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Abstract. In this paper we study the oscillation problem for the known scalar delay dif-
ferential equation. We assume that the coefficients of this equation have an oscillatory
behaviour with an amplitude of oscillation tending to zero at infinity. The asymptotic
formulae for the solutions of the considered equation in the so-called critical case are
constructed. We give the conditions for existence of oscillatory or nonoscillatory solu-
tions in terms of certain numerical quantities. The obtained results are illustrated by a
number of examples.
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1 Problem statement

In this paper, we construct the asymptotics as t → ∞ for solutions of the following scalar
differential equation with variable delay:

ẋ = −a(t)x(t − τ(t)), t ≥ t0 > 0. (1.1)

Here a(t) and τ(t) are real-valued and continuous functions on [t0, ∞). Further we will impose
some additional restrictions on these functions.

One of the main questions usually considered for Eq. (1.1) concerns the oscillation problem
of its solutions. Choose h > 0 such that 0 ≤ τ(t) ≤ h for t ≥ T ≥ t0. By a solution of (1.1)
for t ≥ T, we mean a function x(t) which is continuous on [T − h, ∞), differentiable on
[T, ∞) and satisfies (1.1) for t ≥ T (by the derivative at t = T, we mean the right-hand side
derivative). Such a solution x(t) of Eq. (1.1) is said to be oscillatory if it has arbitrarily large
zeroes. Otherwise, it is called nonoscillatory. Evidently, x(t) is nonoscillatory if it is eventually
positive or eventually negative.

The oscillation problem for Eq. (1.1) was studied by many authors. The systematic study
of equation (1.1) was started by A. D. Myshkis in [23] (see also [24]). Among the works

BEmail: nesterov.pn@gmail.com

https://doi.org/10.14232/ejqtde.2022.1.59
https://www.math.u-szeged.hu/ejqtde/


2 P. Nesterov

dealing with the oscillation problem we note the results obtained in [14, 15, 17, 21, 34], the
series of papers by J. Diblík et al. [7–9, 11, 13], M. Pituk et al. [29, 31, 32], K. M. Chudinov
[3–5]. In some of the mentioned papers the oscillation problem is solved by constructing
the asymptotic formulae for solutions. The asymptotic properties of solutions of Eq. (1.1)
are also studied in [10, 12, 18, 30]. Of course, the mentioned list of papers is not exhaustive
due to the enormous amount of studies devoted to the analysis of dynamics of solutions to
Eq. (1.1). More references concerning this topic can be found in the lists of cited literature in
the mentioned papers. We also note paper [33] that contains the extensive review of works on
this subject. Below we give two well-known criteria on oscillation of solutions to Eq. (1.1). In
particular, this will allow us to refine the formulation of the problem considered in this paper.

The first of the announced results refers to the equation (1.1) with a constant delay τ(t) ≡ τ

provided that a(t) > 0 as t ≥ t0. Let us introduce the following notation. We will denote by
lnm t, where m ≥ 1, the expression, defined by the formula lnm t = ln(lnm−1 t) and ln0 t = t.
The following theorem holds [9].

Theorem 1.1.

A. Let us assume that a(t) ≤ am(t) for t → ∞ and an integer m ≥ 0, where

am(t) =
1
eτ

+
τ

8et2 +
τ

8e(t ln t)2 +
τ

8e(t ln t ln2 t)2 + · · ·+ τ

8e(t ln t ln2 t . . . lnm t)2 .

Then there exists a positive solution x = x(t) of (1.1). Moreover,

x(t) < e−t/τ
√

t ln t ln2 t . . . lnm t

as t → ∞.

B. Let us assume that
a(t) > am−2(t) +

θτ

8e(t ln t ln2 t . . . lnm−1 t)2

if t → ∞, an integer m ≥ 2 and a constant θ > 1. Then all the solutions of (1.1) oscillate.

In [13], the authors generalize certain results of Theorem 1.1 to the case of Eq. (1.1) with
variable delay τ(t). One more result on the oscillation of solutions of Eq. (1.1) we would like
to point out is due to Koplatadze and Chanturiya [21].

Theorem 1.2. If a(t) ≥ 0, τ(t) ≥ 0, t − τ(t) → +∞ as t → +∞ and

lim inf
t→+∞

∫ t

t−τ(t)
a(s)ds >

1
e

,

then all solutions of Eq. (1.1) oscillate. Conversely, if there exists t0 ≥ 0 such that∫ t

t−τ(t)
a(s)ds ≤ 1

e
.

for t ≥ t0 then Eq. (1.1) has a nonoscillatory solution.

The development of the ideas concerning the improvement of the results of Theorem 1.2
may be found, e.g., in [34].
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The most difficult situation in the oscillation problem occurs in the so called critical case
[15] when

lim
t→+∞

a(t) =
1
eτ

, lim
t→+∞

τ(t) = τ > 0. (1.2)

It is known that in this case equation (1.1) may have oscillatory solutions although the «limit
equation»

ẋ = − 1
eτ

x(t − τ), τ > 0

has positive solution x(t) = e−t/τ. To obtain any general results in this situation is a challeng-
ing task. It is necessary to take into account some additional properties of the functions a(t)
and τ(t), in particular, the rate of their tending to limit values in (1.2) and the character of this
tending.

In our paper we consider Eq. (1.1) provided that the functions a(t) and τ(t) have the
following asymptotic expansions as t → ∞:

a(t) =
1
e
+ a1(t)t−ρ + a2(t)t−2ρ + · · ·+ ak+1(t)t−(k+1)ρ + O(t−(k+2)ρ), (1.3)

τ(t) = 1 + q1(t)t−ρ + q2(t)t−2ρ + · · ·+ qk+1(t)t−(k+1)ρ + O(t−(k+2)ρ), (1.4)

where ρ > 0 and k ∈ N is chosen such that

(k + 1)ρ > 1. (1.5)

Functions aj(t), qj(t), j = 1, . . . , k + 1, are finite trigonometric polynomials. Since functions
a(t) and τ(t), in general, oscillate around the limit values, Theorem 1.1 and Theorem 1.2, as
well as some other similar results, fail in this case. In this paper we construct the asymptotics
as t → ∞ for solutions of Eq. (1.1). The obtained asymptotic formulae will allow us to solve
the oscillation problem for Eq. (1.1) in terms of certain numerical quantities that include the
information about the coefficients aj(t), qj(t) of expansions (1.3) and (1.4) with account of the
values of parameter ρ.

This paper is organized as follows. In Section 2 we describe the asymptotic integration
method that we use throughout the paper to get the asymptotic formulae for solutions of
Eq. (1.1). Asymptotic representations for solutions are constructed in Section 3. In the fi-
nal section of the paper we summarize the obtained results and indicate the conditions for
existence of oscillatory (nonoscillatory) solutions of Eq. (1.1). Moreover, we also give some
examples in this section.

2 Description of the asymptotic integration method

In (1.1), we make the change of variable

x(t) = e−ty(t), (2.1)

to get
ẏ = y(t)− a(t)eτ(t)y(t − τ(t)). (2.2)

After some trivial manipulations with the right-hand side of Eq. (2.2) we rewrite it in the form
of the functional differential equation

ẏ = B0yt + G(t, yt), (2.3)
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where yt(θ) = y(t + θ) (−h ≤ θ ≤ 0) denotes the element of the space Ch ≡ C
(
[−h, 0], C

)
consisting of all continuous functions defined on [−h, 0] and acting to C. We choose the delay
h > 0 such that the inequalities 0 ≤ τ(t) ≤ h hold t ≥ t0. The norm in Ch is introduced in the
standard way:

∥φ∥Ch = sup
−h≤θ≤0

|φ(θ)|. (2.4)

Further, B0 is a bounded linear functional acting from Ch to C that is defined by the formula

B0φ(θ) = φ(0)− φ(−1), φ(θ) ∈ Ch. (2.5)

Finally, functional G(t, φ(θ)), acting from Ch to C, has the form

G(t, φ(θ)) = φ(−1)− a(t)eτ(t)φ(−τ(t)). (2.6)

The asymptotic integration method that we apply in this work to study the dynamics of
Eq. (2.3) was suggested by the author in [26, 27]. In these papers Eq. (2.3) is considered as a
perturbation of the linear autonomous equation

ẏ = B0yt. (2.7)

The main assumption concerning the unperturbed Eq. (2.7) is the following. The characteristic
equation should have the finite number of roots (with account of their multiplicities) with
zero real parts and all other roots should have negative real parts. Linear bounded functional
G(t, φ(θ)) is, in some sense, a «small» perturbation consisting of two terms. The first term is
a functional that oscillatorily tends to zero as t → ∞ for each φ(θ). The second term is an
absolutely integrable on [t0, ∞) in a certain sense functional, i.e., its values as functions of t
belong to L1[t0, ∞). Here and in what follows we write that scalar function, vector-function or
matrix F(t) belongs to L1[t0, ∞), if the integral∫ ∞

t0

|F(t)|dt,

where | · | is an absolute value or certain vector or matrix norm, is finite.

Proposition 2.1. The characteristic equation

∆(λ) = 0, ∆(λ) = λ − 1 + e−λ, (2.8)

constructed for the unperturbed equation (2.7) with functional (2.5), has roots λ1,2 = 0 (i.e., zero root
of multiplicity two) and all the other roots have negative real parts.

