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1 Introduction

Several applied problems are modeled by non-delay systems. Non-delay systems are gov-
erned by the assumption that the future evolution of the system is determined by the present
state. Moreover, it is independent of the past states. In reality, such an assumption is the only
a first approximation to the real system. A more realistic model assumes that the evolution
of the future states depends not only on the current state but also on their past history. Delay
differential equations (DDEs) (also called hereditary systems, systems with aftereffect, func-
tional differential equations, retarded differential equations, differential difference equations)
provide an appropriate model for physical processes whose time evolution depends on their
history.

The stochastic delay differential equations (SDDEs) have been extensively used in many
branches of physics, biology, as well as in dynamical structures in engineering, mechanics, au-
tomatic regulation, economy finance, ecology, sociology, medicine, etc. The stability of SDDEs
has become a very prevalent theme of recent research in Mathematics and its applications. An
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important direction in the study of equations with delays is the analysis of stability. The cor-
responding study of the stability properties of solutions has received much attention during
the last decades. The reader is referred to [15, 16, 20–22, 24], for more details.

As it is well known, in the case without any hereditary features, Lyapunov’s technique
is available to obtain sufficient conditions for the stability of the solutions of stochastic dif-
ferential equations. These sufficient conditions are obtained using the construction of some
Lyapunov functions of functionals, being the latter a method which provides better conditions
than using Lyapunov functions. Moreover, the construction of Lyapunov functionals is more
complicated as Krasovskii [19] pointed out.

In this us, the construction of different Lyapunov functionals for one SDDEs allows to
establish several stability conditions for the solution of this equation. There exist numerous
works that tackle the construction of Lyapunov functionals for a wide range of equations
containing some hereditary properties, see [10, 17, 23].

Several fundamental variants to Lyapunov’s original concepts of practical stability were
introduced in [1–6, 9, 11, 12]. When the origin is not necessarily an equilibrium point, we can
study the asymptotic stability of solutions of the SDDEs in a small neighborhood of the origin.
In the investigation of the asymptotic behavior of solutions to stochastic differential systems,
one can find that a solution is asymptotically stable but may not necessarily exponentially
stable. Further, in the nonlinear and/or nonautonomous situations, it may happen that the
stability cannot always be exponential but can be sub or super-exponential, see [7, 8]. For
this reason, the main aim of this paper is to discuss the almost sure practical stability with a
general decay rate of stochastic delay differential equations.

The general method of Lyapunov functionals construction, which was proposed by V.
Kolmanovskii and L. Shaikhet [17,18,23], is used here for stochastic differential equations with
delay. This approach has already been successfully used for functional differential equations,
for difference equations with discrete time, for difference equations with continuous time.
Our interest in this paper is to investigate the practical stability with a general decay rate of
stochastic differential equations with constant and time-varying delay by using the general
method of Lyapunov functionals construction.

In [11], Caraballo et al. investigated the practical convergence to zero with a general decay
rate of stochastic delay evolution equation by using Lyapunov functions. To the best of our
knowledge, no work has been published about the practical stability of SDDEs in the literature
by using Lyapunov functionals, which is our research topic in our paper. The novelty of our
work is to investigate the practical convergence to a small ball centered at the origin with a
general decay rate in terms of the existence and construction of Lyapunov functionals. Further-
more, we construct Lyapunov functionals for stochastic differential equations with constant
and time-varying delay to obtain sufficient conditions ensuring the practical convergence to a
small ball centered at the origin with a general decay rate. The contents of this paper are as
follows: in Section 2, we introduce the necessary notations and preliminaries. In Section 3,
we establish several sufficient criteria for almost sure practical stability of the stochastic delay
systems with a general decay rate utilizing Lyapunov’s functional. In Section 4, we aim to
analyze the almost sure practical stability with a general decay rate of stochastic differential
equations with constant and time-varying delay by constructing suitable Lyapunov function-
als. Moreover, we exhibit some examples to illustrate the theoretical findings. Eventually,
some conclusions are included in the last section.
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Notations

