; see also [10, 19, 22, 34]).
From (2.11) we easily obtain the following corollary.
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Corollary 2.4. Consider equation (2.3) where a = b and a ̸= 0. Then every solution to equation (2.3)
such that x0 ̸= a converges to a.

Remark 2.5. Equation (2.3) appeared in [55] but we did not consider it, nor did we formulate
any of the above results in the case.

Since we assume that q = ab ̸= 0, the above analysis excluded the case. However, it is of
some interest to consider equation (2.3) also in this case.

Case ab = 0. First note that, due to the symmetry of equation (2.3) with respect to parameters
a and b, we may assume b = 0. In this case the difference equation becomes

xn+1 =
x2

n
2xn − a

, (2.12)

for n ∈ N0.
If a = 0, then we have

xn+1 =
x2

n
2xn

, n ∈ N0. (2.13)

Hence, if x0 ̸= 0 we get

xn =
x0

2n , n ∈ N0,

showing the solvability of equation (2.12) in this case. If x0 = 0, then from (2.13) we see that
x1 is not defined. Therefore, the solution to equation (2.13) is also not well-defined.

Now assume that a ̸= 0. If x0 = 0, then a simple inductive argument shows that

xn = 0, n ∈ N0. (2.14)

If xn1 = 0 for some n1 ∈ N, and

xj ̸= 0, j = 0, n1 − 1, (2.15)

then from (2.12) we have xn1−1 = 0, which is a contradiction. From (2.14) and (2.15) we see
that when x0 ̸= 0 we have that xn ̸= 0 for all n ∈ N0 for which xn is defined. Hence, we can
use the change of variables

xn =
1
yn

, n ∈ N0, (2.16)

and obtain the equation
yn+1 = yn(2 − ayn), n ∈ N0.

It is well known that general solution to the equation is given by

yn =
1 − (1 − ay0)2n

a
, n ∈ N0,

(see, e.g., [11, 12]).
Hence, we have that the general solution to equation (2.12) in this case is given by the

formula

xn =
ax2n

0

x2n

0 − (x0 − a)2n , (2.17)

for n ∈ N0.
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Remark 2.6. Formula (2.17) can be also obtained from the formula (2.8) with b = 0. Indeed,
the above consideration in the case a + b ̸= 0 also holds in the case when b = 0. Note also that
if b = 0, then a + b = a ̸= 0. Hence, all the conditions there are satisfied if a ̸= 0 and b = 0.

Remark 2.7. The change of variables (2.16) is a basic one and frequently appears in the litera-
ture (see, e.g. [4, 51]). One of the basic examples of difference equations where it is applied is
the following

xn+1 =
anxn

bn + cnxn
, n ∈ N0,

which, by the change of variables, is transformed to a nonhomogeneous linear difference
equation of first order, which is theoretically solvable (this was shown first by Lagrange [26],
then by another method by Laplace [27]; see, also [10, 16, 19, 34]). For some related changes of
variables see, e.g., [40, 53, 57] and the related references therein.

2.2 A relative of equation (2.4)

The difference equation

xn+1 =
2xn

x2
n + 1

, n ∈ N0, (2.18)

is another known difference equation. The long-term behaviour of its solutions can be studied
by using standard methods to the governing function

f (t) =
2t

t2 + 1
, t ∈ R,

(see, e.g., [4, Problems 9.34, 9.35]).
However, the equation is also solvable. Indeed, first note that if x∗ is an equilibrium of

equation (2.18), then it is easy to see that

x∗ ∈ {−1, 0, 1}.

Since

xn+1 − 1 = − (xn − 1)2

x2
n + 1

and

xn+1 + 1 =
(xn + 1)2

x2
n + 1

for n ∈ N0, we have
xn+1 − 1
xn+1 + 1

= −
(

xn − 1
xn + 1

)2

, n ∈ N0,

from which it follows that

xn − 1
xn + 1

= −
(

x0 − 1
x0 + 1

)2n

, n ∈ N,

and finally

xn =
1 −

(
x0−1
x0+1

)2n

1 +
(

x0−1
x0+1

)2n , n ∈ N. (2.19)
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Remark 2.8. Solvability of equation (2.18) is not so surprising. Namely, note that by using the
change of variables (2.16) from equation (2.18) it is obtained equation (2.4) with a = 1.