Proof. It is obvious that ∆(0) = ∆′(0) = 0 and ∆′′(0) = 1 ̸= 0. Hence, λ = 0 is a root of
characteristic equation (2.8) with multiplicity two. Note that this equation does not have any
other real roots λ. Since ∆′(λ) = 1 − e−λ, the function ∆(λ) decreases monotonically in the
interval (−∞, 0) and increases monotonically in the interval (0,+∞). At the point λ = 0 this
function has global minimum ∆(0) = 0. Consequently, ∆(λ) > 0 for all λ ̸= 0.

Suppose that equation (2.8) has complex root λ = α + iβ, where α, β ∈ R and β > 0. By
equating the real and the imaginary parts in (2.8), we obtain{

α − 1 + e−α cos β = 0,

β − e−α sin β = 0.
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Due to the well-known inequality, it follows that

eα =
sin β

β
< 1.

Hence, α < 0 and all complex roots have negative real parts.

Verification of the fact that functional G(t, φ(θ)) is a small perturbation is not actually triv-
ial due to the presence of the variable delay τ(t). The corresponding problems are discussed
in paper [27]. It turns out that in this case the choice of the space Ch as the phase space for
Eq. (2.3) is not appropriate. We should act in another manner. We remind that function φ ∈ Ch
is called Lipschitz continuous if there is a positive constant K (Lipschitz constant) such that

|φ(θ1)− φ(θ2)| ≤ K |θ1 − θ2|, −h ≤ θ1, θ2 ≤ 0. (2.9)

Note that constant K in (2.9) depends on function φ(θ). Let us introduce the following nota-
tion.

Definition 2.2. Denote by LCh the subspace of Ch consisting of all Lipschitz continuous func-
tions and equipped with the norm

∥φ∥LCh = max
(
∥φ∥Ch , Kφ

)
, (2.10)

where Kφ = inf K and infimum is taken over all constants K for which inequality (2.9) holds.
Symbol ∥φ∥Ch stands for norm (2.4).

We remark that with norm (2.10) the space LCh is a Banach space. Let yt(θ) be the solution
of Eq. (2.3) with initial value yT = φ, where φ ∈ Ch and T ≥ t0. Then, due to continuity
property of functions a(t), τ(t) and the form of functional G(t, φ), defined by (2.6), solution
yt(θ) belongs to the space LCh for t ≥ T + h. Therefore, the dynamics of Eq. (2.3) is defined
by the behaviour of solutions in LCh. We can now easily check that G(t, φ), as the functional
acting from LCh, is a small perturbation. Since, due to (1.3) and (1.4), the asymptotic formula
a(t)eτ(t) = 1 + O(t−ρ) holds as t → ∞, we have

G(t, φ(θ)) = φ(−1)− φ(−τ(t)) + O(t−ρ)φ(−τ(t)).

Thus, for each φ ∈ LCh due to (1.4) with account of (2.10) we conclude that

|G(t, φ(θ))| ≤ |φ(−1)− φ(−τ(t))|+ O(t−ρ)|φ(−τ(t))|
≤ KφO(t−ρ) + O(t−ρ)∥φ∥Ch ≤ O(t−ρ)∥φ∥LCh (2.11)

This proves the «smallness» of the functional G(t, φ(θ)) as t → ∞. The oscillatory decreasing
character of G(t, φ(θ)) as the function of t for each φ ∈ LCh follows from (2.6) and the cor-
responding properties of the functions aj(t), qj(t) in (1.3), (1.4). In what follows we will give
a slightly different representation for the functional G(t, φ(θ)). The presence of oscillatory
decreasing coefficients in this representation will play an essential role for the implementation
of the asymptotic integration method. We now turn to the description of this method.

The asymptotic integration method we apply in this paper is based on the existence for
sufficiently large t of the positively invariant manifold in space LCh that attracts (at the expo-
nential rate) all the trajectories of Eq. (2.3). The dynamics of solutions of Eq. (2.3), lying in this
manifold, is described by the two-dimensional linear ordinary differential system. Thus, the
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fundamental solutions of this system define the main parts of the asymptotic formulae for so-
lutions of Eq. (2.3). We will now describe this method in details. First we need to decompose
space Ch into direct sum of two certain subspaces.

It is known that linear autonomous equation (2.7) generates in Ch for t ≥ 0 a strongly
continuous semigroup T(t): Ch → Ch. The solution operator T(t) of Eq. (2.7) is defined as
follows: T(t)φ = yφ

t (θ), where φ ∈ Ch and yφ
t (θ) is a unique solution of Eq. (2.7) with initial

value yφ
0 (θ) = φ. The infinitesimal generator A of this semigroup is defined by Aφ = φ′(θ),

where φ ∈ D(A). The domain of A

D(A) =
{

φ ∈ Ch
∣∣ φ′(θ) ∈ Ch, φ′(0) = B0φ

}
is dense in Ch. Suppose that B0 has Riesz representation

B0φ =
∫ 0

−h
dη(θ)φ(θ),

where η(θ) is the scalar function of bounded variation on [−h, 0]. We can associate with
Eq. (2.7) the transposed equation

ẏ∗ = −
∫ 0

−h
y∗(t − θ)dη(θ), t ≤ 0, (2.12)

where y∗(t) is complex scalar function. The phase space for Eq. (2.12) is C′
h ≡ C

(
[0, h], C

)
. For

ψ ∈ C′
h and φ ∈ Ch we define the bilinear form

(
ψ(ξ), φ(θ)

)
= ψ(0)φ(0)−

∫ 0

−h

∫ θ

0
ψ(ξ − θ)dη(θ)φ(ξ)dξ. (2.13)

Let
Λ =

{
λ1, λ2},

where λ1 = λ2 = 0 are the roots of characteristic equation (2.8) from Proposition 2.1. We now
decompose Ch into a direct sum

Ch = PΛ ⊕ QΛ. (2.14)

Here PΛ is a linear span of generalized eigenfunctions of operator A corresponding to the
eigenvalues from Λ and QΛ is certain complementary subspace of Ch such that T(t)QΛ ⊆ QΛ.
Let Φ(θ) be two-dimensional row-vector whose entries are the generalized eigenfunctions
φ1(θ), φ2(θ) of operator A corresponding to the eigenvalues from Λ. Thus, the entries of Φ(θ)

form the basis of PΛ. Moreover, let Ψ(ξ) be two-dimensional column-vector whose entries
ψ1(ξ), ψ2(ξ) form the basis of the generalized eigenspace PT

Λ of the transposed equation (2.12)
associated with Λ. We can choose vectors Φ(θ) and Ψ(ξ) such that(

Ψ(ξ), Φ(θ)
)
=
{(

ψi(ξ), φj(θ)
)}

1≤i,j≤2 = I. (2.15)

Since Φ(θ) is the basis of PΛ and APΛ ⊆ PΛ, there exists (2× 2)-matrix D, whose spectrum
is Λ, such that AΦ(θ) = Φ(θ)D. From the definition of A, we deduce that

Φ(θ) = Φ(0)eDθ , T(t)Φ(θ) = Φ(θ)eDt = Φ(0)eD(t+θ),

where −h ≤ θ ≤ 0 and t ≥ 0. Analogously, for column-vector Ψ(ξ) we have

Ψ(ξ) = e−DξΨ(0), (2.16)
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where 0 ≤ ξ ≤ h. Vectors Φ(0) and Ψ(0) are chosen in the following way. Since the entries of
row-vector Φ(θ) are the generalized eigenfunctions of A, they should belong to D(A). This
implies that

Φ′(0) = Φ(0)D = B0Φ =
∫ 0

−h
dη(θ)Φ(0)eDθ .

The same reasoning, using (2.12) and (2.16), yields

Ψ′(0) = −DΨ(0) = −
∫ 0

−h
eDθΨ(0)dη(θ).

Finally, the subspaces PΛ and QΛ from decomposition (2.14) may be defined as follows:

PΛ =
{

φ ∈ Ch
∣∣ φ(θ) = Φ(θ)u, u ∈ C2},

QΛ =
{

φ ∈ Ch
∣∣ (Ψ, φ) = 0

}
.

(2.17)

Here and in what follows symbol C2 stands for the space of two-dimensional complex column-
vectors.

An easy computation yields the following formulae for vectors Φ(θ), Ψ(ξ) and matrix D
for Eq. (2.7) with functional (2.5):

Φ(θ) =
(
1 θ

)
, Ψ(ξ) =

( 2
3 − 2ξ

2

)
, D =

(
0 1
0 0

)
. (2.18)

To calculate vectors Φ(θ) and Ψ(ξ) we also used condition (2.15). We are now in a position
to define the central notion of the proposed method — the notion of critical manifold for
Eq. (2.3).

Definition 2.3. Two-dimensional linear space W(t) ⊂ LCh ⊂ Ch is said to be critical (or
center-like) manifold of Eq. (2.3) for t ≥ t∗ ≥ t0 if the following conditions hold:

1. There exists two-dimensional row-vector H(t, θ), whose entries are continuous in t ≥ t∗
and belong to LCh and also subspace QΛ as functions of θ ∈ [−h, 0] for all t ≥ t∗.
Moreover, ∥H(t, ·)∥LCh → 0 as t → ∞, where

∥H(t, ·)∥LCh =
∥∥ |H(t, ·)|

∥∥
LCh

.

Here | · | denotes some vector norm in the space of two-dimensional row-vectors.

