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Abstract. In this paper, we present a new Carleman estimate for the adjoint equations
associated to a class of super strong degenerate parabolic linear problems. Our ap-
proach considers a standard geometric imposition on the control domain, which can
not be removed in general. Additionally, we also apply the aforementioned main in-
equality in order to investigate the null controllability of two nonlinear parabolic sys-
tems. The first application is concerned a global null controllability result obtained for
some semilinear equations, relying on a fixed point argument. In the second one, a
local null controllability for some equations with nonlocal terms is also achieved, by
using an inverse function theorem.
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1 Introduction

In this work we derive a new Carleman estimate for the linear super strong degenerate prob-
lem 

ut − (xαux)x + xα/2b1(x, t)ux + b0(x, t)u = f 1ω in Q,

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T),

u(x, 0) = u0(x) in (0, 1),

(1.1)

where Q = (0, 1) × (0, T), ω ⊂ (0, 1) is a non-empty open interval and 1ω is its associated
characteristic function, and α ≥ 2. Also, we take b0 ∈ L∞(Q), h ∈ L2(ω × (0, T)), u0 ∈ L2(0, 1),
and b1 ∈ L∞(Q) satisfying

(xα/2b1(x, t))x ∈ L∞(Q). (1.2)
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We also consider a geometrical condition on the control domain

∃d > 0; (0, d) ⊂ ω. (1.3)

As we will see further, (1.1) is controllable at any time T > 0, according to the following
specification:

Definition 1.1. We say that (1.1) is null controllable at T > 0 if, for any u0 ∈ L2(0, 1), there
exists h ∈ L2(ω × (0, T)) such that the solution u of (1.1) satisfies

u(x, T) = 0 in (0, 1). (1.4)

The null controllability of (1.1) is well understood for α ∈ (0, 2), see [1, 9] and references
therein. Following the terminology adopted in these works, we say that (1.1) is weakly de-
generate if α ∈ (0, 1) and strongly degenerate if α ∈ (1, 2). Despite there are many works for
the case α ∈ (0, 2), little has been done for the super strong degenerate case, i.e. when α ≥ 2,
although this is a very relevant case of the degenerate problem. Indeed, when α = 2, the
Black-Scholes equation can be obtained from (1.1) and this equation has a key role in several
financial applications.

Regarding the global null controllability of (1.1), the fact is that this problem is not null
controllable for α ≥ 2, in general. As pointed out in [9], a suitable change of variables trans-
forms (1.1) into a non-degenerate problem in an unbounded domain, which fails to be null
controllable in general, as proved in [14]. However, if the new control domain ω̃ has bounded
complement, it can be controlled, as proved in [4, 7].

Because of that, in [8], it was introduced a weaker kind of null controllability for this
problem, called regional null controllability. It means that for any u0 ∈ L2(0, T), ω = (a, b) ⊂
(0, 1) and δ ∈ (0, b − a), there exists a control f ∈ L2(Q) such that the solution u of (1.1)
satisfies

u(x, T) = 0 ∀x ∈ (a + δ, 1). (1.5)

They established regional null controllability for a linear problem like (1.1), but with b1 = 0.
In [6], this result was extended for a system like (1.1) with the first order term and a semilinar
case with a nonlinearity independent of it, i.e., regional null controllability was achieved for (1.1)
and for the following system

ut − (xαux)x + g(x, t, u) = f 1ω in Q,

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T),

u(x, 0) = u0(x) in (0, 1).

(1.6)

Finally, in [5], those results were extended considering a nonlinearity of the type g(x, t, u, ux),
but the restriction α ∈ (0, 2) was made. These works were concerned with regional null control-
lability, more recently, in [3], the authors came up with the new geometrical condition (1.3),
which allows to prove a global null controllability result for (1.1), when α = 2. In this work,
under the same geometrical condition, we will extend that result for α > 2.

A significant number of papers on null controllability of parabolic degenerate equations
follows a standard approach based on the Hilbert Uniqueness Method (HUM). It goes through
obtaining a Carleman estimate that leads to an observability inequality. This way, the null
controllability property can be deduced from the observability inequality. The particularity of
[3] and [8] is that the authors applied a change of variables to transform the system (1.1) into
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a non-degenerate problem in unbounded domains. There, a Carleman estimate is obtained
for this non-degenerate system.

Although the approach of transforming the degenerate problem into a non-degenerate
one, in an unbounded domain, works fine for linear problems, this procedure can meet dif-
ficulties to deal with some related problems. Indeed, when we work with some autonomous
semilinear problems, for example, this change of variable leads it to a nonautonomous semi-
linear problem. And, if we work with a certain nonlocal problems, it is lead to an even more
complicated one. In this work we present a Carleman estimate for (1.1), without passing by
this change of variables method. To our best knowledge, this estimate and some consequences
presented in the sequel mean some novelties for the super strong degenerate case.

The second part of the introduction is all about the presentation of our main results.

Statement of the results

First of all, let us consider the adjoint system associated to (1.1):
vt + (xαvx)x + (xα/2b1v)x − b0(x, t)v = h in Q,

v(1, t) = 0 and (xαvx)(0, t) = 0 in (0, T),

v(x, T) = vT(x) in (0, 1),

(1.7)

where h ∈ L2(Q) and vT ∈ L2(0, 1).
Now, for λ > 0, let us introduce some weight functions given by θ, p0 and σ0 with

θ(t) :=
1

(t(T − t))4 , η(x) := −x2/2, ξ(x, t) = θ(t)eλ(2|η|∞+η(x))

and σ(x, t) := θ(t)e4λ|η|∞ − ξ(x, t).
(1.8)

The assumption (1.3) and the weight function η are the key points that allow us to build
the following Carleman estimate:

Theorem 1.2. Assume (1.2) and (1.3). There exists positive constants C, s0 and λ0, depending only
on ω, ∥b0∥∞, T, d and α such that, for any s ≥ s0, any λ ≥ λ0 and any solution v to (1.7), one has:∫∫

Q
e−2sσ

[
s−1λ−1ξ−1(|vt|2 + |(xαvx)x|2) + sλ2ξxα|vx|2 + s3λ4ξ3|v|2

]
dx dt

≤ C
[
∥e−sσh∥2 + s3λ4

∫∫
ωT

e−2sσξ3|v|2 dx dt
]

, (1.9)

where ωT := ω × (0, T).

The proof of Theorem 1.2 will be given in section 3.
As a consequence of Theorem 1.2 we have the following null controllability result:

Theorem 1.3. Assume (1.2) and (1.3). Then the system (1.1) is null controllable.

Next, the same Carleman estimate allows us to prove a null controllability result for the
following semilinear problem

ut − (xαux)x + g(x, t, u, ux) = f 1ω in Q,

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T),

u(x, 0) = u0(x) in (0, 1),

(1.10)
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where α ≥ 2 and g : Q × R2 → R must satisfies the following assumptions:
g is Lebesgue measurable;

g(x, t, ·, ·) ∈ C1(R2) uniformly in (x, t) ∈ Q;

g(x, t, 0, 0) = 0 ∀(x, t) ∈ Q;

∃K > 0 such that |gr(x, t, r, s)|+ x−α/2|gs(x, t, r, s)| ≤ K ∀(x, t, r, s) ∈ Q × R2.

(1.11)

Theorem 1.4. Assume (1.3) and (1.11). Then the system (1.10) is null controllable.

In [15], a null controllability result is obtained for (1.10), when α ∈ (0, 2). In this current
work, we extend this fact for the super strong degenerate case applying a similar technique.
At this point, we recall that the classical null controllability for (1.10) does not hold in general,
but the geometrical assumption (1.3) provided the inequality (1.9), which can be applied to
prove Theorem 1.4. In other words, the obtainment of Theorem 1.4 is possible because the
degeneracy point x = 0 belongs to the boundary of the control domain ω. It is worth observe
that, Cannarsa and Fragnelli proved, in [5], regional null controllability results for (1.10), when
α ∈ (0, 2). Summarizing, we emphasize that the investigation of [5] does not rely on the
localization of ω near x = 0, as in this paper, but it only allows to find a control which drives
the state to zero in a portion of ω far from the degeneracy point x = 0.