Throughout this paper, unless otherwise specified, we use the following notations.
Let {Ω,F , P} be a complete probability space with a filtration {Ft}t≥0 satisfying the usual

conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets). Let
B(t) = (B1(t), . . . , Bm(t)) be an m-dimensional Brownian motion defined on the probability
space. Let R+ = [0,+∞) and τ > 0. We denote by C([−τ, 0], Rn) the family of all con-
tinuous functions from [−τ, 0] to Rn with the norm ∥φ∥ = sup−τ≤θ≤0 |φ(θ)|. Let p > 0,
and denote by Lp

Ft
([−τ, 0], Rn) the family of all Ft-measurable C([−τ, 0], Rn)-valued random

variables ξ, such that E(∥ξ∥p) < ∞. If x(t) is a continuous Rn-valued stochastic process on
t ∈ [−τ,+∞), for each t ≥ 0 we define xt by xt(θ) = x(t + θ) : −τ ≤ θ ≤ 0 for t ≥ 0, which is
a C([−τ, 0], Rn)valued process.

Let us consider the following n-dimensional stochastic differential delay equation (SDDE):

dx(t) = F(t, xt)dt + G(t, xt)dB(t), t ≥ 0, (1.1)

where F : [0,+∞)× C([−τ, 0], Rn) → Rn, G : [0,+∞)× C([−τ, 0], Rn) → Rn×m.

We assume that there exits t ∈ R+, such that F(t, 0) ̸= 0 or G(t, 0) ̸= 0, i.e., the stochastic
differential delay equation (1.1) does not have the trivial solution x ≡ 0.

In order to solve equation (1.1), we require to know the initial data, then we assume that
they are given by

x0 = ξ, i.e., x0(θ) = ξ(θ) = x(θ), ∀θ ∈ [−τ, 0], (1.2)

where ξ is a C([−τ, 0], Rn)− valued random variable such that E(∥ξ∥2) < ∞.

For the well-posedness of system (1.1), we impose the following assumptions.

Assumptions:

1. A local Lipschitz condition:

For every real number T > 0 and integer i ≥ 1, there exists a positive constant KT,i, such
that for all t ∈ [0, T] and all φ, φ̄ ∈ C([−τ, 0], Rn) with ∥φ∥ ∨ ∥φ̄∥ ≤ i,

∥F(t, φ)− F(t, φ̄)∥2 ∨ ∥G(t, φ)− G(t, φ̄)∥2 ≤ KT,i (∥φ − φ̄∥2).

2. A linear growth condition:

For every real number T > 0, there exists a positive constant KT, such that for all
t ∈ [0, T] and all φ ∈ C([−τ, 0], Rn),

∥F(t, φ)∥2 ∨ ∥G(t, φ)∥2 ≤ KT (1 + ∥φ∥2).

Then, under assumptions (1) and (2), the stochastic differential delay equation (1.1) with the
given initial data (1.2) has a unique global solution x(·) = x(·, 0, ξ) ∈ M2([−τ,+∞), Rn), (see
Mao [21], for more details). Moreover, x(·) satisfies the following integral equation:x(t) = ξ(0) +

∫ t

0
F(s, xs)ds +

∫ t

0
G(s, xs)dB(s), a.s., and

x(t) = ξ(t), t ∈ [−τ, 0].
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To calculate the stochastic differential of the process η(t) = v(t, x(t)), where x(t) is a
solution of the SDDE (1.1), and the function v : [0,+∞)× Rn → R+ has continuous partial
derivatives

vt(t, x) =
∂v
∂t

(t, x); vx(t, x) =
(

∂v
∂x1

(t, x), . . . ,
∂v
∂xn

(t, x)
)

; vxx(t, x) =
(

∂2v
∂xi∂xj

(t, x)
)

n×n
.

The following Itô’s formula [14] is used:

dη(t) = Lv(t, x(t))dt + vx(t, x(t))G(t, xt)dB(t).