2. The space W(t) for t ≥ t∗ is defined by the formula

W(t) =
{

φ(θ) ∈ LCh
∣∣ φ(θ) = Φ(θ)u + H(t, θ)u, u ∈ C2

}
. (2.19)

3. The space W(t) is positively invariant for trajectories of Eq. (2.3) for t ≥ t∗, i.e., if
yT ∈ W(T), T ≥ t∗, then yt ∈ W(t) for t ≥ T.

The following existence theorem holds (see [27]).

Theorem 2.4. For sufficiently large t there exists a critical manifold W(t) of Eq. (2.3) in LCh.
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Due to the positive invariance of W(t), the trajectories lying in this manifold for sufficiently
large t are described by the formula

yt(θ) = Φ(θ)u(t) + H(t, θ)u(t), t ≥ T, u(t) ∈ C2.

It can be shown (see, e.g., [19,20]), that the vector function u(t) in the above expression satisfies
the following ordinary differential system:

u̇ =
[
D + Ψ(0)G

(
t, Φ(θ) + H(t, θ)

)]
u, t ≥ T. (2.20)

This system will be referred to as a system on critical manifold. An important property of
manifold W(t) is that it is attractive for all trajectories of Eq. (2.3) (see [27]).

Theorem 2.5. Suppose that y(t) is a solution of Eq. (2.2), defined for t ≥ T ≥ t0. Then there exists
sufficiently large t∗ ≥ T such that the following asymptotic formula holds for t ≥ t∗:

yt(θ) = Φ(θ)uH(t) + H(t, θ)uH(t) + O
(
e−βt), t → ∞.

Here uH(t) (t ≥ t∗) is a certain solution of Eq. (2.20) and β > 0 is a certain real number.

Suppose that u(1)(t), u(2)(t) are the fundamental solutions of a system on critical manifold
(2.20) and y(t) is an arbitrary solution of Eq. (2.2) defined for t ≥ T. By Theorem 2.5, this
solution has the following asymptotic representation as t → ∞:

y(t) = yt(0) =
(
Φ(0) + H(t, 0)

)(
c1u(1)(t) + c2u(2)(t)

)
+ O

(
e−βt), t → ∞, (2.21)

where c1, c2 are arbitrary complex constants and β > 0 is a certain real number. Therefore,
to solve the oscillation problem for Eq. (2.2) (evidently, for initial Eq. (1.1) as well) we need
to construct the asymptotics for the fundamental solutions u(1)(t), u(2)(t) of system (2.20)
that define the dynamics of all solutions of Eq. (2.2) due to (2.21). Unfortunately, having
determined the type of solutions u(1)(t) and u(2)(t) (oscillatory or nonoscillatory), we cannot
answer the question whether all the solutions of Eq. (1.1) are of the same type. This follows
from the fact that due to (2.21) if c1 = c2 = 0 the dynamics of solutions of Eq. (1.1) is defined
by the remainder term, whose form is unclear. Thus, in this paper we only give an answer
concerning the existence of oscillatory or nonoscillatory solutions.

Now we need to clarify how to construct the row-vector H(t, θ) needed for system on
critical manifold (2.20) and how to obtain the asymptotics for the fundamental matrix of this
system. It is shown in [26, 27] that vector H(t, θ) is a solution, in certain week sense, of the
following problem:

Φ(θ)Ψ(0)G
(
t, Φ(θ) + H(t, θ)

)
+ H(t, θ)

(
D + Ψ(0)G

(
t, Φ(θ) + H(t, θ)

))
+

∂H
∂t

=


∂H
∂θ

, −h ≤ θ < 0,

B0H + G
(
t, Φ(θ) + H(t, θ)

)
, θ = 0.

(2.22)

We can solve this problem approximately. Namely, due to the form of the functional G(t, φ(θ))

that is defined by formula (2.6) and taking into account asymptotic representations (1.3), (1.4)
we can satisfy problem (2.22) with the row-vector

Ĥ(t, θ) = H1(t, θ)t−ρ + H2(t, θ)t−2ρ + · · ·+ Hk(t, θ)t−kρ (2.23)
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up to the term R̂(t, θ) such that ∥R̂(t, ·)∥LCh ∈ L1[t0, ∞). Here k ∈ N is defined according
to (1.3), (1.4) with account of (1.5) and the entries of two-dimensional row-vectors Hj(t, θ),
j = 1, . . . , k are trigonometric polynomials in t whose coefficients are infinitely differentiable
in θ ∈ [−h, 0]. Thus, the row-vectors Hj(t, θ) has the form

Hj(t, θ) = ∑
s

β
(j)
s (θ)eiωst, (2.24)

where the row-vectors β
(j)
s (θ) are infinitely differentiable in θ ∈ [−h, 0]. We also note that the

entries of these row-vectors belong to the subspace QΛ. It appears that the problem of finding
the vectors Hj(t, θ) is reduced to solving certain functional boundary problems for linear
ordinary differential systems. Namely, we substitute (2.23) for H(t, θ) in (2.22) and collect
terms corresponding to factors t−jρ, j = 1, . . . , k. We then seek the solutions of the obtained
equations in form (2.24). Substituting the latter in the mentioned equations and matching the
coefficients of the corresponding exponentials, we get the functional boundary problems for
linear ordinary differential systems. It is proved in[26] that each of these problems is uniquely
solvable.

Row-vector Ĥ(t, θ) is an approximation, in a certain sense, for vector H(t, θ) that describes
manifold W(t) according to formula (2.19). To be precise the following approximation theo-
rem holds.

Theorem 2.6. Suppose that W(t) is a critical manifold of Eq. (2.3) which exists for sufficiently large
t according to Theorem 2.4. Then there exists a sufficiently large t∗ such that for t ≥ t∗ row-vector
H(t, θ) from (2.19) admits the following representation:

H(t, θ) = Ĥ(t, θ) + Z(t, θ), t ≥ t∗ ≥ t0, −τ ≤ θ ≤ 0. (2.25)

Here the row-vector Ĥ(t, θ) is defined by formula (2.23) and satisfies Eq. (2.22) up to the term R̂(t, θ)

such that ∥R̂(t, ·)∥LCh ∈ L1[t0, ∞). Moreover, Z(t, θ) is a certain row-vector such that ∥Z(t, ·)∥LCh →
0 as t → ∞ and ∥Z(t, ·)∥LCh ∈ L1[t∗, ∞).

According to (1.3), (1.4), (2.6) with account of formula (2.23), describing the approximate
solution of problem (2.22), it can be shown that row-vector Z(t, θ) in (2.25) has the following
asymptotic estimate as t → ∞:

∥Z(t, ·)∥LCh = O
( d

dt
(t−ρ)

)
+ O

(
t−(k+1)ρ) = O

(
t−(ρ+1))+ O

(
t−(k+1)ρ). (2.26)

The asymptotic integration of system (2.20) is carried out as follows. Due to (1.3), (1.4),
(2.6), (2.23) this system in the considered case has the following form:

u̇ =
[

D + A1(t)t−ρ + A2(t)t−2ρ + · · ·+ Ak+1(t)t−(k+1)ρ + R(t)
]
u, u ∈ C2. (2.27)

Here matrix D is defined in (2.18), natural number k is chosen according to (1.5) and A1(t), . . .,
Ak+1(t) are (2 × 2)-matrices, whose entries are trigonometric polynomials, i.e., matrices hav-
ing the form

Aj(t) = ∑
s

ψ
(j)
s eiωst,

where ψ
(j)
s are constant complex matrices and ωs are real numbers. Finally, R(t) is a certain

(2 × 2)-matrix that belongs to L1[t∗, ∞). It follows from (1.3), (1.4), (2.11) and (2.26) that this
matrix has the following asymptotic estimate:

R(t) = O
(
t−(k+2)ρ)+ O

(
t−(2ρ+1)), t → ∞. (2.28)
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The main difficulty in the asymptotic integration of system (2.27) as t → ∞ is that its co-
efficients have an oscillatory behaviour. Therefore, on the first step we utilize in (2.27) the
averaging change of variable that makes it possible to exclude the oscillating coefficients from
the main part of the system. The following theorem holds (see [25]).

Theorem 2.7. For sufficiently large t, system (2.27) by the change of variable

u =
[

I + Y1(t)t−ρ + Y2(t)t−2ρ + · · ·+ Yk+1(t)t−(k+1)ρ
]
u1 (2.29)

can be reduced to its averaged form

u̇1 =
[

D + A1t−ρ + A2t−2ρ + · · ·+ Ak+1t−(k+1)ρ + R1(t)
]
u1 (2.30)

with constant matrices A1, . . . , Ak and with matrix R1(t) from L1[t∗, ∞). In (2.29), I is the identity
matrix and the entries of matrices Y1(t), . . . , Yk(t) are trigonometric polynomials having zero mean
value.

As a rule, to construct the asymptotics for solutions of (2.30) we need to compute only a
few constant matrices. Hence, we give the explicit formulas only for matrices A1 and A2. We
have

A1 = M
[
A1(t)

]
, (2.31)

A2 = M
[
A2(t) + A1(t)Y1(t)

]
. (2.32)

Here symbol M
[
F(t)

]
denotes the mean value of the matrix F(t) whose entries are trigono-

metric polynomials:

M
[
F(t)

]
= lim

T→∞

1
T

∫ T

0
F(t)dt.

Matrix Y1(t) in (2.32) is the solution of matrix differential equation

Ẏ1 − DY1 + Y1D = A1(t)− A1 (2.33)

with zero mean value. Finally, matrix R1(t) in (2.30) has the following form:

R1(t) = ρY1(t)t−(ρ+1) + O
(
t−(2ρ+1))+ O

(
t−(k+2)ρ), t → ∞. (2.34)

Here we give the explicit formula for the first term in (2.34) since its form will be necessary
for further transformation of system (2.30).