By using the change of variables in (2.16) in equation (2.2) we obtain the equation

yn+1 =
py2

n + 2yn

1 − qy2
n

, n ∈ N0. (2.20)

Let p = −(a + b) and q = ab, then equation (2.20) becomes

yn+1 =
−(a + b)y2

n + 2yn

1 − aby2
n

, n ∈ N0. (2.21)

If a + b ̸= 0, then from (2.8) we obtain

yn =
( 1−ay0

1−by0
)2n − 1

b( 1−ay0
1−by0

)2n − a
, n ∈ N0, (2.22)

whereas if a = b, then from (2.11) we obtain

yn =
y02n

1 + ay0(2n − 1)
, n ∈ N0. (2.23)

From (2.22) we obtain the following corollary.

Corollary 2.9. Consider equation (2.21) where a ̸= b and ab ̸= 0. Then for well-defined solutions of
the equation the following statements are true.

(a) If | 1−ay0
1−by0

| < 1, then limn→+∞ yn = 1
a .

(b) If | 1−ay0
1−by0

| > 1, then limn→+∞ yn = 1
b .

(c) If 1−ay0
1−by0

= −1, that is, y0 = 2
a+b , then yn = 0, n ∈ N.

(d) If y0 = 0, then yn = 0, n ∈ N0.

Remark 2.10. Note that if y0 ̸= 0, the case

1 − ay0

1 − by0
= 1

is excluded, since we assume a ̸= b.

From (2.21) and (2.23) we obtain the following corollary.

Corollary 2.11. Consider equation (2.21) where a = b ̸= 0. Then every solution to equation (2.21)
such that y0 ̸= 0, y0 ̸= 1/a, and

y0 ̸= 1
a(1 − 2n)

, n ∈ N,

converges to 1
a .

Remark 2.12. Note that if a = b and y0 = 0, then yn = 0 for every n ∈ N.

Remark 2.13. Note that if a = b and y0 = 1/a or

y0 =
1

a(1 − 2n)

for some n ∈ N, then yn is not defined, and consequently the corresponding solution to
equation (2.21).
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2.3 Newton–Raphson iteration process for calculating reciprocals

It is well known that if we apply the Newton-Raphson iteration process to

f (x) = 1 − 1
ax

(2.24)

where a ̸= 0, we obtain the equation

xn+1 = 2xn − ax2
n, n ∈ N0. (2.25)

Recall that the equation is solvable in closed form [11, 12, 18, 55].
If we apply the iteration process

xn+1 = xn −
f (xn)

f ′(xn)
− f ′′(xn)

2 f ′(xn)

(
f (xn)

f ′(xn)

)2

, n ∈ N0

to the function in (2.24) we obtain the equation

xn+1 = 3xn − 3ax2
n + a2x3

n, n ∈ N0, (2.26)

see, e.g., [18], where it is suggested to show that the relation holds

1
a
− xn+1 = a2

(1
a
− xn

)3
, n ∈ N0. (2.27)

From (2.27) we see that the relation (2.26) is also solvable in closed form. Indeed, let

yn :=
1
a
− xn, (2.28)

then from (2.26) we have
yn = a2y3

n−1, n ∈ N,

which is a simple product-type difference equation (for some examples of such difference
equations and systems of equations, see, e.g., [54, 58] and the related references therein).

By iterating the last relation we get

yn = a2(a2y3
n−2)

3 = a2(1+3)y32

n−2.