The operator Lv is called the generator of (1.1) and is defined in the following way:

Lv(t, x(t)) = vt(t, x(t)) + vx(t, x(t))F(t, xt) +
1
2

trace
(

GT(t, xt)vxx(t, x(t))G(t, xt)
)

.

The generator L can be applied also for some functionals V(t, φ): [0,+∞)×C([−τ, 0], Rn)→
R+. Suppose that a functional V(t, φ) can be represented in the form V(t, φ(0), φ(θ)), θ < 0,
and for φ = xt, put

Vφ(t, x) = V(t, φ) = V(t, xt) = V(t, x, x(t + θ)), θ < 0,

x = φ(0) = x(t). (1.3)

Denote by D the set of the functionals for which the function Vφ(t, x) defined by (1) has a
continuous derivative with respect to t and two continuous derivatives with respect to x (see
[23]). For functionals from D, the generator L of (1.1) has the following form:

LV(t, xt) = Vφt(t, x(t)) + Vφx(t, x(t))F(t, xt) +
1
2

trace
(

GT(t, xt)Vφxx(t, x(t))G(t, xt)
)

.

From the Itô formula it follows that for a functional V from D,

dV(t, xt) = LV(t, xt)dt + Vφx(t, x(t))G(t, xt)dB(t).

The following lemma is known as the exponential martingale inequality, and will be useful
in our analysis.

Lemma 1.1 (See [21]). Let g = (g1, . . . , gm) ∈ L2(R+, Rm), and let τ, µ, η be any positive numbers.
Then,

P

(
sup

0≤t≤τ

[∫ t

0
g(s)dBs −

µ

2

∫ t

0
∥g(s)∥2ds

]
> η

)
≤ exp(−µη).

2 Practical stability of stochastic delay equations

First, we define the practical uniform exponential stability of a stochastic delay equation.

Definition 2.1.

i) The ball Br := {x ∈ Rn : ∥x∥ ≤ r}, r > 0 is said to be almost surely globally uniformly
exponentially stable, if for any initial data ξ ∈C([−τ, 0], Rn), such that 0< ∥x(t, 0, ξ)∥−r,
for all t ≥ 0,

lim
t→+∞

sup
1
t

ln(∥x(t, 0, ξ)∥ − r) < 0, a.s.
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ii) The system (1.1) is said to be almost surely practically uniformly exponentially stable, if
there exists r > 0, such that Br is almost surely uniformly exponentially stable.

Now, we state the definition of practical convergence to the ball Br with a general decay
function λ(t).

Definition 2.2. Let λ(t) be a positive function defined for sufficiently large t > 0, such that
λ(t) → +∞ as t → +∞. A solution x(t) to system (1.1) is said to decay to the ball Br

almost surely practically with decay function λ(t) and order at least γ > 0, if its generalized
Lyapunov exponent is less than or equal to −γ with probability one, i.e.,

lim
t→+∞

sup
ln(∥x(t, 0, ξ)∥ − r)

ln λ(t)
≤ −γ, a.s.

If in addition, 0 is a solution to system (1.1), the zero solution is said to be almost surely
practically asymptotically stable with decay function λ(t) and order at least γ, if every solution
to system (1.1) decays to the ball Br almost surely practically with decay function λ(t) and
order at least γ, for all r > 0 sufficiently small.

Remark 2.3. Clearly, replacing in the above definition, the decay function λ(t) by O(et) leads
to the almost sure practical exponential stability.

Remark 2.4. Here we should mention that in [11] we establish sufficient conditions for prac-
tical decay to zero by using Lyapunov functions but now we will use Lyapunov functionals
and decay to ball Br.

Now, we aim to prove the practical stability of stochastic differential delay equations with
general decay rate in terms of Lyapunov functionals.

Theorem 2.5. Let V : R+ × C([−τ, 0], Rn) → R+ be a functional from D. Assume that ln λ(t) is
uniformly continuous on t ≥ 0, and there exists a constant σ ≥ 0, such that

lim
t→+∞

ln ln t
ln λ(t)

≤ σ.