The subsequent transformations of the averaged system (2.30) aim to bring it to the form

u̇2 =
[
A0 + V(t)

]
t−αu2 + R2(t)u2, (2.35)

where α > 0 is a certain number, A0 is a constant matrix, matrix V(t) tends to zero matrix as
t → ∞ and R2(t) ∈ L1[t∗, ∞). The following lemma holds (see, for instance, [1, 6, 16]).

Lemma 2.8 (diagonalization of variable matrices). Suppose that all eigenvalues of the matrix A0

are distinct. Moreover, suppose that matrix V(t) → 0 as t → ∞ and V ′(t) ∈ L1[t∗, ∞). Then for
sufficiently large t there exists a nonsingular matrix C(t) such that

(i) the columns of this matrix are the eigenvectors of the matrix A0 + V(t) and C(t) → C0 as
t → ∞. The columns of the constant matrix C0 are the eigenvectors of the matrix A0;
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(ii) the derivative C′(t) ∈ L1[t∗, ∞);

(iii) it brings the matrix A0 + V(t) to diagonal form, i.e.,

C−1(t)
[
A0 + V(t)

]
C(t) = Λ̂(t),

where Λ̂(t) = diag
(
λ̂1(t), λ̂2(t)

)
and λ̂1(t), λ̂2(t) are the eigenvalues of the matrix A0 + V(t).

In (2.35), we make the change of variable

u2(t) = C(t)u3(t),

where C(t) is the matrix from Lemma 2.8. This change of variable brings system (2.35) to
what is called L-diagonal form:

u̇3 =
[
Λ(t) + R3(t)

]
u3, (2.36)

where Λ(t) = diag
(
λ1(t), λ2(t)

)
, λj(t) = λ̂j(t)t−α (j = 1, 2) and

R3(t) = −C−1(t)Ċ(t) + C−1(t)R2(t)C(t).

The properties (i) and (ii) of the matrix C(t) imply that matrix R3(t) belongs to L1[t∗, ∞).
To construct the asymptotics for solutions of L-diagonal system (2.36) as t → ∞ the well-

known Theorem of Levinson can be used. Suppose that the following dichotomy condition
holds for the entries of the matrix Λ(t): either the inequality

∫ t2

t1

Re
(
λi(s)− λj(s)

)
ds ≤ K1, t2 ≥ t1 ≥ t∗, (2.37)

or the inequality ∫ t2

t1

Re
(
λi(s)− λj(s)

)
ds ≥ K2, t2 ≥ t1 ≥ t∗, (2.38)

is valid for each pair of indices (i, j), where K1, K2 are some constants. What follows is Levin-
son’s fundamental theorem (see, e.g., [6, 16, 22]).

Theorem 2.9 (Levinson). Let the dichotomy condition (2.37), (2.38) be satisfied. Then the fundamen-
tal matrix of L-diagonal system (2.36) has the following asymptotics as t → ∞:

U(t) =
(

I + o(1)
)

exp
{∫ t

t∗
Λ(s)ds

}
.

We note that for the problem considered in this paper the dichotomy condition (2.37), (2.38)
is always satisfied since quantities Re

(
λi(t)− λj(t)

)
do not change their signs for sufficiently

large t. This follows from the fact that system (2.35) comes from the averaged system (2.30),
whose coefficients in the main part do not oscillate and the utilized transformations do not
change this property.
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3 Construction of asymptotic formulae

In this section we obtain the asymptotic formulae for solutions of Eq. (2.2) as t → ∞. The
asymptotics for solutions of the initial Eq. (1.1) can be easily constructed by applying the
change of variable (2.1) and, therefore, we will not write it here. First, we get another one
representation for functional G(t, φ(θ)) in (2.3) that is defined by formula (2.6). By applying
Taylor’s formula for a(t)eτ(t) as t → ∞ with account of (1.3), (1.4), we obtain

a(t)eτ(t) = 1 + p1(t)t−ρ + p2(t)t−2ρ + · · ·+ pk+1(t)t−(k+1)ρ + O(t−(k+2)ρ). (3.1)

Here p1(t), . . . , pk+1(t) are certain trigonometric polynomials and, in particular,

p1(t) = ea1(t) + q1(t), p2(t) = ea2(t) + q2(t) +
q2

1(t)
2

+ ea1(t)q1(t), (3.2)

where ai(t), qi(t), i = 1, 2, are functions from asymptotic expansions (1.3), (1.4) for coefficients
of the initial equation (1.1). For the sequel we need the expressions for the functions p1(t) and
q1(t) in the form of the trigonometric polynomials:

p1(t) =
N

∑
j=−N

p(j)
1 eiωjt, q1(t) =

N

∑
j=−N

q(j)
1 eiωjt, (3.3)

where p(j)
1 , q(j)

1 are, in general, certain complex numbers, ωj are real numbers and, moreover,

p(−j)
1 = p̄(j)

1 , q(−j)
1 = q̄(j)

1 , ω−j = −ωj (ωl ̸= ωl , l ̸= m), j = 1, . . . , N. (3.4)

here notation ā stands for complex conjugate of a. Hence, we have

M
[
p1(t)

]
= p(0)1 , M

[
q1(t)

]
= q(0)1 . (3.5)

By using Taylor’s formula for φ(−τ(t)) as t → ∞, and taking into account (3.1), we finally
obtain the following representation for functional G(t, φ(θ)):

G(t, φ(θ)) =
[
q1(t)φ′(−1)− p1(t)φ(−1)

]
t−ρ

+

[
p1(t)q1(t)φ′(−1) + q2(t)φ′(−1)− p2(t)φ(−1)− q2

1(t)
2

φ′′(−1)
]

t−2ρ

+ O
(
t−3ρ). (3.6)

Although the functional G(t, φ(θ)) is defined only for elements from Ch, in what follows it
will be applied to infinitely differentiable functions and this makes possible to use form (3.6).
We proceed now to the problem of construction of the asymptotic formulae for solutions of
Eq. (2.2) as t → ∞.

We write system on critical manifold (2.20) in form (2.27). To get the asymptotics for the
fundamental solutions of this system we need the explicit formulae for matrices A1(t) and
A2(t). We use (3.6) and also formula (2.18) to obtain

A1(t) = Ψ(0)
[
q1(t)Φ′(−1)− p1(t)Φ(−1)

]
=

2
3

(
−p1(t) q1(t) + p1(t)
−3p1(t) 3

(
q1(t) + p1(t)

)) (3.7)
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and

A2(t) = Ψ(0)
[

p1(t)q1(t)Φ′(−1) + q2(t)Φ′(−1)− p2(t)Φ(−1)− q2
1(t)
2

Φ′′(−1)
]

+ Ψ(0)
[
q1(t)

∂H1

∂θ
(t, θ)

∣∣∣
θ=−1

− p1(t)H1(t,−1)
]

=
2
3

(
−p2(t) p1(t)q1(t)+q2(t)+p2(t)

−3p2(t) 3
(

p1(t)q1(t)+q2(t)+p2(t)
) )

+
2
3

(
q1(t)

∂h11
∂θ (t,θ)

∣∣
θ=−1

−p1(t)h11(t,−1) q1(t)
∂h12

∂θ (t,θ)
∣∣

θ=−1
−p1(t)h12(t,−1)

3
(

q1(t)
∂h11

∂θ (t,θ)
∣∣

θ=−1
−p1(t)h11(t,−1)

)
3
(

q1(t)
∂h12

∂θ (t,θ)
∣∣

θ=−1
−p1(t)h12(t,−1)

) ). (3.8)

Here
H1(t, θ) =

(
h11(t, θ) h12(t, θ)

)
(3.9)

is a row-vector from representation (2.23) for row-vector Ĥ(t, θ) that is an approximation of
H(t, θ) due to Theorem 2.6. Row-vector (3.9) will be defined at the end of this section.

The most simple case in constructing the asymptotic formulae for solutions of Eq. (2.2)
occurs when

ρ > 2. (3.10)

In this situation system on critical manifold (2.27) with account of (2.28) takes the form

u̇ =
[
D + O

(
t−ρ
)]

u, (3.11)

where matrix D is defined by formula (2.18). Since, due to (3.10), the remainder term in (3.11)
has the property that

O
(
t−ρ
)
ti−j ∈ L1[t0, ∞), 1 ≤ i, j ≤ 2,

we can use [2, Corollary 6.2, p. 213]. It follows that the fundamental solutions of system (3.11)
have the following asymptotics as t → ∞:

u(1)(t) =
(

1 + o(1)
o
(
t−1) ) , u(2)(t) =

(
t
(
1 + o(1)

)
1 + o(1)

)
. (3.12)

We then use (2.21), with account that H(t, 0) = o(1), to obtain the following asymptotic
representation for all solutions of Eq. (2.2) as t → ∞:

y(t) = c1
(
1 + o(1)

)
+ c2t

(
1 + o(1)

)
+ O

(
e−βt), (3.13)

where c1, c2 are arbitrary real constants and β > 0 is a certain real number.
Thus, the main interest concerns the case

ρ ≤ 2.