As a second application of our Carleman estimate (1.9), we will also obtain the local null
controllability for the following degenerate nonlocal problem

ut − ℓ
(∫ 1

0 u dx
)
(xαux)x = f 1ω in Q,

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T),

u(x, 0) = u0(x) in (0, 1),

(1.12)

where ℓ : R → R is a C1 function with bounded derivative, with ℓ(0) = 1. At this point,
we should observe that our results remain the same if we just consider ℓ(0) > 0. The null
controllability for this problem is studied in [11], when α ∈ (0, 1), and in [10] when α ∈ [1, 2).
Under the hypotheses (1.2) and (1.3), we extend this investigation for α ∈ [2,+∞), as described
below:

Theorem 1.5. Assume (1.3). The nonlinear system (1.12) is locally null-controllable at any time
T > 0, i.e, there exists ε > 0 such that, whenever u0 ∈ H1

α and |u0|H1
α
≤ ε, there exists a control

f ∈ L2(ω × (0, T)), associated to a state u, satisfying

u(x, T) = 0, for every x ∈ [0, 1].

The rest of this paper is organized as follows. In Section 2, we state some classical
well-posedness results related to the systems (1.1) and (1.10). In Section 3, we present an
α-independent Carleman inequality for solutions of (1.7) (see Theorem 1.2), which provides
an observability estimate and, consequently, the null controllability of (1.1). Sections 4 and
5 are devoted to some applications of Theorem 1.2. More precisely, in Section 4, we use a
fixed point argument to obtain a null controllability result to the degenerate semilinear sys-
tem (1.10) (see Theorem 1.4); in Section 5, an inverse function argument allows us to prove a
local null controllability result for the degenerate nonlocal system (1.12) (see Theorem 1.5).
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2 Well-posedness results

The usual norms in L2(0, 1) and L2(Q) will be denoted by | · |2 and ∥ · ∥2, respectively, related
to the usual inner products (·, ·) and ((·, ·)). Moreover, the norms in L∞(0, 1) and in L∞(Q)

will be denoted respectively by | · |∞ and ∥ · ∥∞.
Let us consider the functional spaces

H1
α :=

{
u ∈ L2(0, 1); u is locally absolutely continuous in (0, 1], xα/2ux ∈ L2(0, 1), u(1) = 0

}
.

and
H2

α :=
{

u ∈ H1
α; xαux ∈ H1(0, 1)

}
,

with the norms

|u|H1
α

:=
[∫ 1

0
(u2 + xα|u|2) dx

]1/2

, if u ∈ H1
α

and

|u|H2
α

:=
[∫ 1

0
(u2 + xα|u|2 + |(xαux)x|2) dx

]1/2

, if u ∈ H2
α.

With these norms, we observe that H1
α and H2

α are two Hilbert spaces. In [8, Proposition
2.1], the authors provided the following characterization:

H2
α =

{
u ∈ L2(0, 1); u is locally absolutely continuous in (0, 1],

xαu ∈ H1
0(0, 1), xαux ∈ H1(0, 1), (xαux)(0) = 0

}
.

Now, for the reader’s convenience, let us introduce the notations

M = C(0, T; L2(0, 1)) ∩ L2(0, T; H1
α) and N = H1(0, T; L2(0, T)) ∩ L2(0, T; H2

α).

In [15], the authors proved that the embedding M ↪→ N is compact (in fact, their result was
proved for α ∈ (0, 2), but the proof does not depend on α).

The next result, proved in [8], establishes the well-posedness of system (1.1).

Proposition 2.1. Assume b0, b1 ∈ L∞(Q). For any f ∈ L2(Q) and any u0 ∈ L2(0, 1), there exists
exactly one solution u ∈ M to (1.1). Furthermore, there exists a constant C > 0 only depending on T,
α, b1 and b0, such that

sup
t∈[0,T]

|u(·, t)|22 + ∥xα/2ux∥2
2 ≤ C(∥ f 1ω∥2

2 + |u0|22).

Furthermore, if u0 ∈ H1
α, then u ∈ N ∩ C0([0, T]; H1

α) and we have the following estimate:

sup
t∈[0,T]

|u(·, t)|2H1
α
+ ∥ut∥2

2 + ∥(xαux)x∥2
2 ≤ C

(
∥ f 1ω∥2

2 + |u0|2H1
α

)
.

We also state the well-posedness of (1.10), whose proof can be seen in [15, Theorem 2.1].

Proposition 2.2. Assume g satisfies (1.11). For any f ∈ L2(Q) and any u0 ∈ L2(0, 1), there exists
exactly one solution u ∈ M to the system (1.10).
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3 Carleman and observability inequalities

The aim of this section is to prove the Carleman estimate (1.9) and, as a consequence, an
observability inequality, which yields the null controllability of the linear system (1.1).

It suffices to prove Theorem 1.2 for b1 = b0 = 0, since the general case follows taking
h̃ = h − b0v − (xα/2b1v)x.

Let us take δ ∈ (0, d) and let v be the solution to (1.7) (where vT ∈ L2(0, 1) and h ∈ L2(Q)).
For any s ≥ s0 > 0, we set z = e−sσv. By a density argument we can assume without loss of
generality that v is regular enough. A simple computation gives us

vt = esσ[sσtz + zt] and (xαvx)x = esσ[s2σ2
x xαz + 2sσxxαzx + s(σxxα)xz + (xαzx)x].

Consequently,

P+z + P−z = G, (3.1)

where

P−z := −2sλ2ξxα+2z + 2sλξxα+1zx + zt := I11 + I12 + I13,

P+z := s2λ2ξ2xα+2z + (xαzx)x + sσtz := I21 + I22 + I23

and

G = e−sσh − sλ2ξxα+2z − (α + 1)sλξxαz.

From (3.1) one has

∥P−z∥2
2 + ∥P+z∥2

2 + 2((P−z, P+z)) = ∥G∥2
2. (3.2)

Now let us estimate ((P−z, P+z)). We have that

((I11, I21)) = −2s3λ4
∫∫

Q
ξ3x2α+4|z|2 dx dt,

((I12, I21)) = s3λ3
∫∫

Q
ξ3x2α+3(|z|2)x dx dt

= 3s3λ4
∫∫

Q
ξ3x2α+4|z|2 dx dt − (2α + 3)s3λ3

∫∫
Q

ξ3x2α+2|z|2 dx dt

and

((I13, I21)) =
1
2

s2λ2
∫∫

Q
ξ2xα+2(|z|2)t dx dt = −s2λ2

∫∫
Q

ξξtxα+2|z|2 dx dt.

Thus

((P−z, I21)) = s3λ4
∫∫

Q
ξ3x2α+4|z|2 dx dt − (2α + 3)s3λ3

∫∫
Q

ξ3x2α+2|z|2 dx dt

− s2λ2
∫∫

Q
ξξtxα+2|z|2 dx dt.
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Since |ξξt| ≤ Cξ3, for λ0 and s0 large enough, we can deduce that

((P−z, I21)) ≥ s3λ4
∫ T

0

[∫ δ

0
ξ3x2α+4|z|2 dx +

∫ 1

δ
ξ3x2α+4|z|2 dx

]
dt

−Cs3λ3
(
(2α + 3) +

C
λ0s0

) ∫∫
Q

ξ3|z|2 dx dt

≥ s3λ4
∫ T

0

∫ 1

δ
ξ3x2α+4|z|2 dx dt − Cs3λ3

∫∫
Q

ξ3|z|2 dx dt

≥ δ2α+4s3λ4
∫ T

0

∫ 1

δ
ξ3|z|2 dx dt − Cs3λ3

∫∫
Q

ξ3|z|2 dx dt

≥ Cs3λ4
∫ T

0

∫ 1

δ
ξ3|z|2 dx dt − Cs3λ3

∫∫
Q

ξ3|z|2 dx dt

= Cs3λ4
∫∫

Q
ξ3|z|2 dx dt − Cs3λ4

∫ T

0

∫ δ

0
ξ3|z|2 dx dt

−Cs3λ3
∫∫

Q
ξ3|z|2 dx dt

≥ Cs3λ4
(

1 − 1
λ0

) ∫∫
Q

ξ3|z|2 dx dt − Cs3λ4
∫ T

0

∫ δ

0
ξ3|z|2 dx dt

≥ Cs3λ4
∫∫

Q
ξ3|z|2 dx dt − Cs3λ4

∫ T

0

∫ δ

0
ξ3|z|2 dx dt.