Let x(·) = x(·, 0, ξ) be a solution to system (1.1) and assume that there exist constants q ∈ N⋆, m ≥
0, β1 ∈ R, β2 ≥ 0, a non-increasing function ϕ(t) > 0 and a continuous non-negative function ψ(t),
such that, for all t ≥ 0, the following assumptions hold:

(H1) λm(t)∥x(t)∥q ≤ V(t, xt).

(H2)
∫ t

0
LV(s, xs)ds +

∫ t

0
ϕ(s)∥Vx(s, xs)G(s, xs)∥2ds ≤

∫ t

0
ψ(s)λm(s)∥x(s)∥qds + ρ(t),

where ρ(t) is a continuous non-negative function.

(H3)
lim

t→+∞
sup

∫ t
0 ψ(s)ds
ln λ(t)

≤ β1,

lim
t→+∞

inf
ln ϕ(t)
ln λ(t)

≥ −β2,

lim
t→+∞

ρ(t)
λm(t)

= υ > 0.
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(H4)
∥x(t, 0, ξ)∥ >

(
ρ(t)

λm(t)

) 1
q

, for all t ≥ 0.

Then,

lim
t→+∞

sup

ln

(
∥x(t, 0, ξ)∥ −

(
ρ(t)

λm(t)

) 1
q
)

ln λ(t)
≤ − [m − (β1 + (β2 + σ) ∨ m)] , a.s.

Proof. Observe that we have

λm(t)∥x(t)∥q − ρ(t) = λm(t)
(
∥x(t)∥q − ρ(t)

λm(t)

)

= λm(t)

∥x(t)∥q −
((

ρ(t)
λm(t)

) 1
q
)q .

Using the inequality

aq − bq = (a − b)(aq−1 + aq−2b + aq−3b2 + · · ·+ a0bq−1),

we conclude

λm(t)∥x(t)∥q − ρ(t) = λm(t)

∥x(t)∥q −
((

ρ(t)
λm(t)

) 1
q
)q

= λm(t)

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q
)

×

∥x(t)∥q−1 + ∥x(t)∥q−2
(

ρ(t)
λm(t)

) 1
q

+ · · ·+
(

ρ(t)
λm(t)

) q−1
q


= λm(t)

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q
)

q

∑
k=1

∥x(t)∥q−k
(

ρ(t)
λm(t)

) k−1
q

.

From condition (H3), we have limt→+∞
ρ(t)

λm(t) = υ > 0. That is, for 0 < υ0 < υ, there exits

T̄ ≥ 0, such that ρ(t)
λm(t) ≥ υ0 for all t ≥ T̄. Then, as we are assuming that ∥x(t)∥ >

( ρ(t)
λm(t)

) 1
q , for

all t ≥ 0, it holds

q

∑
k=1

∥x(t)∥q−k
[

ρ(t)
λm(t)

] k−1
q

= ∥x(t)∥q−1 + ∥x(t)∥q−2
[

ρ(t)
λm(t)

] 1
q

+ · · ·+
[

ρ(t)
λm(t)

] q−1
q

≥ υ′ = q (υ0)
(q−1)/q , ∀t ≥ T̄ ≥ 0.

Therefore,

λm(t)∥x(t)∥q − ρ(t) ≥ λm(t)

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q
]

υ′, for all t ≥ T̄ ≥ 0.
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Hence, we see that

V(t, xt) ≥ λm(t)∥x(t)∥q ≥ λm(t)∥x(t)∥q − ρ(t)

≥ λm(t)

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q
]

υ′.

That is,

υ′λm(t)

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q
]
≤ V(t, xt),

and,

ln υ′ + ln

[
λm(t)

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q
]]

≤ ln [V(t, xt)] .

Consequently, it follows that

ln υ′ + m ln λ(t) + ln

[
∥x(t)∥ −

[
ρ(t)

λm(t)

] 1
q
]
≤ ln [V(t, xt)] , ∀t ≥ T̄ ≥ 0.