We use Theorem 2.7 to bring system (2.27) by the change of variable (2.29) to the averaged
form (2.30). In (2.30), constant matrices A1 and A2 are described by formulae (2.31), (2.32) and
the remainder term R1(t) has form (2.34). We calculate matrix A1 taking into account (3.7)
and also expressions (3.3), (3.5). We have

A1 = M
[
A1(t)

]
=

2
3

(
−p(0)1 q(0)1 + p(0)1

−3p(0)1 3
(
q(0)1 + p(0)1

)) . (3.14)

The explicit form for matrix A2 will be obtained later. The asymptotics for solutions of system
(2.30) will differ depending on the mean value of the function p1(t). We now proceed to
analysis of these cases.
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I. p(0)1 ̸= 0

The eigenvalues of the matrix

A(t) = D + A1t−ρ + A2t−2ρ + · · ·+ Ak+1t−(k+1)ρ

in the main part of system (2.30) have the following asymptotics as t → ∞:

λ1,2(t) = ±t−
ρ
2

√
−2p(0)1

(
1 + O(t−ρ)

)
+
(

q(0)1 +
2
3

p(0)1

)
t−ρ + O(t−2ρ). (3.15)

Here and in what follows the symbol
√

a, where a ∈ R, stands for the quantity

√
a =

{√
a, a ≥ 0,

i
√
−a, a < 0.

(3.16)

Since the eigenvalues (3.15) are distinct for sufficiently large t, the matrix A(t) can be reduced
to the diagonal form by certain non-singular matrix C(t):

Λ(t) = diag
(
λ1(t), λ2(t)

)
= C−1(t)A(t)C(t). (3.17)

Some easy calculations show that the corresponding matrix C(t) has the following asymptotics
as t → ∞:

C(t) =

(
1 1

t−
ρ
2

√
−2p(0)1 + O(t−ρ) −t−

ρ
2

√
−2p(0)1 + O(t−ρ)

)
. (3.18)

For the inverse matrix we get

C−1(t) =
1

2
√
−2p(0)1

√−2p(0)1 + O
(
t−

ρ
2
)

t
ρ
2 + O(1)√

−2p(0)1 + O
(
t−

ρ
2
)

−t
ρ
2 + O(1)

 , t → ∞.

We note that matrix C−1(t) is unbounded as t → ∞ and has the asymptotic estimate O
(
t

ρ
2
)
.

Keeping this fact in mind, we make in (2.30) the change of variable

u1(t) = C(t)u2(t)

with matrix C(t) having form (3.18). Since

C−1(t)Ċ(t) =
ρ

4
t−1

(
−1 + O

(
t−

ρ
2
)

1 + O
(
t−

ρ
2
)

1 + O
(
t−

ρ
2
)

−1 + O
(
t−

ρ
2
)) , (3.19)

we obtain
u̇2 =

[
Λ(t) + Bt−1 + R2(t)

]
u2. (3.20)

Here the diagonal matrix Λ(t) is defined by formula (3.17) with account of (3.15) and the
constant matrix B has the following form:

B =
ρ

4

(
1 −1
−1 1

)
. (3.21)

Moreover, the remainder term in (3.20), due to (1.5), (2.34) and (3.19), admits the asymptotic
estimate R2(t) = O

(
t−

ρ
2−1) as t → ∞. Further, we need to study several alternatives.
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Assume first that
ρ = 2. (3.22)

In this situation system (3.20) takes the following form:

u̇2 =
[
St−1 + O(t−2)

]
u2, (3.23)

where

S =

√
−2p(0)1 diag(1,−1) + B, (3.24)

and matrix B is defined by formula (3.21). The eigenvalues of this matrix are

µ1,2 =
1
2
± σ, σ =

1
2

√
1 − 8p(0)1 . (3.25)

We recall that the square root here means the quantity (3.16). We should consider two cases.

• p(0)1 ̸= 1
8

This is the case when µ1,2 are distinct and system (3.23) by the change of variable u2 = Cu3,
where, for instance,

C =

(
1 1

2
√
−2p(0)1 −

√
1 − 8p(0)1 2

√
−2p(0)1 +

√
1 − 8p(0)1

)
,

can be reduced to L-diagonal form (2.36). In the corresponding L-diagonal system we have

Λ(t) = diag(µ1, µ2)t−1, R3(t) = O(t−2), t → ∞.

The asymptotics for the fundamental matrix of this system can be constructed by applying
Theorem 2.9. If we return then to Eq. (2.2), we get the following asymptotics for its solutions
as t → ∞:

y(t) = c1t
1
2 exp{σ ln t}

(
1 + o(1)

)
+ c2t

1
2 exp{−σ ln t}

(
1 + o(1)

)
+ O

(
e−βt),

where c1, c2 are arbitrary, in general, complex constants, β > 0 is a certain real number and
quantity σ is defined by formula (3.25).

• p(0)1 =
1
8

In this situation the eigenvalues of matrix (3.24) coincide:

µ1,2 =
1
2

.

First, by the change of variable u2 = Cu3, where

C =
1
2

(
−1 0
−i 2

)
,

we bring system (3.23) to the form

u̇3 =
[

Jt−1 + O(t−2)
]
u3, J =

1
2

(
1 2
0 1

)
. (3.26)
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Next, we apply in (3.26) the transformation u3 = t
1
2 u4 to obtain

u̇4 =
[
Dt−1 + O(t−2)

]
u4, (3.27)

where matrix D is defined by (2.18). Finally, in (3.27) we introduce the new time-variable
τ = ln t to get

u′
4 =

[
D + O(e−τ)

]
u4, (3.28)

where the dash denotes the derivative with respect to τ. The construction of the asymptotics
for the fundamental matrix of system (3.28) is carried out in the same manner as for system
(3.11). This results in the following asymptotic representation for solutions of Eq. (2.2) as
t → ∞:

y(t) = c1t
1
2
(
1 + o(1)

)
+ c2t

1
2 ln t

(
1 + o(1)

)
+ O

(
e−βt),

where c1, c2 are arbitrary real constants and β > 0 is a certain real number.
Consider now the case

ρ < 2.

We can write system (3.20) in form (2.35), where, due to (3.15),

α =
ρ

2
, A0 =

√
−2p(0)1 diag(1,−1), V(t) =

(
q(0)1 +

2
3

p(0)1

)
It−

ρ
2 + Bt

ρ
2−1 + O(t−ρ).

and R2(t) = O
(
t−

ρ
2−1) as t → ∞. Here matrix B is described by formula (3.21). The asymptotic

integration of systems having form (2.35) was described at the end of the previous section.
Therefore, we give only the final result concerning the asymptotic formulae for solutions of
Eq. (2.2) as t → ∞.

So, if
1 < ρ < 2,

we have

y(t) = c1t
ρ
4 exp

{
2

2 − ρ

√
−2p(0)1 t1− ρ

2

} (
1 + o(1)

)
+ c2t

ρ
4 exp

{
− 2

2 − ρ

√
−2p(0)1 t1− ρ

2

} (
1 + o(1)

)
+ O

(
e−βt).

If
ρ = 1,

then

y(t) = t
1
4+q(0)1 + 2

3 p(0)1

[
c1 exp

{
2
√
−2p(0)1 t

} (
1 + o(1)

)
+ c2 exp

{
−2
√
−2p(0)1 t

} (
1 + o(1)

)]
+ O

(
e−βt).

Finally, if
ρ < 1,

we obtain

y(t) = t
ρ
4 exp

{
t1−ρ

1 − ρ

(
q(0)1 +

2
3

p(0)1

)}[
c1 exp

{
2

2 − ρ

√
−2p(0)1 t1− ρ

2 + O
(∫

t−
3ρ
2 dt
)}(

1 + o(1)
)

+ c2 exp
{
− 2

2 − ρ

√
−2p(0)1 t1− ρ

2 + O
(∫

t−
3ρ
2 dt
)} (

1 + o(1)
)]

+ O
(
e−βt).
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Everywhere in these asymptotic formulae c1, c2 are arbitrary, in general, complex constants
and β > 0 is a certain real number.

We now proceed to a case more complicated in computational sense.

II. p(0)1 = 0 (3.29)

The simplest situation in this case occurs when

ρ > 1.

The averaged system (2.30) takes the form

u̇1 =
[
D + R̂1(t)

]
u1, (3.30)

where, with account of (2.34),

R̂1(t) = A1t−ρ + · · ·+ Ak+1t−(k+1)ρ + O
(
t−(ρ+1))+ O

(
t−(2ρ+1))+ O

(
t−(k+2)ρ).

We remark that, due to (3.29), matrix A1, that is described by formula (3.14), has the following
form:

A1 =
2
3

q(0)1

(
0 1
0 3

)
. (3.31)

It follows that the entries r̂ij(t) of the matrix R̂1(t) have the property

ti−jr̂ij(t) ∈ L1[t0, ∞), 1 ≤ i, j ≤ 2.

This yields that like in the case (3.10) we can use [2, Corollary 6.2, p. 213] to construct the
asymptotics for the fundamental solutions of system (3.30). Hence, we obtain asymptotic
formulae (3.12) for the fundamental solutions of this system. Thus, we get asymptotics (3.13)
for solutions of Eq. (2.2) as t → ∞.

Assume further that
ρ ≤ 1.