By a simple inductive argument we obtain

yn = a2 ∑n−1
j=0 3j

y3n

0 = a3n−1y3n

0 , n ∈ N0,

from which along with (2.28) it follows that

xn =
1
a
− a3n−1

(1
a
− x0

)3n

, n ∈ N0. (2.29)

Remark 2.14. The matrix counterpart of equation (2.25)

Xn+1 = (2I − AXn)Xn, n ∈ N0,

is the Schultz iteration process [48] which has been studied a lot.
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2.4 A generalization of equations (2.25) and (2.26)

Equations (2.25) and (2.26) are, among other things, obtained from two known iteration pro-
cesses by employing them to the function in (2.24). Here we show that a sequence of iteration
processes, which can be used for calculating reciprocals and containing relations (2.25) and
(2.26), can be obtained in a simple way. Moreover, we show that they all are solvable in closed
form.

If in the difference equation
yn+1 = yk

n, n ∈ N0, (2.30)

where k ∈ N \ {1} is a fixed number, we use the change of variables

yn = 1 − axn, n ∈ N0, (2.31)

where a ̸= 0, we have

1 − axn+1 =
k

∑
j=0

Ck
j (−a)jxj

n, n ∈ N0,

so after some simple calculation we obtain

xn+1 =
k

∑
j=1

Ck
j (−a)j−1xj

n, n ∈ N0. (2.32)

From (2.32) for each k ∈ N \ {1} we obtain a difference equation which can be used for
calculating reciprocals.

Now note that from (2.30) we have

yn = ykn

0 , n ∈ N0. (2.33)

By using (2.33) in (2.31) we get

xn =
1 − (1 − ax0)kn

a
, n ∈ N0. (2.34)

Formula (2.34) shows that equation (2.32) is also solvable in closed form.

Remark 2.15. Note that if in equation (2.32) we take k = 2, then we obtain equation (2.25),
whereas if we take k = 3, then we obtain equation (2.26). This means that the difference
equation is a natural generalization of the equations (2.25) and (2.26).

Remark 2.16. The matrix counterparts of equations (2.32) have been also studied considerably.
Our literature review shows that the topic has been quite popular among scientists working
on numerical mathematics for a long time, and it seems that such iteration processes are
rediscovered from time to time. There are also some operator counterparts of equations (2.25),
(2.26) and (2.32) (see, for example, [2, 41] and the references therein). So, the facts mentioned
in this subsection should be folklore. Nevertheless, the above explanation suggests a natural
way for constructing the matrix and operator iteration processes. From (2.30) we also see how
is naturally obtained an iteration process whose rate of the convergence has a given order (for
the notion see, e.g., [12, 18]).
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2.5 A relative to equation (2.32)

By using change of variables (2.16) in equation (2.32) we obtain the equation

yn+1 =
yk

n

∑k
j=1 Ck

j (−a)j−1yk−j
n

, n ∈ N0,

that is,

yn+1 =
ayk

n

yk
n − (yn − a)k , n ∈ N0. (2.35)

Hence, from (2.34) we have that the general solution to equation (2.35) is given by

yn =
aykn

0

ykn

0 − (y0 − a)kn , n ∈ N0.

For example, if k = 3, then equation (2.35) becomes

yn+1 =
y3

n
3y2

n − 3ayn + a2 , n ∈ N0,

and its general solution is

yn =
ay3n

0

y3n

0 − (y0 − a)3n , n ∈ N0.

2.6 Newton–Raphson method for polynomials of the third degree and solvability

Here we conduct some analyses regarding solvability of difference equations obtained by
applying the Newton–Raphson iteration process to polynomials of the third degree, and gen-
eralise a class of solvable difference equations by presenting a method for constructing the
generalization.

Difference equations can be used for calculating roots of some functions, but it is quite a
rare situation that they are solvable in closed form. For example, if we want to calculate a root
of the function

f (x) = x3 − x

(we can easily find all of them by an elementary method), by using the Newton-Raphson
process we get the equation

xn+1 = xn −
x3

n − xn

3x2
n − 1

=
2x3

n
3x2

n − 1
, n ∈ N0. (2.36)

The equation frequently appears in the literature (see [20, 44]), and this explains how it can
be obtained, which is one of the reasons why we mention the equation. Another reason is
connected to the method used in dealing with equation (2.3).