(3.3)

Note that C depends on δ and α, where δ ∈ (0, d) is a fixed number as before.
Furthermore,

((I11, I23)) = −2s2λ2
∫∫

Q
ξσtxα+2|z|2 dx dt,

((I12, I23)) = s2λ
∫∫

Q
ξσtxα+1(|z|2)x dx dt

= s2λ2
∫∫

Q
ξ(σt + ξt)xα+2|z|2 dx dt − (α + 1)s2λ

∫∫
Q

ξσtxα|z|2 dx dt

and
((I13, I23)) =

s
2

∫∫
Q

σt(|z|2)t dx dt = − s
2

∫∫
Q

σtt|z|2 dx dt.

Thus

((P−z, I23)) =− s2λ2
∫∫

Q
ξ(ξt + σt)xα+2|z|2 dx dt − (α + 1)s2λ

∫∫
Q

ξσtxα|z|2 dx dt

− s
2

∫∫
Q

σtt|z|2 dx dt.

We can see that |ξt|, |σt| ≤ Cξ2 and |σtt| ≤ Cξ3. Hence, from (3.3), we have

((P−z, I21 + I23)) ≥ Cs3λ4
∫∫

Q
ξ3|z|2 dx dt − Cs3λ4

∫ T

0

∫ δ

0
ξ3|z|2 dx dt − Cs2λ2

∫∫
Q

ξ3|z|2 dx dt

−C(α + 1)s2λ
∫∫

Q
ξ3|z|2 dx dt − C

s
2

∫∫
Q

ξ3|z|2 dx dt

≥ Cs3λ4
(

1 − 1
s0λ2

0
− 1

s0λ3
0
− 1

s2
0λ4

0

) ∫∫
Q

ξ3|z|2 dx dt

−Cs3λ4
∫ T

0

∫ δ

0
ξ3|z|2 dx dt.
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Therefore, for λ0 and s0 large enough, we have

((P−z, I21 + I23)) ≥ Cs3λ4
∫∫

Q
ξ3|z|2 dx dt − Cs3λ4

∫ T

0

∫ δ

0
ξ3|z|2 dx dt. (3.4)

Moreover, we have that

((I11, I22)) = −2sλ2
∫∫

Q
ξxα+2z(xαzx)x dx dt

= 2sλ2
∫∫

Q
[−λξx2α+3zzx + (α + 2)ξx2α+1zzx + ξx2α+2|zx|2] dx dt

= sλ3
∫∫

Q
ξ[−λx2α+4 + (2α + 3)x2α+2]|z|2 dx dt

−(α + 2)sλ2
∫∫

Q
ξ[−λx2α+2 + (2α + 1)x2α]|z|2 dx dt + 2sλ2

∫∫
Q

ξx2α+2|zx|2 dx dt

and

((I13, I22)) =
∫∫

Q
zt(xαzx)x dx dt = −

∫∫
Q

z(xαztx)x dx dt =
∫∫

Q
xαzxzxt dx dt

=
1
2

∫∫
Q
(xα|zx|)t dx dt = 0.

Thus
((I11 + I13, I22)) ≥ −Csλ4

∫∫
Q

ξ3|z|2 dx dt + 2sλ2
∫∫

Q
ξx2α+2|zx|2 dx dt. (3.5)

On the other hand

2sλ2
∫∫

Q
ξx2α+2|zx|2 dx dt = 2sλ

∫ T

0

[∫ δ

0
ξx2α+2|zx|2 dx +

∫ 1

δ
ξx2α+2|zx|2 dx

]
dt

≥ 2sλδα+2
∫ T

0

∫ T

δ
ξxα|zx|2 dx dt

= Csλ2
∫∫

Q
ξxα|zx|2 dx dt − Csλ2

∫ T

0

∫ δ

0
ξxα|zx|2 dx dt.

Hence, from (3.5) we deduce that

((I11 + I13, I22)) ≥ Csλ2
∫∫

Q
ξxα|zx|2 dx dt − Csλ2

∫ T

0

∫ δ

0
ξxα|zx|2 dx dt − Csλ4

∫∫
Q

ξ3|z|2 dx dt.

(3.6)
Finally, working as before we obtain

((I12, I22)) = 2sλ
∫∫

Q
ξxxαzx(xαzx)x dx dt = sλ

∫∫
Q

ξx(|xαzx|2)x dx dt

= sλ2
∫∫

Q
ξx2α+2|zx|2 dx dt − sλ

∫∫
Q

ξx2α|zx|2 dx dt + sλ
∫ T

0
ξ|zx(1, t)|2 dt

≥ Csλ2
∫∫

Q
ξxα|zx|2 dx dt − Csλ2

∫ T

0

∫ δ

0
ξxα|zx|2 dx dt.

Thus, from (3.6) we get

((P−z, I22)) ≥ Csλ2
∫∫

Q
ξxα|zx|2 dx dt − Csλ2

∫ T

0

∫ δ

0
ξxα|zx|2 dx dt − Csλ4

∫∫
Q

ξ3|z|2 dx dt.

(3.7)
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Combining (3.4) and (3.7) we obtain that

((P−z, P+z)) ≥ C
∫∫

Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt − C

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt.

Whence,

C
∫∫

Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

≤ 2((P−z, P+z)) + C
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt. (3.8)

From (3.2) and (3.8) we obtain

∥P−z∥2
2 + ∥P+z∥2

2 + C
∫∫

Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

≤ ∥P−z∥2
2 + ∥P+z∥2

2 + 2((P−z, P+z)) +
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

≤ ∥G∥2
2 +

∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt.

Hence, if we set C0 = 1/ min{1, C}, we have that

1
C0

(
∥P−z∥2

2 + ∥P+z∥2
2 +

∫∫
Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)
≤ ∥G∥2

2 +
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt,

whence

∥P−z∥2
2 + ∥P+z∥2

2 +
∫∫

Q
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

≤ C0

(
∥G∥2

2 +
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)
. (3.9)

Using (3.9) and the definitions of P−z and P+z one has

s−1
∫∫

Q
ξ−1|zt|2 dx dt ≤ s−1

∫∫
Q

ξ−1[|P−z|2 + 4s2λ4ξ2x2α+4|z|2 + 4s2λ2ξ2x2α+2|zx|2] dx dt

≤ s−1∥P−z∥2
2 + Csλ4

∫∫
Q

ξ2|z|2 dx dt + Csλ2
∫∫

Q
ξxα|zx|2 dx dt

≤ C
(
∥G∥2

2 +
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)
(3.10)

and

s−1
∫∫

Q
ξ−1|(xαzx)x|2 dx dt ≤ s−1

∫∫
Q

ξ−1[|P+z|2 + s4λ4ξ4x2α+4|z|2 + s2ξ3|z|2] dx dt

≤ s−1∥P+z∥2
2 + Cs3λ4

∫∫
Q

ξ3|z|2 dx dt + s
∫∫

Q
ξ2|z|2 dx dt

≤ C
(
∥G∥2

2 +
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)
. (3.11)
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Combining (3.9)–(3.11) we conclude that

∫∫
Q

[
s−1ξ−1(|zt|2 + |(xαzx)x|2) + sλ2ξxα|zx|2 + s3λ4ξ3|z|2

]
dx dt

≤ C
(
∥G∥2

2 +
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)
. (3.12)

On the other hand, from the definition of g one has

∥G∥2
2 ≤ ∥e−sσh∥2

2 + Cs2λ4
∫∫

Q
ξ2|z|2 dx dt.

Hence, for s0 large enough, (3.12) gives

∫∫
Q

[
s−1ξ−1(|zt|2 + |(xαzx)x|2) + sλ2ξxα|zx|2 + s3λ4ξ3|z|2

]
dx dt

≤ C
(
∥e−sσh∥2

2 +
∫ T

0

∫ δ

0
[s3λ4ξ3|z|2 + sλ2ξxα|zx|2] dx dt

)
. (3.13)

Now let us consider δ1 ∈ (δ, d) and take a cut off function ψ ∈ C∞([0, 1]) such that
0 ≤ ϕ ≤ 1, ψ = 1 in [0, δ] and ψ = 0 in [δ1, 1]. For any ϵ > 0 we have that

sλ2
∫ T

0

∫ δ

0
ξxα|zx|2 dx dt ≤ sλ2

∫ T

0

∫ δ1

0
ξψxα|zx|2 dx dt

=
∫ T

0

∫ δ1

0

[
sλ3ξψxα+1zxz − sλ2ξψ′xαzxz − sλ2ξψ(xαzx)xz

]
dx dt

≤ Cϵ−1s3λ4
∫ T

0

∫ δ1

0
ξ3|z|2 dx dt +

∫∫
Q
[s2λ4ξ2|z|2 + λ2xα|zx|2] dx dt

+ ϵs−1
∫∫

Q
ξ−1|(xαzx)x|2 dx dt.