In the averaged system (2.30) we make one more averaging change of variable

u1 =
[
I + Q(t)t−(ρ+1)]u2 (3.32)

that allows us, due to Theorem 2.7, to exclude the summand having the asymptotic order
O(t−(ρ+1)) in the remainder term (2.34). Here matrix Q(t), whose entries are trigonometric
polynomials, is the solution of the matrix differential equation

Q̇ − DQ + QD = ρY1(t)

with zero mean value. The main part of the transformed system has the same form as the
main part of system (2.30) but the new remainder term has now the following asymptotic
estimate as t → ∞:

R2(t) = O
(
t−(ρ+2))+ O

(
t−(2ρ+1))+ O

(
t−(k+2)ρ). (3.33)

Then in the obtained system we make the so-called shearing transformation

u2 =

(
t

ρ
2

0 t−
ρ
2

)
u3. (3.34)
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With account of formulae (2.18) and (3.31), that describe matrices D and A1, we get the fol-
lowing system:

u̇3 =
[

B1t−ρ + B2t−2ρ + · · ·+ Bkt−kρ + B0t−1 + R3(t)
]
u3. (3.35)

Here B0, . . . , Bk are certain constant matrices and, in particular,

B0 =
ρ

2

(
−1 0
0 1

)
, B1 =

(
0 1

a(2)21 2q(0)1

)
, B2 =

(
a(2)11

2
3 q(0)1

a(3)21 a(2)22

)
.

Symbols a(2)ij in the above expressions denote the entries of the matrix A2, situated in the
corresponding positions, and symbol a(3)21 denotes the corresponding entry of the matrix A3

from the averaged system (2.30). In what follows we only need the explicit formula for the
entry a(2)21 of the matrix A2. We devote the conclusive part of this section to computation of
this entry. Finally, we note that the remainder term in (3.35), due to (3.33) and (3.34), has the
asymptotic estimate

R3(t) = O
(
t−2)+ O

(
t−(ρ+1))+ O

(
t−(k+1)ρ), t → ∞ (3.36)

and, therefore, belongs to L1[t0, ∞) taking into account (1.5).
We start with the case

ρ = 1.

System (3.35) due to (3.36) gets the form

u̇3 =
[
Wt−1 + O

(
t−2)]u3, (3.37)

where

W = B0 + B1 =

(
− 1

2 1
a(2)21

1
2 + 2q(0)1

)
.

The eigenvalues of the matrix W are

ν1,2 = q(0)1 ± ξ, ξ =

√(
q(0)1 +

1
2

)2
+ a(2)21 . (3.38)

Here the square root is defined according to (3.16). The further asymptotic analysis of system
(3.37) is conducted in the same way as for the case (3.22). Thus, we give here only the final
result with account of the transformation (3.34).

•
(
q(0)1 + 1

2

)2
+ a(2)21 ̸= 0

We have the following asymptotic representation for solutions of Eq. (2.2) as t → ∞:

y(t) = t
1
2+q(0)1

[
c1 exp{ξ ln t}

(
1 + o(1)

)
+ c2 exp{−ξ ln t}

(
1 + o(1)

)]
+ O

(
e−βt),

where c1, c2 are arbitrary, in general, complex constants, β > 0 is a certain real number and
the quantity ξ is defined by formula (3.38).

•
(
q(0)1 + 1

2

)2
+ a(2)21 = 0

In this case the behaviour of solutions of Eq. (2.2) as t → ∞ is described by the asymptotic
formula

y(t) = c1t
1
2+q(0)1

(
1 + o(1)

)
+ c2t

1
2+q(0)1 ln t

(
1 + o(1)

)
+ O

(
e−βt),
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where c1, c2 are arbitrary real constants and β > 0 is a certain real number.
Let

ρ < 1.

System (3.35) takes form (2.35), where

α = ρ, A0 = B1, V(t) = B2t−ρ + · · ·+ Bkt(−k+1)ρ + B0tρ−1, R2(t) = R3(t). (3.39)

The eigenvalues of the matrix A0 = B1 are

ν1,2 = q(0)1 ± κ, κ =

√(
q(0)1

)2
+ a(2)21 , (3.40)

where the square root means (3.16). Further in this paper we study only the case

(
q(0)1

)2
+ a(2)21 ̸= 0, (3.41)

when these eigenvalues are distinct. Provided condition (3.41) holds, system (3.35), due to
Lemma 2.8, can be reduced to L-diagonal form (2.36), where the entries of the diagonal matrix
Λ(t) = diag

(
λ1(t), λ2(t)

)
are the eigenvalues of the matrix

(
A0 + V(t)

)
t−ρ. By (3.39), these

eigenvalues have the following form:

λ1,2(t) = q(0)1 t−ρ ± κt−ρ
(

1 + O
(
t−ρ
)
+ O

(
t2ρ−2)+ O

(
t−1))+ a(2)11 + a(2)22

2
t−2ρ + O

(
t−3ρ

)
.

Here all the terms denoted by the order symbol O(·) are real valued. The asymptotics for the
fundamental matrix of system (3.35) can be constructed according to Theorem 2.9. If we then
return to Eq. (2.2), we get the following asymptotic formulae for its solutions as t → ∞.

If
1
2
< ρ < 1,

we have

y(t) = t
ρ
2 exp

{
q(0)1

1 − ρ
t1−ρ

}[
c1 exp

{
κ

1 − ρ
t1−ρ

} (
1 + o(1)

)
+ c2 exp

{
− κ

1 − ρ
t1−ρ

} (
1 + o(1)

)]
+ O

(
e−βt). (3.42)

If

ρ =
1
2

,

then

y(t) = t
1
4+

a(2)11 +a(2)22
2 exp

{
2q(0)1

√
t
} [

c1 exp
{

2κ
(√

t + O(ln t)
)}

(1 + o(1))

+ c2 exp
{
−2κ

(√
t + O(ln t)

)}
(1 + o(1))

]
+ O

(
e−βt). (3.43)

Finally, if

ρ <
1
2

,
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we obtain

y(t) = t
ρ
2 exp

{
q(0)1

1 − ρ
t1−ρ +

a(2)11 + a(2)22
2(1 − 2ρ)

t1−2ρ + O
(∫

t−3ρdt
)}

×
[

c1 exp
{

κ

1 − ρ
t1−ρ

(
1 + O(t−ρ)

)}
(1 + o(1))

+ c2 exp
{
− κ

1 − ρ
t1−ρ

(
1 + O(t−ρ)

)}
(1 + o(1))

]
+ O

(
e−βt).

(3.44)

Everywhere in these asymptotic formulae c1, c2 are arbitrary, in general, complex constants,
β > 0 is a certain real number and the quantity κ is defined in (3.40).

Computation of the quantity a(2)21 in case (3.29)

It follows from the asymptotic formulae (3.42)–(3.44) that the key role in the oscillation
problem for Eq. (1.1) plays the quantity a(2)21 . It defines, due to (3.16) and (3.40), whether the
number κ is real or pure imaginary. We recall that the quantity a(2)21 is the corresponding
entry of the matrix A2. The latter is defined by formula (2.32) with account of (3.8). First, we
calculate the matrix Y1(t) as the solution of the matrix differential equation (2.33) with zero
mean value. Recalling the form of the matrix D (see (2.18)) and also formulae (3.7), (3.31),
we conclude that the entries yij(t) of the matrix Y1(t) satisfy the following linear differential
system with constant coefficients:

ẏ11 = y21 −
2
3

p1(t), ẏ12 = y22 − y11 +
2
3
(
q(0)1 (t) + p1(t)

)
,

ẏ21 = −2p1(t), ẏ22 = −y21 + 2
(
q(0)1 (t) + p1(t)

)
.

Here
q(0)1 (t) = q1(t)− q(0)1 , (3.45)

function q1(t) is defined in (1.4) (see also (3.3)), and the real number q(0)1 is its mean value
according to (3.5). After some easy calculations we obtain

y11(t) = −2
∫∫

p1(t)(dt)2 − 2
3

∫
p1(t)dt,

y12(t) = 4
∫∫∫

p1(t)(dt)3 +
∫∫ (

2q(0)1 (t) +
8
3

p1(t)
)
(dt)2 +

2
3

∫ (
q(0)1 (t) + p1(t)

)
dt,

y21(t) = −2
∫

p1(t)dt,

y22(t) = 2
∫∫

p1(t)(dt)2 + 2
∫ (

q(0)1 (t) + p1(t)
)

dt.

(3.46)

Symbol
∫

denotes the antiderivative having zero mean value. Further we will use the fol-
lowing relations that can be proved simply by integration by parts. If f (t) is a trigonometric
polynomial (or T-periodic function as well) with zero mean value then the following equalities
hold:

M
[

f (t)
∫∫

f (t)(dt)2
]
= −M

[(∫
f (t)dt

)2]
, M

[
f (t)

∫
f (t)dt

]
= 0,

M
[

f (t)
∫∫∫

f (t)(dt)3
]
= −M

[∫
f (t)dt

∫∫
f (t)(dt)2

]
= 0.

(3.47)
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We recall now (3.7), (3.31) and take into account (3.46), (3.47) to conclude that

M
[
A1(t)Y1(t)

]
= M

[
(A1(t)− A1)Y1(t)

]
=

4
9

(
−3 M

[(∫
p1(t)dt

)2]
+3 M

[
p1(t)

∫
q(0)1 (t)dt

]
M
[(∫

p1(t)dt
)2]

−M
[

p1(t)
∫

q(0)1 (t)dt
]

−9 M
[(∫

p1(t)dt
)2]

+9 M
[

p1(t)
∫

q(0)1 (t)dt
]

3 M
[(∫

p1(t)dt
)2]

−3 M
[

p1(t)
∫

q(0)1 (t)dt
] ).