Namely, from (2.36) and some calculations we get

xn+1 − 1 =
(xn − 1)2(2xn + 1)

3x2
n − 1

and

xn+1 + 1 =
(xn + 1)2(2xn − 1)

3x2
n − 1
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from which it follows that
xn+1 − 1
xn+1 + 1

=

(
xn − 1
xn + 1

)2 2xn + 1
2xn − 1

.

However, the natural change of variables

yn =
xn − 1
xn + 1

cannot show the solvability of relation (2.36).
Let us analyse the general case. If we apply the Newton–Raphson iteration process to an

arbitrary polynomial of the third order

p3(t) = t3 + pt2 + qt + r (2.37)

we get

xn+1 = xn −
x3

n + px2
n + qxn + r

3x2
n + 2pxn + q

=
2x3

n + px2
n − r

3x2
n + 2pxn + q

, (2.38)

for n ∈ N0.
If a, b and c are the roots of (2.37), then (2.38) can be written in the form

xn+1 =
2x3

n − (a + b + c)x2
n + abc

3x2
n − 2(a + b + c)xn + ab + bc + ca

, n ∈ N0, (2.39)

and by some calculations we have

xn+1 − a =
2x3

n − (4a + b + c)x2
n + 2a(a + b + c)xn − a2(b + c)

3x2
n − 2(a + b + c)xn + ab + bc + ca

, (2.40)

for n ∈ N0.
Let

q3(t) = 2t3 − (4a + b + c)t2 + 2a(a + b + c)t − a2(b + c).

Then, a direct calculation shows that q3(a) = 0, from which it follows that

q3(t) = (t − a)(2t2 − (2a + b + c)t + a(b + c)) = (t − a)2(2t − (b + c)).

Hence (2.40) can be written as follows

xn+1 − a =
(xn − a)2(2xn − (b + c))

3x2
n − 2(a + b + c)xn + ab + bc + ca

, n ∈ N0. (2.41)

Since the root of (2.37) we chose was arbitrary, we see that from (2.41) the following relations
also hold

xn+1 − b =
(xn − b)2(2xn − (a + c))

3x2
n − 2(a + b + c)xn + ab + bc + ca

, n ∈ N0, (2.42)

xn+1 − c =
(xn − c)2(2xn − (a + b))

3x2
n − 2(a + b + c)xn + ab + bc + ca

, n ∈ N0. (2.43)

From (2.41)–(2.43), we have

xn+1 − a
xn+1 − b

=

(
xn − a
xn − b

)2 2xn − (b + c)
2xn − (a + c)

, (2.44)

xn+1 − b
xn+1 − c

=

(
xn − b
xn − c

)2 2xn − (a + c)
2xn − (a + b)

, (2.45)

xn+1 − c
xn+1 − a

=

(
xn − c
xn − a

)2 2xn − (a + b)
2xn − (b + c)

, (2.46)
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for n ∈ N0.
From (2.44)–(2.46) we see that we can obtain a solvable difference equation if a + b, b + c

and c + a takes some of the values in the set {2a, 2b, 2c}. However, it is not difficult to see that
in all the cases we get a = b = c, so that the equations (2.44)–(2.46) become trivial.

This analysis shows that the method used in solving equation (2.3) cannot be applied to
equation (2.39). Nevertheless, there are some equations of the form

xn+1 =
x3

n + px2
n + qxn + r

sx2
n + uxn + v

, n ∈ N0, (2.47)

which are solvable in closed form, but are obtained by using some other iteration processes.

Example 2.17. The difference equation [20, 33, 45]

xn+1 =
x3

n + 3axn

3x2
n + a

, n ∈ N0. (2.48)

is used for finding a square root of number a. It is interesting that the difference equation is
solvable in closed form. See [56] where a class/sequence of solvable difference equations for
finding square roots is presented. Beside this, it is also interesting that the equation can be
obtained, for example, from the Halley iteration process [18]

xn+1 = xn −
2 f ′(xn) f (xn)

2 f ′(xn)2 − f ′′(xn) f (xn)
, n ∈ N0,

applied to the function
f (t) = x2 − a. (2.49)

The fact was not mentioned in [56].