Hence, taking ϵ small enough and s0 large enough, from (3.13) we conclude that

∫∫
Q

[
s−1ξ−1(|zt|2 + |(xαzx)x|2) + sλ2ξxα|zx|2 + s3λ4ξ3|z|2

]
dx dt

≤ C
(
∥e−sσh∥2

2 + s3λ4
∫ T

0

∫ δ1

0
ξ3|z|2 dx dt

)
.

Using classical and well known arguments, we can coming back to the original variable v
and finish the proof. □

It is well known that a observability inequality for solutions of (1.7) leads to Theorem 1.3.
So, it is sufficient to prove the following inequality:

Proposition 3.1 (Observability inequality). Assume (1.2) and (1.3). There exists a constant C > 0
such that, for any vT ∈ L2(0, 1) and v solution of (1.7) with h = 0, one has

|v(·, 0)|22 ≤ C
∫∫

ωT

e−2sσξ3|v|2 dx dt, (3.14)

where we recall that ωT = ω × (0, T).
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Proof. From Theorem 1.2 we have that

s3λ4
∫∫

Q
e−2sσξ3|v|2 dx dt ≤ Cs3λ4

∫ T

0

∫
ω

e−2sσξ3|v|2 dx dt. (3.15)

Multiplying the equation in (1.7) by v and integrating on (0, 1) we obtain that

−1
2

d
dt
|v(·, t)|22 +

∫ 1

0
xα|vx|2 dx =

∫ 1

0
b1xα/2vxv dx −

∫ 1

0
b0|v|2 dx.

Hence

−1
2

d
dt
|v(·, t)|2 + 1

2

∫ 1

0
xα|vx|2 dx ≤ C|v(·, t)|2.

Thus
|v(·, 0)|22 ≤ e2Ct|v(·, t)|2 ∀t ∈ (0, T). (3.16)

Integrating (3.16) on (T/4, 3T/4) and using (3.15) we deduce that

|v(·, 0)|22 =
2
T

∫ 3T/4

T/4
|v(·, 0)|2 dt ≤ C

∫ 3T/4

T/4

∫ 1

0
|v|2 dx dt

≤ C
∫ 3T/4

T/4

∫ 1

0
s3λ4e−2sσξ3|v|2 dx dt ≤ C

∫ T

0

∫
ω

e−2sσξ3|v|2 dx dt.

4 The degenerate semilinear problem

As we have pointed out in the introduction, in [15] the authors proved a null controllability
result for (1.10) with α ∈ (0, 2). However, most of the arguments in that work does not depend
on α. Indeed, the only result in that paper that only works for α ∈ (0, 2) is an observability
estimate for system (1.1) of [6]. In (3.14), we give such an estimate that works for α ≥ 2. So,
the majority of the arguments of [15] can now be adapted to deal with (1.10) with α ≥ 2.
For readers convenience, we will reproduce their main guideline, but we will not present the
proof of the results.

Firstly, for each w ∈ L2(0, T; H1
α), let us set the following notations

b0[w](x, t) =
∫ 1

0
gs(x, t, λw(x, t), λwx(x, t)) dλ

and

b1[w](x, t) = x−α/2
∫ 1

0
gp(x, t, λw(x, t), λwx(x, t)) dλ.

From (1.11) we have

∥b0[w]∥∞ + ∥b1[w]∥∞ ≤ 2K ∀w ∈ L2(0, T; H1
α). (4.1)

Furthermore,

g(x, t, u, ux) = b0[u](x, t)u(x, t)+ xα/2b1[u](x, t)ux(x, t) ∀u ∈ L2(0, T; H1
α) and a.e. in Q. (4.2)

As we will see, from (4.2) we can develop a fixed point argument to prove Theorem 1.4.
For now, let us assume that u0 ∈ H1

α and for each ε > 0 consider the functional Jε : L2(Q) →
R given by

Jε(h) =
1
2

∫ T

0

∫
ω
|h|2 dx dt +

1
2ε

∫ 1

0
|u(x, T)|2 dx,

where u is the solution of (1.1) with f = h. The first step is to establishes an approximate null
controllability result for the linear system:
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Proposition 4.1. Assume that u0 ∈ H1
α and (1.3). Then, there exists C > 0 (that does not depend on

ε) and hε ∈ L2(Q) such that

1. Jε(hε) ≤ Jε(h) ∀h ∈ L2(Q);

2.
∫ T

0

∫
ω |hε|2 dx dt ≤ C|u0|2;

3. if uε is the solution of (1.1) with f = hε, then |uε(·, T)| ≤ ε.

The idea of the proof of Proposition 4.1 is to verify that the minimum point of Jε is precisely
hε = −φε1ω, where φε is the solution of the adjoint system of (1.1), with final datum φε(x, T) =
1
ε uε(x, T). Then, it is possible to work with the adjoint equation to obtain the estimates given
in the items 2 and 3.

Now, a standard argument based on the Schauder’s fixed point theorem can be applied to
obtain an approximate null controllability result for the semilinear system (1.10).

Proposition 4.2. Assume that u0 ∈ H1
α and (1.3). Then, for each ε > 0 there exists hε ∈ L2(Q) and

C > 0 (that does not depends on ε) such that:

1.
∫ T

0

∫
ω |hε|2 dx dt ≤ C|u0|2;

2. if uε is the solution of (1.10) with f = hε, then |uε(·, T)| ≤ ε.

As we have said at the beginning of this section, the detailed proofs of Propositions 4.1
and 4.2 can be found in [15]. Proposition 4.2 allows us to prove a null controllability result for
the semilinear system (1.10), with the initial data in H1

α.

Proposition 4.3. Assume that u0 ∈ H1
α and (1.3). Then the system (1.10) is null controllable.

Proof. Given ε > 0, let us take the control hε and the solution uε given by Proposition 4.2.
From Proposition 4.2-1, there exists h̄ ∈ L2(Q) such that hε ⇀ h̄ in L2(Q). Furthermore,
using Proposition 4.2-1 and the energy estimates given in Theorem 1.2, we can deduce that
|uε|2N ≤ C|u0|2. Thus, there also exists ū ∈ N such that uε ⇀ ū in N . From the compact
embedding N ↪→ M, we conclude that uε → ū in M. Then ū is the solution of (1.10) with
f = h̄ and, from Proposition 4.2-2, ū(·, T) = 0.

Finally, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let u1 be the weak solution of the following system
ut − (xαux)x + g(x, t, u, ux) = 0 in (0, 1)× (0, T0),

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T0),

u(x, 0) = u0(x) in (0, 1),

(4.3)

where T0 ∈ (0, T).
Now, let us consider the following system

ut − (xαux)x + g(x, t, u, ux) = h1ω in (0, 1)× (T0/2, T)

u(1, t) = 0 and (xαux)(0, t) = 0 in (T0/2, T),

u(x, T0/2) = u1(x, T0/2) in (0, 1).

(4.4)
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From Theorem 1.2, u1(·, T0/2) ∈ H1
α. Hence, from Proposition 4.3, there exists a control

h1 ∈ L2((0, 1)× (T0/2, T)) such that the associated weak solution u2 of (4.4) satisfies u2(·, T) =
0 in (0, 1). Now we can take u ∈ C([0, T]; L2(Q)) and h ∈ L2(Q) given by

u(x, t) =

{
u1(x, t), if t ∈ [0, T0/2],

u2(x, t), if t ∈ [T0/2, T],
and h(x, t) =

{
0, if t ∈ [0, T0/2],

h1(x, t), if t ∈ [T0/2, T].

It is easy to see that u ∈ M is the solution of (1.10), with f = h, satisfying u(·, T) = 0.

5 The degenerate nonlocal problem

In this section, we will obtain the local null controllability for the problem (1.12). The proof is
based on a meticulous inverse function argument, as specified later on.