(3.48)

To calculate the entries of the matrix A2 we also need to find row-vector (3.9). This is done
as follows. We substitute (2.23) in (2.22) and collect terms corresponding to factor t−ρ. With
account of (2.5) and (3.6) we obtain the following problem:

Φ(θ)Ψ(0)
[
q1(t)Φ′(−1)− p1(t)Φ(−1)

]
+ H1(t, θ)D +

∂H1

∂t

=


∂H1

∂θ
, −h ≤ θ < 0,

H1(t, 0)− H1(t,−1) + q1(t)Φ′(−1)− p1(t)Φ(−1), θ = 0.

We apply (2.18) to get the following partial differential system for finding the entries of row-
vector (3.9):

∂h11

∂θ
=

∂h11

∂t
−
(

2
3
+ 2θ

)
p1(t),

∂h12

∂θ
=

∂h12

∂t
+ h11 +

(
2
3
+ 2θ

) (
q1(t) + p1(t)

)
,

(3.49)

where −h ≤ θ < 0. At the point θ = 0 the solution of this system should satisfy the condition

∂h11

∂t
(t, 0) = h11(t, 0)− h11(t,−1)− p1(t)

3
,

∂h12

∂t
(t, 0) = h12(t, 0)− h11(t, 0)− h12(t,−1) +

1
3
(
q1(t) + p1(t)

)
.

(3.50)

Due to (3.3), we seek the solution of (3.49), (3.50) in the form

h11(t, θ) =
N

∑
j=−N

g(j)
1 (θ)eiωjt, h12(t, θ) =

N

∑
j=−N

g(j)
2 (θ)eiωjt, (3.51)

where the infinitely differentiable functions g(j)
1 (θ) and g(j)

2 (θ) belong to subspace QΛ. Hence,
by (2.17), these functions should satisfy the following additional condition:(

Ψ(ξ), g(j)
i (θ)

)
= 0, i = 1, 2, j = −N, . . . , N. (3.52)

Here the bilinear form (·, ·) is defined according to (2.13) and the column-vector Ψ(ξ) has
form (2.18).

It follows from (2.32) and (3.8) that to compute the quantity a(2)21 we need to find only the
function h11(t, θ). We substitute (3.3), (3.51) in (3.49), (3.50) and match the coefficients of the
corresponding exponentials eiωjt. Thus, we get the following boundary value problems for
functions g(j)

1 (θ):

dg(j)
1

dθ
= iωjg

(j)
1 (θ)−

(2
3
+ 2θ

)
p(j)

1 ,

(1 − iωj)g(j)
1 (0)− g(j)

1 (−1) =
p(j)

1
3

, j = −N, . . . , N.

(3.53)
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It is easy to verify that

g(j)
1 (θ) =

(
eiωjθ

1 − iωj − e−iωj
− 2iθ

ωj
−

6 + 2iωj

3ω2
j

)
p(j)

1 , j ̸= 0. (3.54)

If j = 0 then, by (3.4) and (3.29), we have ω0 = 0 and p(0)1 = 0. This yields that the correspond-
ing solution of (3.53) has the form g(0)1 (θ) ≡ c, where c is a certain constant. The quantity c is
uniquely defined from equality (3.52). Finally, we deduce that

g(0)1 (θ) ≡ 0. (3.55)

Therefore, taking into account (2.32), (3.8) and also expression (3.48), we get the following
representation for the quantity a(2)21 :

a(2)21 = −4 M

[(∫
p1(t)dt

)2
]
+ 4 M

[
p1(t)

∫
q(0)1 (t)dt

]
− 2 M [p2(t)]

+ 2 M

[
q1(t)

∂h11

∂θ
(t, θ)

∣∣∣∣
θ=−1

]
− 2 M [p1(t)h11(t,−1)] . (3.56)

Here the function q(0)1 (t) is defined according to (3.45) and the function h11(t, θ) has form
(3.51) with account of (3.54) and (3.55). If we calculate in (3.56) all the mean values and use
(3.4) we obtain the more compact form for a(2)21 . Namely, we conclude that

a(2)21 = 2
N

∑
j=−N

j ̸=0

(
iωj p

(j)
1 q̄(j)

1 −
∣∣p(j)

1

∣∣2)e−iωj

1 − iωj − e−iωj
− 2 M

[
p2(t)

]
. (3.57)

Function p2(t) in this expression is defined by formula (3.2).

4 Conclusions and examples

We begin this section by analyzing the asymptotic formulae obtained in the previous section
as applied to the oscillation problem of Eq. (1.1) with conditions (1.3), (1.4). The results of the
analysis are given in Tables 4.1 and 4.2.

ρ > 2 ρ = 2 ρ < 2

o – p(0)1 >
1
8

p(0)1 > 0

p + p(0)1 ≤ 1
8

p(0)1 < 0

Table 4.1: Case p(0)1 ̸= 0.

In these tables the line titled «o» contains the conditions for existence of oscillatory solu-
tions and the line titled «p» contains the conditions for existence of nonoscillatory (positive)
solutions. Symbol «–» means the situation when the oscillatory solutions are not found by
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ρ > 1 ρ = 1 ρ < 1

o –
(

q(0)1 +
1
2

)2
+ a(2)21 < 0

(
q(0)1

)2
+ a(2)21 < 0

p +
(

q(0)1 +
1
2

)2
+ a(2)21 ≥ 0

(
q(0)1

)2
+ a(2)21 > 0

Table 4.2: Case p(0)1 = 0.

means of the main parts of the asymptotic formulae in the prescribed interval of the parame-
ter ρ (highly likely oscillatory solutions don’t exist at all). Symbol «+» stands for the situation
when there exist nonoscillatory (positive) solutions for all values of the parameter ρ in the
prescribed interval. In all the other positions of these tables the conditions for existence of
oscillatory and nonoscillatory (positive) solutions of Eq. (1.1) in the prescribed intervals of the
parameter ρ are collected. We also remind that the real numbers p(0)1 , q(0)1 are defined in (3.5)
and the real number a(2)21 is described by formula (3.57) with account of (3.2) and (3.3).

We now demonstrate the obtained results by a number of illustrating examples.

Example 4.1. In paper [13] the authors illustrate the obtained criteria for existence of the
positive solutions by the following equation:

dx̂
ds

= −â(s)x̂
(

s − c − d
s

)
, (4.1)

where c, d > 0. It is claimed that if

â(s) ≤ 1
ec

− d
ec2 · 1

s
+

1
e
·
(

d2

c3 +
c
8

)
· 1

s2 + o
(

1
s2

)
(4.2)

or

â(s) ≤ 1
ec

− d
ec2 · 1

s
+

1
e
·
(

d2

c3 +
d
2c

)
· 1

s2 + o
(

1
s2

)
(4.3)

as s → ∞ then Eq. (4.1) has positive solution.
We consider the case when function â(s) in Eq. (4.1) has the following asymptotic repre-

sentation as s → ∞:

â(s) =
1
ec

+ â1(s)s−1 + â2(s)s−2 + O(s−3), (4.4)

where â1(s), â2(s) are real-valued trigonometric polynomials. In particular,

â1(s) =
N

∑
j=−N

â(j)
1 eiωjs, (4.5)

and, besides,

â(−j)
1 = â(j)

1 , ω−j = −ωj (ωl ̸= ωl , l ̸= m), j = 1, . . . , N.

In Eq. (4.1) we make the change of independent variable s = tc that transforms it to form (1.1),
where

x(t) = x̂(ct), a(t) = câ(tc), τ(t) = 1 +
d
c2 · 1

t
. (4.6)
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Due to (4.4) and (4.6), we conclude that in the considered case the coefficients in the expansions
(1.3), (1.4) have the following form:

a1(t) = â1(tc), a2(t) =
â2(tc)

c
, q1(t) ≡

d
c2 , qm(t) ≡ 0, m ≥ 2 (4.7)

and ρ = 1. It follows from (3.5) with account of (3.2) that

p(0)1 = ea(0)1 + q(0)1 , q(0)1 =
d
c2 ,

where
a(0)1 = M

[
a1(t)

]
= â(0)1 , â(0)1 = M

[
â1(s)

]
.

We deduce from Table 4.1 that equation (4.1), (4.4) has oscillatory solutions if

â(0)1 > − d
ec2

and positive solutions if

â(0)1 < − d
ec2 .

We also need to study the case when p(0)1 = 0, i.e.,

â(0)1 = − d
ec2 .

By (3.2) and (4.7), we have

M
[
p2(t)

]
= ea(0)2 +

d2

2c4 + ea(0)1 · d
c2 = ea(0)2 − d2

2c4 ,

where

a(0)2 = M [a2(t)] =
â(0)2

c
, â(0)2 = M [â2(s)] . (4.8)

We then compute quantity (3.57) using (3.2), (4.5), (4.7) and (4.8). We obtain

a(2)21 = −2e2
N

∑
j=−N

j ̸=0

∣∣∣â(j)
1

∣∣∣2 e−icωj

1 − icωj − e−icωj
− 2eâ(0)2

c
+

d2

c4 .