A detailed analysis of the method for solving equation (2.48) given in [56], shows that one
of the most important facts used in the method is that the following relations hold

t3 + 3at −
√

a(3t2 + a) = (t −
√

a)3

and
t3 + 3at +

√
a(3t2 + a) = (t +

√
a)3.

Hence it is of interest to see for which values of parameters p, q, r, s, u and v the following
identities hold

t3 + pt2 + qt + r − a(st2 + ut + v) = (t − a)3 (2.50)

and
t3 + pt2 + qt + r − d(st2 + ut + v) = (t − d)3 (2.51)

for some given numbers a and d such that a ̸= d.
From (2.50) and (2.51) we obtain the following nonlinear algebraic system of equations

p − as = −3a, p − ds = −3d, (2.52)

q − au = 3a2, q − du = 3d2, (2.53)

r − av = −a3, r − dv = −d3. (2.54)

From (2.52) we have
−s(a − d) = −3(a − d)
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from which along with the assumption a ̸= d, it follows that s = 3. By using it in (2.52) we get
p = 0.

From (2.53) we have
−u(a − d) = 3(a − d)(a + d) (2.55)

and
2q = 3(a2 + d2) + (a + d)u. (2.56)

From (2.55) along with the assumption a ̸= d, it follows that u = −3(a + d). By using it in
(2.56) we get q = −3ad.

From (2.54) we have
v(a − d) = (a − d)(a2 + ad + d2) (2.57)

and
2r = −(a3 + d3) + (a + d)v. (2.58)

From (2.57) along with the assumption a ̸= d, it follows that v = a2 + ad + d2. By using it in
(2.58) we get r = ad(a + d).

This analysis suggests that the following special case of equation (2.47)

xn+1 =
x3

n − 3adxn + ad(a + d)
3x2

n − 3(a + d)xn + a2 + ad + d2 , n ∈ N0, (2.59)

is solvable. Indeed, the following theorem holds.

Theorem 2.18. The equation (2.59), where a, d ∈ C are such that a ̸= d is solvable in closed form.

Proof. From (2.59) and some simple calculation we have

xn+1 − a =
(xn − a)3

3x2
n − 3(a + d)xn + a2 + ad + d2 , n ∈ N0, (2.60)

and

xn+1 − d =
(xn − d)3

3x2
n − 3(a + d)xn + a2 + ad + d2 , n ∈ N0. (2.61)

From (2.60) and (2.61) we have

xn+1 − a
xn+1 − d

=

(
xn − a
xn − d

)3

, n ∈ N0,

from which it easily follows that

xn − a
xn − d

=

(
x0 − a
x0 − d

)3n

, n ∈ N0,

and consequently

xn =
d
(

x0−a
x0−d

)3n

− a(
x0−a
x0−d

)3n

− 1
, n ∈ N0. (2.62)

By some calculations it is checked that (2.62) is a solution to equation (2.59).

Remark 2.19. Note that if d = −a equation (2.59) reduces to the equation (2.48) where a is
replaced by a2, from which its solvability again follows.
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2.7 Difference equations obtained by polynomials of the fourth degree

In [56] we have also shown that the difference equation

xn+1 =
x4

n + 6ax2
n + a2

4x3
n + 4axn

, n ∈ N0, (2.63)

is solvable in closed form.
An interesting problem is to try to find a generalization of equation (2.63) by using the

method above applied to equation (2.47), which is also solvable in closed form. The following
equation

xn+1 =
x4

n + px3
n + qx2

n + rxn + s
αx3

n + βx2
n + γxn + δ

, n ∈ N0, (2.64)

is a natural generalization of equation (2.63).
Following (2.50) and (2.51), it is of interest to see for which values of parameters p, q, r, s,