5.1 Functional spaces

The remainder of this section is devoted to a brief explanation about the most important
strategies to prove Theorem 1.5. At this point, Lyusternik’s inverse mapping theorem (see [2, 13],
for instance) is our main tool. Let us recall its statement:

Theorem 5.1 (Lyusternik). Let E and F be two Banach spaces, consider H ∈ C1(E, F) and put
η0 = H(0). If H′(0) ∈ L(E, F) is onto, then there exist r > 0 and H̃ : Br(η0) ⊂ F → E such that

H(H̃(ξ)) = ξ, ∀ξ ∈ Br(η0),

which means that H̃ is a right inverse of H in Br(η0). In addition, there exists K > 0 such that

∥H̃(ξ)∥E ≤ K∥ξ − η0∥F , ∀ξ ∈ Br(η0).

To be more precise, let us indicate how the proof of Theorem 1.5 can be seen as an appli-
cation of Theorem 5.1. Even though we have not set the desired Hilbert spaces E and F yet,
let us put

H(u, h) = (H1(u, h), H2(u, h)), (5.1)

where

H1(u, h) := ut − ℓ

(∫ 1

0
u
)
(aux)x − f χω and H2(u, h) := u(0, ·).

We should notice that, for u0 ∈ H1
α, the first and the last relations in (1.12) are satisfied if, and

only if, there exists (u, h) ∈ E solving

H(u, h) = (0, u0).

From this point, we realize that, among other properties, E and F must be built:

• considering the boundary conditions mentioned in (1.12);

• having some imposition on its elements assuring that u(·, T) ≡ 0. It is done having in
mind some modified weights which come from (5.5). We remark that these new weights
exponentially explode at t = T;
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• having in mind that we want H′(0, 0) ∈ L(E, F) to be onto.

In fact, we can see that

H′(0, 0)(u, h) = (ut − ℓ(0)(aux)x − f χω, u(0)).

Recalling we have assumed that ℓ(0) = 1, H′(0, 0) ∈ L(E, F) is onto if, and only if, given
any (g, u0) ∈ F, the linear system

ut − (xαux)x = f χω + g, (x, t) ∈ Q;

u(1, t) = (xαux)(0, t) = 0, in (0, T),

u(x, 0) = u0(x), x ∈ (0, 1),

(5.2)

is globally null-controllable at T > 0, where f ∈ L2(ω × (0, T)) is the control function.
Hence, it seems that E should contain some information involving the well-posedness
(and additional regularity) of the linear system (5.2).

From now on, we will be focused on explicitly describing the spaces E and F, as well as, their
Hilbertian norms. To do so, we consider the useful notation below.

Definition 5.2. Let δ = δ(x, t) and f = f (x, t) be two real-valued measurable functions defined
in Q, where δ is non-negative. We say that f belongs to L2(Q; δ) if

√
δ f ∈ L2(Q). Moreover, the

natural norm of L2(Q; δ) will be denoted by ∥ · ∥
δ
, that is,

∥ f ∥
δ
=

(∫ T

0

∫ 1

0
δ f 2 dx dt

)1/2

for each f ∈ L2(Q; δ).

In order to prove the global null-controllability for the linearized system (5.2), we first
need to establish a Carleman estimate with new weight functions that do not vanish at t = 0.
Namely, consider a function m ∈ C∞([0, T]) satisfying

m(t) ≥ t4(T − t)4, t ∈ (0, T/2];

m(t) = t4(T − t)4, t ∈ [T/2, T] ;

m(0) > 0,

and define

τ(t) :=
1

m(t)
, ζ(x, t) := τ(t)eλ(1+η(x)) and A(x, t) := τ(t)

(
e2λ − eλ(1+η(x))

)
, (5.3)

where (t, x) ∈ [0, T)× [0, 1] (see Remark 5.5).
Let us note that the adjoint system associated to (5.2) is

−vt − (xαvx)x = h in Q,

v(1, t) = (xαvx)(0, t) = 0 in (0, T),

v(x, T) = vT(x) in (0, 1),

(5.4)

where h ∈ L2(Q) and vT ∈ L2(0, 1). Next, we state a very convenient Carleman estimate
verified by any solution of (5.4).
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Proposition 5.3. Assuming (1.3), there exist C > 0, λ0 > 0 and s0 > 0 such that, for any s ≥ s0,
λ ≥ λ0 and vT ∈ L2(Q), the corresponding solution v to (5.4) satisfies∫ T

0

∫ 1

0
e−2sA

(
sλ2ζxα|vx|2 + s3λ4ζ2|v|2

)
dx dt

≤ C
(∫ T

0

∫ 1

0
e−2sA|h|2 dx dt + s3λ4

∫ T

0

∫
ω

e−2sAζ6|v|2 dx dt
)

. (5.5)

The obtainment of (5.5) is a consequence of (1.9), by following the same steps detailed in
[12, Proposition 4].

The factors multiplying v in (5.5) inspire the definition of the new weight functions

ρi = esAζ−i, where i = 0, 1, 2, 3. (5.6)

As a matter of fact, ρ−2
1

and ρ−2
3

appears in the two integrals involving v, while ρ2 was chosen
in order to satisfies ρ2

2
= ρ1 ρ3 . Besides, we have ρ3 ≤ Cρ2 ≤ Cρ1 ≤ Cρ0 and, since ρi ≥ CT > 0

for all i = 1, 2, 3, we also know that L2(Q; ρ2
i
) ↪→ L2(Q). Here, for completeness, let us state

the expected observability inequality which can be derived from (5.5).

Corollary 5.4. Assuming (1.3), there exist C > 0, λ0 > 0 and s0 > 0 with the following property:
given s ≥ s0, λ ≥ λ0 and vT ∈ L2(Q), then the corresponding solution v to (5.4), with h ≡ 0, satisfies

|v(·, 0)|22 ≤ Cs3λ4
∫ T

0

∫
ω

ρ−2
3
|v|2 dx dt. (5.7)

Remark 5.5. In (5.3), we have redefined the functions given in (1.8), replacing θ = θ(t), which
satisfies limt→0+ θ(t) = +∞, by τ = τ(t) fulfilling limt→0+ τ(t) = τ(0) > 0. That is a crucial
point in order to guarantee that (1.12) is locally null-controllable at T > 0, as stated in Theorem
1.5. Let us clarify this point: in fact, the definition of each ρi, with i ∈ {1, 2, 3}, is based on
those weights which appear in (5.5), however, it comes from (5.3) that ρ1(t) → +∞, as t → T−,
and ρ1(0) > 0 (since m(0) > 0). Because of that, u(x, T) = 0 for any u ∈ L2(Q; ρ2

1
). Hence, it

seems reasonable to require that, if (u, h) ∈ E, then u belongs to L2(Q; ρ2
1
).

Finally, we are ready to define E and F. Let us consider

U := H1(0, T; L2(0, 1)) ∩ L2(0, T; H2
α) ∩ C0([0, T]; H1

α)

and put Lu := ut − (xαux)x for each u ∈ U . Under all these previous notations, we set the
Hilbert spaces

E :=
{
(u, h) ∈ U × L2(ωT; ρ2

3
) : u, (Lu − f χω) ∈ L2(Q; ρ2

1
)

}
,

and
F := L2(Q; ρ2

1
)× H1

α,

equipped with the norms

∥(u, h)∥E :=
(
∥u∥2

ρ2
1
+ ∥h∥2

ρ2
3
+ ∥Lu − f χω∥2

ρ2
1
+ ∥u(0, ·)∥2

H1
α

)1/2
,

and
∥(g, v)∥F :=

(
∥g∥2

ρ2
1
+ ∥v∥2

H1
α

)1/2
,

respectively. The remainder of this work is devoted to check that the mapping H : E → F
accomplishes everything which is required in order to apply Theorem 5.1.
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5.2 Global null-controllability for the linearized system

The goal of this section is to prove a global null-controllability result for the linear system
(5.2) and establish some important additional estimates. As previously discussed, the global
null-controllability will guarantee that H′(0, 0) is surjective, which is required by Lyusternik’s
theorem, and the additional estimates will allow us to prove that H is well defined and of class
C1. As the first step here, let us define what we mean by a solution to the problem (5.2).