It follows from Table 4.2 that equation (4.1), (4.4) has oscillatory solutions if

â(0)2 >
1
e

(
d2

c3 +
d
2c

+
c
8

)
− ec

N

∑
j=−N

j ̸=0

∣∣∣â(j)
1

∣∣∣2 e−icωj

1 − icωj − e−icωj
(4.9)

and positive solutions if

â(0)2 ≤ 1
e

(
d2

c3 +
d
2c

+
c
8

)
− ec

N

∑
j=−N

j ̸=0

∣∣∣â(j)
1

∣∣∣2 e−icωj

1 − icωj − e−icωj
. (4.10)
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We now consider the special case when the following identity holds in (4.4):

â1(s) ≡ â(0)1 = − d
ec2 . (4.11)

In this situation formulae (4.9), (4.10) take the simple form. It is easily seen that in this case
equation (4.1), (4.4) with the coefficient â1(s) described by (4.11) has oscillatory solutions if

â(0)2 >
1
e

(
d2

c3 +
d
2c

+
c
8

)
and positive solutions if

â(0)2 ≤ 1
e

(
d2

c3 +
d
2c

+
c
8

)
.

This fact allows us to propose the hypothesis that the condition for existence of positive
solutions in Eq. (4.1) is described by the inequality

â(s) ≤ 1
ec

− d
ec2 · 1

s
+

1
e
·
(

d2

c3 +
d
2c

+
c
8

)
· 1

s2 + o
(

1
s2

)
, s → ∞, (4.12)

instead of (4.2) and (4.3).

Example 4.2. This example concerns equation (1.1), where

a(t) =
1
e

(
1 +

K(sin2 πt − γ)

tρ

)
, 0 < ρ ≤ 2, τ(t) ≡ 1, (4.13)

and K > 0, γ ∈ R. Equation (1.1), (4.13) was considered in [15, 17]. In [17], this equation
was studied provided that γ = 0. In this case it was shown that all solutions of this equation
oscillate if K > 0 and 0 ≤ ρ < 2, and also if K > 1 and ρ = 2. If K < 1

8 and ρ = 2, then equation
(1.1), (4.13) has nonoscillatory solution. In paper [15], equation (1.1), (4.13) was studied in the
case ρ = 2. It was shown that if γ < 1

2 and K > 1
4(1−2γ)

then all solutions of this equation
oscillate. In particular, the authors improved the results from [17] for the case γ = 0.

We write (4.13) in form (1.3), (1.4) and obtain

a1(t) =
K
e
(
sin2 πt − γ

)
, q1(t) ≡ 0, am(t) = qm(t) ≡ 0, m ≥ 2.

We deduce from (3.2) and (3.5) that

p1(t) = K
(
sin2 πt − γ

)
= K

(
1
2
− γ

)
− K

2
cos 2πt, p2(t) ≡ 0 (4.14)

and

p(0)1 = M [p1(t)] = K
(

1
2
− γ

)
, q(0)1 = M [q1(t)] = 0. (4.15)

It follows from Table 4.1 that if ρ = 2 then equation (1.1), (4.13) has oscillatory solutions
provided that inequality 4K(1 − 2γ) > 1 holds and positive solutions if 4K(1 − 2γ) ≤ 1.
Parameter γ in these inequalities may take all the values except γ = 1

2 . If 0 < ρ < 2 then
the considered equation has oscillatory solutions if γ < 1

2 and positive solutions if γ > 1
2 .

Parameter K may take all the positive values.
The more difficult case occurs when

γ =
1
2

, (4.16)
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since we have p(0)1 = 0. We calculate coefficients in (3.3) with account of (4.14), (4.16) and
conclude that

N = 1, p(1)1 = p(−1)
1 = −K

4
, ω1 = 2π, ω−1 = −2π. (4.17)

We compute quantity (3.57) using (4.17) to get

a(2)21 = −K2

8

(
e2πi

1 + i2π − e2πi
+

e−2πi

1 − i2π − e−2πi

)
= 0. (4.18)

We then deduce from Table 4.2 that equation (1.1), (4.13) under condition (4.16) has nonoscil-
latory solutions for all values of the parameter K > 0 if 1 < ρ ≤ 2. If ρ = 1 then, by (4.15), we
also conclude that this equation has nonoscillatory solutions for all values of the parameter
K > 0.

Unfortunately, the obtained results don’t allow us to analyze the oscillation problem for
equation (1.1), (4.13) under condition (4.16) for the case ρ < 1. In this situation condition
(3.41), under which the asymptotic representations were constructed in this paper, fails. Nev-
ertheless, certain advance in the analysis of the oscillation problem for this case can still be
made. Note that in relation to the studied equation system (3.35) in the case ρ < 1 takes the
following form:

u̇3 =
[

B1t−ρ + B0t−1 + O
(
t−2ρ

)]
u3. (4.19)

Here matrices B0, B1 with account of (4.15), (4.18) are described by the formulae

B0 =
ρ

2

(
−1 0
0 1

)
, B1 =

(
0 1
0 0

)
.

We make the change of variable

u3 =

(
1 1
0 ρtρ−1

)
u4

to reduce system (4.19) to form (2.35) for new unknown variable u4(t), where

α = 1, A0 =

(
− ρ

2 ρ − 1
0 1 − ρ

2

)
, V(t) ≡ 0, R2(t) = O

(
t1−3ρ

)
.

We remark that the eigenvalues of the matrix A0 are distinct and the remainder term R2(t)
belongs to L1[t0, ∞) if ρ > 2

3 . Thus, we can bring the obtained system to L-diagonal form (2.36)
by certain transformation with constant coefficients and then apply Levinson’s Theorem to get
the asymptotics for its fundamental matrix. Some easy calculations show that in this situation
we obtain the asymptotic representation (3.13) for solutions of Eq. (2.2) as t → ∞. Hence,
equation (1.1), (4.13) under condition (4.16) has nonoscillatory solutions for all the values of
the parameter K > 0 if 2

3 < ρ < 1. Evidently, to study the case ρ ≤ 2
3 under condition (4.16)

we need to compute the entries of the matrix B2 in system (3.35).

Example 4.3. Our last example deals with equation (1.1), where

a(t) =
1
e
+

a sin ωt
tρ

, τ(t) = 1 +
b sin ωt

tρ
, ρ > 0 (4.20)

and a, b ∈ R, ω > 0. Therefore,

a1(t) = a sin ωt, q1(t) = b sin ωt, am(t) = qm(t) ≡ 0, m ≥ 2.
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It follows from (3.2) and (3.5) that

p1(t) = (ea + b) sin ωt, p2(t) =
(

b2

2
+ eab

)
sin2 ωt (4.21)

and, moreover,

p(0)1 = M [p1(t)] = 0, q(0)1 = M [q1(t)] = 0, p(0)2 = M [p2(t)] =
b2

4
+

eab
2

. (4.22)

By calculating coefficients in (3.3) with account of (4.21), we get

N = 1, p(1)1 = −p(−1)
1 =

ea + b
2i

, q(1)1 = −q(−1)
1 =

b
2i

, ω1 = −ω−1 = ω.

We then compute quantity (3.57) and conclude that

a(2)21 = 2
(

iωe−iω

1 − iω − e−iω
− iωeiω

1 + iω − eiω

)
(ea + b)b

4

− 2
(

e−iω

1 − iω − e−iω
+

eiω

1 + iω − eiω

)
(ea + b)2

4
−
(

b2

2
+ eab

)
.

We can write this expression in the real form. In particular, we used the mathematical package
Wolfram Mathematica to obtain the following real-valued expression:

a(2)21 = −
(2eab + b2)ω2 − 2e2a2 + 2

(
e2a2 + (eab + b2)ω2) cos ω − 2ω

(
b2 − e2a2 + eab

)
sin ω

2 (ω2 − 2ω sin ω − 2 cos ω + 2)
.

(4.23)

If we consider the quantity a(2)21 as the function of ω we can write the following limit
relations (again we used Wolfram Mathematica):

a(2)21 = −2(ea + b)2

ω2 +
1
18
(
7e2a2 + 20eab + 22b2)+ O

(
ω2) , ω → 0, (4.24)

a(2)21 = −1
2
(
2eab + b2)− (eab + b2) cos ω + O

(
ω−1

)
, ω → ∞. (4.25)

In particular, we conclude from (4.25) that a(2)21 as the function of ω is asymptotically 2π-
periodic as ω → ∞. In Fig. 4.1 we give the graph of quantity a(2)21 as the function f (ω) =

a(2)21 (ω) for the values of parameters a = b = 1.
To obtain the conditions for existence of oscillatory or nonoscillatory solutions of (1.1),

(4.20) we can use Table 4.2 with account of (4.22) and (4.23). In particular, if ρ ≤ 1 then
it follows from (4.24) that for all sufficiently small ω equation (1.1), (4.20) has oscillatory
solutions for all the values of parameters a, b ∈ R not simultaneously equal to zero.

It is highly likely that the obtained results are still valid in the case when aj(t), qj(t),
j = 1, . . . , k + 1 in (1.3), (1.4) are sufficiently smooth ω-periodic functions. In this situation
the periodic coefficients are described in terms of the infinite Fourier series having form (3.3)
with N = +∞. Of course, the problem of convergence of the corresponding series (2.24) and
its partial derivatives arises in these case. This question is not discussed here.

In conclusion we note that the oscillation problem in critical case can be also studied for
the difference analog of equation (1.1):

∆y(n) = −g(n)y(n − k), k ∈ N,

where g(n) > 0 for all n ∈ N. The corresponding results are discussed in paper [28].
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Figure 4.1: The graph of the quantity a(2)21 , defined by (4.23), as the function
f (ω) = a(2)21 (ω) for the values of parameters a = b = 1.
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