α, β, γ and δ the following identities hold

t4 + pt3 + qt2 + rt + s − a(αt3 + βt2 + γt + δ) = (t − a)4 (2.65)

and
t4 + pt3 + qt2 + rt + s − d(αt3 + βt2 + γt + δ) = (t − d)4 (2.66)

for some given numbers a and d such that a ̸= d.
From (2.65) and (2.66) we obtain the following nonlinear algebraic system of equations

p − αa = −4a, p − αd = −4d, (2.67)

q − βa = 6a2, q − βd = 6d2, (2.68)

r − γa = −4a3, r − γd = −4d3, (2.69)

s − δa = a4, s − δd = d4. (2.70)

From (2.67) we have
−α(a − d) = −4(a − d)

from which along with the assumption a ̸= d, it follows that α = 4. By using it in (2.67) we
get p = 0.

From (2.68) we have
−β(a − d) = 6(a − d)(a + d) (2.71)

and
2q = 6(a2 + d2) + (a + d)β. (2.72)

From (2.71) along with the assumption a ̸= d, it follows that β = −6(a + d). By using it in
(2.72) we get q = −6ad.

From (2.69) we have

−γ(a − d) = −4(a − d)(a2 + ad + d2) (2.73)

and
2r = −4(a3 + d3) + (a + d)γ. (2.74)

From (2.73) along with the assumption a ̸= d, it follows that γ = 4(a2 + ad + d2). By using it
in (2.74) we get r = 4ad(a + d).
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From (2.70) we have

−δ(a − d) = (a − d)(a3 + a2d + ad2 + d3) (2.75)

and

2s = a4 + d4 + (a + d)δ. (2.76)

From (2.75) along with the assumption a ̸= d, it follows that δ = −(a3 + a2d + ad2 + d3). By
using it in (2.76) we get s = −ad(a2 + ad + d2).

From the analysis we obtain the following result.

Theorem 2.20. The equation

xn+1 =
x4

n − 6adx2
n + 4ad(a + d)xn − ad(a2 + ad + d2)

4x3
n − 6(a + d)x2

n + 4(a2 + ad + d2)xn − (a3 + a2d + ad2 + d3)
, (2.77)

for n ∈ N0, where a, d ∈ C are such that a ̸= d is solvable in closed form.

Proof. From (2.77) and some simple calculation we have

xn+1 − a =
(xn − a)4

4x3
n − 6(a + d)x2

n + 4(a2 + ad + d2)xn − (a3 + a2d + ad2 + d3)
, (2.78)

for n ∈ N0, and

xn+1 − d =
(xn − d)4

4x3
n − 6(a + d)x2

n + 4(a2 + ad + d2)xn − (a3 + a2d + ad2 + d3)
, (2.79)

for n ∈ N0.
Using the relations in (2.78) and (2.79) we have

xn+1 − a
xn+1 − d

=

(
xn − a
xn − d

)4

, n ∈ N0.

Hence
xn − a
xn − d

=

(
x0 − a
x0 − d

)4n

, n ∈ N0,

and consequently

xn =
d
(

x0−a
x0−d

)4n

− a(
x0−a
x0−d

)4n

− 1
, n ∈ N0, (2.80)

which is the general solution to equation (2.77).

Remark 2.21. Note that if d = −a equation (2.77) reduces to the equation (2.63) where a is
replaced by a2, from which its solvability again follows.
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2.8 Difference equations obtained by polynomials of the fifth degree

In [56] we have also shown that the difference equation

xn+1 =
x5

n + 10ax3
n + 5a2xn

5x4
n + 10ax2

n + a2 , n ∈ N0, (2.81)

is solvable in closed form.
Our aim is to find a generalization of equation (2.81) similar to equation (2.47), which is

also solvable in closed form. The following equation

xn+1 =
x5

n + px4
n + qx3

n + rx2
n + sxn + u

αx4
n + βx3

n + γx2
n + δxn + η

, n ∈ N0, (2.82)

is a natural generalization of (2.81).
We find the values of parameters p, q, r, s, u, α, β, γ, δ and η such that the following

identities hold

t5 + pt4 + qt3 + rt2 + st + u − a(αt4 + βt3 + γt2 + δt + η) = (t − a)5 (2.83)

and
t5 + pt4 + qt3 + rt2 + st + u − d(αt4 + βt3 + γt2 + δt + η) = (t − d)5 (2.84)

for some given numbers a and d such that a ̸= d.
From (2.83) and (2.84) we have

p − αa = −5a, p − αd = −5d, (2.85)

q − βa = 10a2, q − βd = 10d2, (2.86)

r − γa = −10a3, r − γd = −10d3, (2.87)

s − δa = 5a4, s − δd = 5d4, (2.88)

u − ηa = −a5, u − ηd = −d5. (2.89)