Definition 5.6. Given u0 ∈ H1
α, f ∈ L2(ωT) and g ∈ L2(Q), we say that u ∈ L2(Q) is a solution

by transposition of (5.2) if, for each (h, vT) ∈ L2(Q)× L2(0, 1), we have∫ T

0

∫ 1

0
uh dx dt =

∫ 1

0
u0v(x, 0) dx +

∫ T

0

∫ 1

0
( f 1ω + g)v dx dt,

for any v solution to (5.4).

The main result of this section is the following:

Proposition 5.7. Assume (1.3). If u0 ∈ H1
α and g ∈ L2(Q; ρ2

1
), then there exists a control f ∈

L2(ωT; ρ2
3
) to (5.2), with associated state u ∈ L2(Q; ρ2

1
), such that

∥u∥2
ρ2

1

+ ∥ f ∥2
ρ2

3

≤ C
(
∥u0∥2

H1
α

+ ∥g∥2
ρ2

1

)
.

In particular, it guarantees that (5.2) is globally null-controllable. Furthermore, we have

xα/2ux ∈ L2(Q; ρ2
2
), ut, (xαux)x ∈ L2(Q; ρ2

3
)

and there exists C > 0 such that

∥xα/2ux∥2
ρ2

2

+ ∥ut∥2
ρ2

3

+ ∥(xαux)x∥2
ρ2

3

≤ C
(
∥u∥2

ρ2
1

+ ∥hχω∥2
ρ2

3

+ ∥g∥2
ρ2

1

+ ∥u0∥2
H1

α

)
. (5.8)

Proof. Let us define the set

P0α = {w ∈ C2(Q̄); w(1, t) = xαwx(0, t) = 0, t ∈ (0, T)}.

Recalling the definition of L, we can see that its formal adjoint is given by L∗v = −vt −
(xαvx)x. Hence, analyzing the right-hand side of (5.5), we can define the following symmetric,
positive defined bilinear form

a(w1, w2) =
∫ T

0

∫ 1

0
ρ−2

0
L∗w1L∗w2 dx dt +

∫ T

0

∫ 1

0
ρ−2

3
w1w21ω dx dt, ∀w1, w2 ∈ P0α.

Thus, let us denote by Pα the completion of P0α with respect to the inner product defined by
a. Hence, Pα is a Hilbert space with norm given by ∥v∥Pα

= a(v, v)1/2.
Now, let us define the continuous linear functional L : L2(Q) → R given by

Lv =
∫ 1

0
u0v(x, 0) dx +

∫ T

0

∫ 1

0
gv dx dt.

In this case, Lax–Milgram theorem yields v̂ ∈ Pα such that

a(v̂, v) = Lv, ∀v ∈ Pα,
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that is,∫ T

0

∫ 1

0
ρ−2

0
L∗v̂L∗v2 dx dt +

∫ T

0

∫ 1

0
ρ−2

3
v̂v1ω dx dt =

∫ 1

0
u0v(x, 0) dx +

∫ T

0

∫ 1

0
gv dx dt, ∀v ∈ Pα.

According to Definition 5.6, it means that f := −ρ−2
3

v̂1ω is a control and u := ρ−2
0
L∗v̂

the associated state to the problem (5.2). Indeed, for any (h, vT) ∈ L2(Q)× L2(0, 1), if v is a
solution to (5.4), then∫ T

0

∫ 1

0
uh dx dt =

∫ 1

0
u0v(x, 0) dx +

∫ T

0

∫ 1

0
( f 1ω + g)v dx dt.

Furthermore, from Carleman and observability inequalities, given in (5.5) and (5.7) respec-
tively, we have

∥v̂∥2
Pα
= Lv̂ ≤ ∥u0∥∥v̂(·, 0)∥+ ∥g∥

ρ2
1

(∫ T

0

∫ 1

0
ρ−2

1
v̂2 dx dt

)1/2

≤
(
∥u0∥2 + ∥g∥2

ρ2
1

)1/2 (
∥v̂(·, 0)∥2 +

∫ T

0

∫ 1

0
ρ−2

1
v̂2 dx dt

)1/2

≤ C
(
∥u0∥2 + ∥g∥2

ρ2
1

)1/2

a(v̂, v̂)1/2

= C
(
∥u0∥2 + ∥g∥2

ρ2
1

)1/2

∥v̂∥Pα
,

whence

∥v̂∥Pα
≤ C

(
∥u0∥2 + ∥g∥2

ρ2
1

)1/2

.

Using the explicit expressions f = −ρ−2
3

v̂1ω and u = ρ−2
0
L∗v̂, as well as, recalling the norm

∥ · ∥Pα
, we easily get

∥u∥2
ρ2

1

+ ∥ f ∥2
ρ2

3

≤ C
∫ T

0

∫ 1

0
ρ2

0
u2 dx dt +

∫ T

0

∫ 1

0
ρ2

3
f 2 dx dt

=
∫ T

0

∫ 1

0
ρ−2

0
|L∗v̂|2 dx dt +

∫ T

0

∫ 1

0
ρ−2

3
v̂21ω dx dt

≤ C
(
∥u0∥2 + ∥g∥2

ρ2
1

)
,

as desired.
At this moment, we would like to say that the obtainment of (5.8) will be left for the two

subsequent lemmas.

Lemma 5.8. Assume (1.3). Given u0 ∈ H1
α and g ∈ L2(Q; ρ2

1
), if (u, h) ∈ U × L2(Qω; ρ2

3
) is a

solution to (5.2), then xα/2ux ∈ L2(Q; ρ2) and there exists C > 0 such that

∥xα/2ux∥2
ρ2

2

≤ C
(
∥u∥2

ρ2
1

+ ∥hχω∥2
ρ2

3

+ ∥g∥2
ρ2

1

+ ∥u0∥2
H1

α

)
.

Proof. Multiplying the equation in (5.2) by ρ2
2
u, integrating in [0, 1] and using the two relations

1
2

d
dt

∫ 1

0
ρ2

2
u2 dx =

∫ 1

0
ρ2

2
utu dx +

∫ 1

0
ρ2(ρ2)tu2 dx
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and ∫ 1

0
ρ2

2
(xα/2ux)xu dx = −2

∫ 1

0
ρ2(ρ2)xxαuux dx −

∫ 1

0
ρ2

2
xαu2

x dx,

we obtain

1
2

d
dt

∫ 1

0
ρ2

2
u2 dx +

∫ 1

0
ρ2

2
xαu2

x dx = −
∫ 1

0
ρ2

2
cu2 dx +

∫ 1

0
ρ2

2
uhχω dx +

∫ 1

0
ρ2

2
gu dx

+
∫ 1

0
ρ2(ρ2)tu2 dx − 2

∫ 1

0
ρ2(ρ2)xxαuux dx

= I1 + I2 + I3 + I4 + I5. (5.9)

Now, using ρi ≤ Cρj , for i ≥ j, and ρ1 ρ3 = ρ2
2
, we obtain

I1 ≤ C
∫ 1

0
ρ2

1
|u|2 dx,

I2 ≤ C
(

1
2

∫ 1

0
ρ2

3
|hχω|2 dx +

1
2

∫ 1

0
ρ2

1
|u|2 dx

)
and

I3 ≤ C
(

1
2

∫ 1

0
ρ2

1
|g|2 dx +

1
2

∫ 1

0
ρ2

1
|u|2 dx

)
.

Let us estimate I4. Firstly, we will rewrite A as A(t, x) = ς(t, x)µ̄(x), where

µ̄(x) := (eMλ − eλ(1+η(x)))/µ(x).

Secondly, note that

ρ2(ρ2)t = esAς−2(sesAςtµ̄ς−2 − 2esAς−3ςt) = esAς−2(sς−2µ̄ − 2ς−3)ςt

Then, for all t ∈ [0, T],
|ρ2(ρ2)t| ≤ Cρ2

1
ς−2|ςt| ≤ Cρ2

1
,

whence

I4 ≤ C
∫ 1

0
ρ2

1
|u|2 dx.

Now, using

|(ρ2)x|2xαu2 ≤ Ce−2sAς−2
∣∣∣ς−2 + ς−4

∣∣∣ |ς2
x|xαu2 ≤ Cρ2

1
u2,

we obtain

I5 ≤ 2
∫ 1

0
|ρ2 xα/2ux||(ρ2)xxα/2u| dx ≤ 1

2

∫ 1

0
ρ2

2
xαu2

x dx + 2
∫ 1

0
|(ρ2)x|2xαu2 dx

≤ 1
2

∫ 1

0
ρ2

2
xαu2

x dx + C
∫ 1

0
ρ2

1
u2 dx.

Hence, (5.9) gives us

d
dt

∫ 1

0
ρ2

2
|u|2 dx +

∫ 1

0
ρ2

2
xα|ux|2 dx ≤ C

(∫ 1

0
ρ2

1
|u|2 dx +

∫ 1

0
ρ2

3
|hχω|2 dx +

∫ 1

0
ρ2

1
|g|2 dx

)
.

Integrating in time, the desired result follows.
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Lemma 5.9. Assume (1.3). Given u0 ∈ H1
α and g ∈ L2(Q; ρ2

1
), if (u, h) ∈ U × L2(Qω; ρ2

3
) is a

solution to (5.2), then ut, (aux)x ∈ L2(Q; ρ2
3
) and there exists C > 0 such that

∥ut∥2
ρ2

3

+ ∥(xαux)x∥2
ρ2

3

≤ C
(
∥u∥2

ρ2
1

+ ∥hχω∥2
ρ2

3

+ ∥g∥2
ρ2

1

+ ∥u0∥2
H1

α

)
.

Proof. In the first step, we will estimate the first term of left side of the inequality. Multiplying
equation in (5.2) by ρ2

3
ut and integrating in [0, 1], we have

∫ 1

0
ρ2

3
u2

t dx =
∫ 1

0
ρ2

3
uthχω dx +

∫ 1

0
ρ2

3
gut dx −

∫ 1

0
c(x, t)ρ2

3
uut dx +

∫ 1

0
ρ2

3
(xαux)xut dx

=: I1 + I2 − I3 + I4. (5.10)

Using Young’s inequality with ε and ρi ≤ Cρj , for i ≥ j, we obtain

I1 ≤
∫ 1

0
ρ2

3
|hχω||ut| dx ≤ ε

∫ 1

0
ρ2

3
|ut|2 dx +

1
4ε

∫ 1

0
ρ2

3
|hχω|2 dx,

I2 ≤
∫ 1

0
ρ2

3
|gut| dx ≤ ε

∫ 1

0
ρ2

3
|ut|2 dx +

1
4ε

∫ 1

0
ρ2

3
|g|2 dx ≤ ε

∫ 1

0
ρ2

3
|ut|2 dx + C

∫ 1

0
ρ2

1
|g|2 dx

and

−I3 ≤
∫ 1

0
|c(t, x)|ρ2

3
|uut| dx ≤ ε

∫ 1

0
ρ2

3
u2

t dx + C
∫ 1

0
ρ2

1
u2 dx.

Now, integrating I4 by parts, we can see that

I4 = ρ2
3
xαuxut

∣∣x=1
x=0 −

∫ 1

0
(ρ2

3
ut)xxαux dx

= −2
∫ 1

0
ρ3(ρ3)xxαutux dx − 1

2
d
dt

∫ 1

0
ρ2

3
xαu2

x dx +
1
2

∫ 1

0
(ρ2

3
)txαu2

x dx. (5.11)

If we set

I41 :=
∫ 1

0
ρ3(ρ3)xxαutux dx and I42 :=

∫ 1

0
(ρ2

3
)txαu2

x dx,

we have, ∫ 1

0
ρ2

3
|ut|2 dx +

1
2

d
dt

∫ 1

0
ρ2

3
xα|ux|2 dx = I1 + I2 − I3 − 2I41 +

1
2

I42. (5.12)

Since |(ρ3)x| ≤ Cρ2 and |(ρ2
3
)t| ≤ Cρ2

2
, observe that

|ρ3(ρ3)xxαuxut| ≤ C|ρ3 ut||ρ2 xα/2ux|

and
(ρ2

3
)t| = 2|ρ3(ρ3)t| ≤ Cρ2

2
.

So that,

I41 ≤ 1
4

∫ 1

0
ρ2

3
u2

t dx + C
∫ 1

0
ρ2

2
xαu2

x dx

and

I42 ≤ C
∫ 1

0
ρ2

2
xαu2

x dx.
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Using the estimates obtained for I1, I2, I3, I41 and I42, the relation (5.12) provides

∫ 1

0
ρ2

3
u2

t dx +
1
2

d
dt

∫ 1

0
ρ2

3
xαu2

x dx

≤ C
(∫ 1

0
ρ2

3
|hχω|2 dx +

∫ 1

0
ρ2

1
g2 dx +

∫ 1

0
ρ2

1
u2 dx +

∫ 1

0
ρ2

2
xαu2

x dx
)

,

and, consequently,∫ T

0

∫ 1

0
ρ2

3
u2

t dx ≤ C
(∫ T

0

∫ 1

0
ρ2

1
u2 dx +

∫ T

0

∫
ω

ρ2
3
h2 dx +

∫ T

0

∫ 1

0
ρ2

1
g2 + ∥u0∥2

H1
α

dx
)

. (5.13)

In the second part, we must estimate the term
∫ T

0

∫ 1
0 ρ2

3
|(xαux)x|2. Multiplying the equation

in (5.2) by −ρ2
3
(xαux)x and integrating in [0, 1], we take∫ 1

0
ρ2

3
|(xαux)x|2 dx = −

∫ 1

0
ρ2

3
hχω(xαux)x dx −

∫ 1

0
ρ2

3
g(xαux)x dx

+
∫ 1

0
c(x, t)ρ2

3
u(xαux)x dx +

∫ 1

0
ρ2

3
ut(xαux)x dx

= −J1 − J2 + J3 + I4.

As earlier in this proof, applying Young’s inequality with ε, we obtain

J1 ≤
∫ 1

0
ρ2

3
|hχω||(xαux)x| dx ≤ ε

∫ 1

0
ρ2

3
|(xαux)x|2 dx +

1
4ε

∫ 1

0
ρ2

3
|hχω|2 dx,

J2 ≤
∫ 1

0
ρ2

3
|g||(xαux)x| dx ≤ ε

∫ 1

0
ρ2

3
|(xαux)x|2 dx +

1
4ε

∫ 1

0
ρ2

1
g2 dx,

J3 ≤ C
(

ε
∫ 1

0
ρ2

3
|(xαux)x|2 dx +

1
4ε

∫ 1

0
ρ2

1
u2 dx

)
.

From (5.11) and (5.13), we achieve

∫ 1

0
ρ2

3
|(xαux)x|2 dx +

1
2

d
dt

∫ 1

0
ρ2

3
xα|ux|2 dx

≤ C
(∫ 1

0
ρ2

3
|hχω|2 dx +

∫ 1

0
ρ2

1
|g|2 dx +

∫ 1

0
ρ2

1
|u|2 dx +

∫ 1

0
ρ2

2
xα|ux|2 dx

)
Integrating in time, we conclude the proof.

5.3 Local null-controllability for the nonlinear system

In this section, our goal is to prove Theorem 1.5, which is based on Theorem 5.1. Indeed,
it will allow us to conclude that H : E → F, given in (5.1), has a right inverse mapping
defined in a small ball B ⊂ F = L2(Q; ρ2

1)× H1
a . Since Theorem 5.7 already guarantees that

H′(0, 0) ∈ L(E, F) is onto, it remains to verify that

• H is well-defined;

• H ∈ C1(E, F).

We will clarify that in Propositions 5.10 and 5.12.
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Proposition 5.10. The mapping H : E → F, given in (5.1), is well defined.

Proof. Given (u, h) ∈ E, we intend to prove that H(u, h) belongs to L2(Q; ρ2
1
) × H1

α. From
definition of E, it is clear that H2(u, h) = u(0, ·) ∈ H1

α. Let us see that H1(u, h) ∈ L2(Q; ρ2
1
).

In fact, since ℓ(0) = 1 and ℓ is Lipschitz continuous, we have

∫ T

0

∫ 1

0
ρ2

1
|H1(u, h)|2 dx dt =

∫ T

0

∫ 1

0
ρ2

1

∣∣∣∣ut − ℓ

(∫ 1

0
u dx

)
(xαux)x − hχω

∣∣∣∣2 dxdt

≤ 4
∫ T

0

∫ 1

0
ρ2

1
|L(u)− hχω|2 dx dt + 4

∫ T

0

∫ 1

0
ρ2

1

∣∣∣∣[ℓ(∫ 1

0
u dx

)
− ℓ(0)

]
(xαux)x

∣∣∣∣2 dx dt

≤ 4∥(u, h)∥2
E
+ 4

∫ T

0

∫ 1

0
ρ2

1

(∫ 1

0
u dx

)2

|(xαux)x|2 dx dt.