From (2.85) it follows that
−α(a − d) = −5(a − d)

from which along with the assumption a ̸= d, it follows that α = 5. From this and (2.85) we
get p = 0.

From (2.86) we have
−β(a − d) = 10(a − d)(a + d) (2.90)

and
2q = 10(a2 + d2) + (a + d)β. (2.91)

From (2.90) along with the assumption a ̸= d, it follows that β = −10(a + d). By using it in
(2.91) we get q = −10ad.

From (2.87) we have

−γ(a − d) = −10(a − d)(a2 + ad + d2) (2.92)

and
2r = −10(a3 + d3) + (a + d)γ. (2.93)
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From (2.92) along with the assumption a ̸= d, it follows that γ = 10(a2 + ad + d2). By using it
in (2.93) we get r = 10ad(a + d).

From (2.88) we have

−δ(a − d) = 5(a − d)(a3 + a2d + ad2 + d3) (2.94)

and
2s = 5a4 + 5d4 + (a + d)δ. (2.95)

From (2.94) along with the assumption a ̸= d, it follows that δ = −5(a3 + a2d + ad2 + d3). By
using it in (2.95) we get s = −5ad(a2 + ad + d2).

From (2.89) we have

−η(a − d) = −(a − d)(a4 + a3d + a2d2 + ad3 + d4) (2.96)

and
2u = −(a5 + d5) + (a + d)δ. (2.97)

From (2.96) along with the assumption a ̸= d, it follows that η = a4 + a3d + a2d2 + ad3 + d4.
By using it in (2.97) we get u = ad(a3 + a2d + ad2 + d3).

From the analysis we obtain the following result.

Theorem 2.22. Let

p4(t)=5t4 − 10(a+d)t3 + 10(a2+ad+d2)t2 − 5(a3+a2d+ad2+d3)t + a4+a3d+a2d2+ad3+d4.

Then the equation

xn+1=
x5

n − 10adx3
n + 10ad(a+d)x2

n − 5ad(a2+ad+d2)xn + ad(a3+a2d+ad2+d3)

p4(xn)
, (2.98)

for n ∈ N0, where a, d ∈ C are such that a ̸= d, is solvable in closed form.

Proof. From (2.98) we have

xn+1 − a =
(xn − a)5

p4(xn)
, (2.99)

for n ∈ N0, and

xn+1 − d =
(xn − d)5

p4(xn)
, (2.100)

for n ∈ N0.
Employing (2.99) and (2.100) it follows that

xn+1 − a
xn+1 − d

=

(
xn − a
xn − d

)5

, n ∈ N0.

Hence
xn − a
xn − d

=

(
x0 − a
x0 − d

)5n

, n ∈ N0,

and consequently

xn =
d
(

x0−a
x0−d

)5n

− a(
x0−a
x0−d

)5n

− 1
, n ∈ N0, (2.101)

finishing the proof.