Hence, we just need to prove that the last integral is bounded from above by ∥(u, h)∥2
E
.

Indeed, note that

∫ T

0

∫ 1

0
ρ2

1

(∫ 1

0
u dx

)2

|(xαux)x|2 dx dt =
∫ T

0

∫ 1

0
ρ2

1
ρ−2

3

(∫ 1

0
u dx

)2

ρ2
3
|(xαux)x|2 dx dt

≤ C sup
[0,T]

(
τ4
(∫ 1

0
u dx

)2
) ∫ T

0

∫ 1

0
ρ2

3
|(xαux)x|2 dx dt

≤ C sup
[0,T]

(
τ4
(∫ 1

0
u dx

)2
)
∥(u, h)∥2

E

≤ C∥(u, h)∥4
E
,

where the last inequality is a consequence of Lemma 5.11, since τ4 ≤ CeMs/m(t).

Lemma 5.11. Given s > 0, there exists Ms > 0 such that

sup
t∈[0,T]

{
e

Ms
m(t)

(∫ 1

0
u dx

)2
}

≤ C∥(u, h)∥2
E
,

for all (u, h) ∈ E, where m = m(t) is the the function defined in (5.3).

Proof. Firstly, for s > 0, let us consider (u, h) ∈ E and the function q : [0, T] → R

q(t) := e
Ms

m(t)

(∫ 1

0
u(x, t)dx

)2

,

for all t ∈ [0, T], where Ms > 0 will be specified later.

Claim 1: Given s > 0, there exist Ms > 0 and C > 0 such that

e
Ms

m(t) ≤ Cρ2
1
.

Indeed, for any K > 0, we know that

e
−k
m ≤ 2

k2 [m(t)]2 for all t ∈ [0, T].
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In particular, taking k = sβλ and Ms =
sβλ

2 , we obtain

ρ2
1
= e2sAς−2 ≥ e−2λm2e2sA ≥ e−2λk2

2
e2sA− k

m = Cλ,se
2sβλ−k

m = Cλ,se
2Ms

m , (5.14)

where Cλ,s =
e−2λs2β2

λ
2 .

Claim 2: There exist K1 = K1(λ, s) > 0 and K2 = K2(λ, s) > 0, such that

ρ2
3

m2 ≤ K1ρ2
1

and e
2Ms

m ≤ K2ρ2
3
. (5.15)

As a consequence, q ∈ H1(0, T) ↪→ C0([0, T]).
In fact, arguing as in Claim 1, we can get

ρ2
3

m4 =
e2sAτ−2

µ2 ≤
ρ2

1

µ6 ≤ K1ρ2
1

and

ρ2
3
=

e2sAm6

µ6 ≥ e−6λe2sA k6

6!
e
−k
m =

e−6λk6

6!
e

2sβλ−k
m =

1
K2

e
2Ms

m ,

where we have taken k = sβλ, Ms =
sβλ

2 and K2 = 6!
e−6λ(sβλ)6 . In this case,

∫ T

0
|q|2 dt ≤

∫ T

0

∫ 1

0
e

2Ms
m |u|2 dxdt ≤ 1

Cλ,s

∫ T

0

∫ 1

0
ρ2

1
|u|2 dxdt ≤ C∥(u, h)∥2

E

and ∫ T

0
|q′|2 dt ≤ C

(∫ T

0

∫ 1

0

M2
s (m′)2

m4 e
2Ms

m |u|2 dxdt +
∫ T

0

∫ 1

0
e

2Ms
m |ut|2 dxdt

)
≤ C

(∫ T

0

∫ 1

0

ρ2
3

m4 |u|
2 dxdt +

∫ T

0

∫ 1

0
ρ2

3
|ut|2 dxdt

)

≤ C
(∫ T

0

∫ 1

0
ρ2

1
|u|2 dxdt +

∫ T

0

∫ 1

0
ρ2

3
|ut|2 dxdt

)
≤ C∥(u, h)∥2

E,

following the desired result.

Proposition 5.12. The mapping H belongs to C1(E, F).

Proof. It is clear that H2 ∈ C1. We will prove that H1 has a continuous Gateaux derivative on
E. In fact, some well-known calculation allows us to see that the Gateaux derivative of H1 at
(u, h) ∈ E is given by

H′
1(u, h)(ū, h̄) := ūt − ℓ′

(∫ 1

0
u dx

) ∫ 1

0
ū dx (xαux)x − ℓ

(∫ 1

0
u dx

)
(xαūx)x − h̄χω,

for each (ū, h̄) ∈ E. We just need to prove that the Gateaux derivative H′
1 : E → L(E; L2(Q; ρ2

1
))

is continuous. On this purpose, given (u, h) ∈ E, let ((un, hn))∞
n=1 be a sequence in E such that
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∥(un, hn)− (u, h)∥E → 0. We must prove that ∥H′
1(u

n, hn)− H′
1(u, h)∥L(E;L2(Q;ρ2

1
)) → 0. In fact,

taking (ū, h̄) on the unit sphere of E, we can see that

∥(H′
1(u

n, hn)− H′
1(u, h))(ū, h̄)∥2

ρ2
1

=
∫ T

0

∫ 1

0
ρ2

1

∣∣∣∣− ℓ′
(∫ 1

0
un dx

) ∫ 1

0
ū dx (xαun

x)x − ℓ

(∫ 1

0
un dx

)
(xαūx)x dx dt

+ ℓ′
(∫ 1

0
u dx

) ∫ 1

0
ū dx (xαux)x + ℓ

(∫ 1

0
u dx

)
(xαūx)x dx dt

∣∣∣∣2
≤ C

∫ T

0

∫ 1

0
ρ2

1

(∫ 1

0
ū dx

)2 (
ℓ′
(∫ 1

0
un dx

))2

|(xα(un
x − ux))x|2 dx dt

+ C
∫ T

0

∫ 1

0
ρ2

1

(∫ 1

0
ū dx

)2 (
ℓ′
(∫ 1

0
un dx

)
− ℓ′

(∫ 1

0
u dx

))2

|(xαun
x)x|2 dx dt

+ C
∫ T

0

∫ 1

0
ρ2

1

(∫ 1

0
ū dx

)2 (
ℓ

(∫ 1

0
un dx

)
− ℓ

(∫ 1

0
u dx

))2

|(xαūx)x|2 dx dt.

Proceeding as in [12], using that ℓ ∈ C1(R, R) has bounded derivatives and applying
Lebesgue’s dominated convergence theorem, we can prove that each of these three last in-
tegral converges to zero, as n → +∞. Hence, H′

1 is continuous, as desired.

Proof of Theorem 1.4. We already know that the mapping H : E → F is well defined and
belongs to C1(E, F) (Propositions 5.10 and 5.12). We state that H′(0, 0) ∈ L(E, F) is onto.
In fact, given (g, u0) ∈ F = L2(Q; ρ2

1
) × H1

α, we apply Proposition 5.7 in order to obtain
(u, h) ∈ L2(Q; ρ2

1
)× L2(ωT; ρ2

3
) which solves (5.2) and satisfies (5.8). It means that (u, h) ∈ E

and H′(0, 0)(u, h) = (g, u0), as desired.
Hence, by Lyusternik’s inverse mapping theorem (Theorem 5.1) , there exist ε > 0 and a

mapping H̃ : Bε(0) ⊂ L2(Q; ρ2
1
)× H1

α → E such that

H(H̃(y)) = y for each y ∈ Bε(0) ⊂ L2(Q; ρ2
1
)× H1

α.

In particular, if ū0 ∈ H1
α and ∥ū0∥H1

α
< ε, we conclude that (ū, h̄) = H̃(0, ū0) ∈ E solves

H(ū, h̄) = (0, ū0). Finally, since ū ∈ L2(Q; ρ2
1
), we get ū(x, T) = 0 almost everywhere in [0, 1]

(see Remark 5.5). It completes the proof.
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