Remark 2.23. Note that if d = −a equation (2.98) reduces to the equation (2.81) where a is
replaced by a2, implying its solvability.
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2.9 A generalization of equations (2.63) and (2.81)

A natural question is if above theorems can be generalized to a more general difference equa-
tion. Although, at the first sight, the problem looks technically quite complex, it is interesting
that the method used in the proofs of the above theorems can be also employed for finding
the corresponding class of difference equations solvable in closed form, which are of the form

xn+1 =
xk

n + a1xk−1
n + · · ·+ ak−1xn + ak

b0xk−1
n + b1xk−2

n + · · ·+ bk−2xn + bk−1
, n ∈ N0, (2.102)

where k ∈ N and the coefficients

aj, j = 1, k, and bl , l = 0, k − 1, (2.103)

are complex numbers.
We want to find the values of the coefficients in (2.103) such that the following identities

hold

tk + a1tk−1 + · · ·+ ajtk−j + · · ·+ ak−1t + ak

− a(b0tk−1 + b1tk−2 + · · ·+ bj−1tk−j + · · ·+ bk−2t + bk−1) = (t − a)k (2.104)

and

tk + a1tk−1 + · · ·+ ajtk−j + · · ·+ ak−1t + ak

− d(b0tk−1 + b1tk−2 + · · ·+ bj−1tk−j + · · ·+ bk−2t + bk−1) = (t − d)k (2.105)

for some given numbers a and d such that a ̸= d.
From (2.104) and (2.105) we obtain the following nonlinear algebraic system of equations

a1 − ab0 = Ck
1(−a), a1 − db0 = Ck

1(−d)
...

...

aj − abj−1 = Ck
j (−a)j, aj − dbj−1 = Ck

j (−d)j, (2.106)
...

...

ak − abk−1 = Ck
k(−a)k, ak − dbk−1 = Ck

k(−d)k.

From (2.106) we have
−(a − d)bj−1 = Ck

j ((−a)j − (−d)j) (2.107)

and
2aj = Ck

j (−1)j(aj + dj) + (a + d)bj−1, (2.108)

j = 1, k.
From (2.107) and since a ̸= d we obtain

bj−1 = Ck
j (−1)j+1 aj − dj

a − d
, j = 1, k. (2.109)

By using (2.109) in (2.108) we have

2aj = Ck
j (−1)j(aj + dj) + (a + d)Ck

j (−1)j+1 aj − dj

a − d
,
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j = 1, k, from which it follows that

aj = adCk
j (−1)j+1 aj−1 − dj−1

a − d
, j = 1, k. (2.110)

Remark 2.24. Note that from (2.110) with j = 1 it follows that a1 = 0, whereas from (2.109)
with j = 1 it follows that b0 = Ck

1 = k. Further, from (2.109) and (2.110) it follows that

aj = adbj−1
aj−1 − dj−1

aj − dj , j = 2, k.

Now we formulate and prove the general result.

Theorem 2.25. Let equation (2.102) be such that the coefficients aj, j = 1, k, and bl , l = 0, k − 1, are
given by (2.109) and (2.110), where a, d ∈ C are such that a ̸= d. Then the equation is solvable in
closed form.

Proof. Let
pk−1(t) = b0tk−1 + b1tk−2 + · · ·+ bk−2t + bk−1.

Then from (2.102) and the choice of the coefficients aj, j = 1, k, and bl , l = 0, k − 1 (see (2.104)
and (2.105)), we have

xn+1 − a =
(xn − a)k

pk−1(xn)
, (2.111)

for n ∈ N0, and

xn+1 − d =
(xn − d)k

pk−1(xn)
, (2.112)

for n ∈ N0.
From (2.111) and (2.112) we have

xn+1 − a
xn+1 − d

=

(
xn − a
xn − d

)k

, n ∈ N0.

Hence
xn − a
xn − d

=

(
x0 − a
x0 − d

)kn

, n ∈ N0,

and finally

xn =
d
(

x0−a
x0−d

)kn

− a(
x0−a
x0−d

)kn

− 1
, n ∈ N0,

as claimed.
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[7] K. Berenhaut, S. Stević, The behaviour of the positive solutions of the difference
equation xn = A + (xn−2/xn−1)

p, J. Difference Equ. Appl. 12(2006), No. 9, 909–918.
https://doi.org/10.1080/10236190600836377
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[55] S. Stević, On a class of solvable difference equations generalizing an iteration process for
calculating reciprocals, Adv. Difference Equ. 2021, Article No. 205, 14 pp. https://doi.
org/10.1186/s13662-021-03366-0
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