Applying the Itô formula, we obtain

V(t, xt) = V(0, x0) +
∫ t

0
LV(s, xs)ds +

∫ t

0
Vx(s, xs)G(s, xs)dB(s). (2.1)

Based upon the uniform continuity of ln λ(t), we can ensure that for each ε > 0 there exists
two positive integers N = N(ε) and k1(ε), such that if k−1

2N ≤ t ≤ k
2N , k ≥ k1(ε), it follows that∣∣∣∣ln λ

(
k

2N

)
− ln λ(t)

∣∣∣∣ ≤ ε.

On the other side, owing to the exponential martingale inequality from Lemma 1.1, we have

P

{
ω : sup

0≤t≤τ

[
M(t)− µ

2

∫ t

0
∥Vx(s, xs)G(s, xs)∥2ds

]
> η

}
≤ e−µη ,

for any positive constants µ, η and τ, where

M(t) =
∫ t

0
Vx(s, xs)G(s, xs)dB(s).

In particular, for the preceding ε > 0, we set

µ = 2ϕ

(
k − 1
2N

)
, η = ϕ

(
k − 1
2N

)−1

ln
k − 1
2N , τ =

k
2N , k = 2, 3, . . .

Then, we apply the well-known Borel–Cantelli lemma to obtain that, for almost all ω ∈ Ω,
there exists an integer k0 = k(ε, ω) > 0, such that

M(t) ≤ ϕ

(
k − 1
2N

)−1

ln
k − 1
2N + ϕ

(
k − 1
2N

) ∫ t

0
∥Vx(s, xs))G(s, xs)∥2ds

≤ ϕ

(
k − 1
2N

)−1

ln
k − 1
2N +

∫ t

0
ϕ(s)∥Vx(s, xs)G(s, xs)∥2ds,
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for 0 ≤ t ≤ k
2N , k ≥ k0(ε, ω).

Substituting the last inequality into Eq. (2.1), we obtain

V(t, xt) ≤ V(0, x0) + ϕ

(
k − 1
2N

)−1

ln
k − 1
2N +

∫ t

0
LV(s, xs)ds +

∫ t

0
ϕ(s)∥Vs(s, xs)G(s, xs)∥2ds,

for 0 ≤ t ≤ k
2N , k ≤ k0(ε, ω).

Using conditions (H1) and (H2), it follows that

V(t, xt) ≤ V(0, x0) + ϕ

(
k − 1
2N

)−1

ln
k − 1
2N + ρ(t) +

∫ t

0
ψ(s)λm(s)∥x(s)∥qds

≤ V(0, x0) + ϕ

(
k − 1
2N

)−1

ln
k − 1
2N + ρ(t) +

∫ t

0
ψ(s)V(s, xs)ds,

for 0 ≤ t ≤ k
2N , k ≥ k0(ε, ω).

Applying now the Gronwall lemma [13],

V(t, xt) ≤
(

V(0, x0) + ϕ

(
k − 1
2N

)−1

ln
k − 1
2N + ρ(t)

)
exp

(∫ t

0
ψ(s)ds

)
. (2.2)

Based upon condition (H3) we have that, for any ε > 0, limt→+∞ sup
∫ t

0 ψ(s)ds
ln λ(t) < β1 + ε, and

limt→+∞ inf ln ϕ(t)
ln λ(t) > −β2 − ε. Thanks also to the uniform continuity of ln λ(t), there exists a

positive integer k1(ε), such that whenever t ≥ k1(ε),∫ t

0
ψ(s)ds ≤ (β1 + ε) ln λ(t),

ϕ

(
k − 1
2N

)−1

≤ ϕ(t) ≤ λ(t)β2+ε,

for k−1
2N ≤ t ≤ k

2N , k ≥ k1(ε).
Furthermore, we have

ln
k − 1
2N ≤ ln t ≤ ln

k
2N , for

k − 1
2N ≤ t ≤ k

2N .

Based on inequality (2.2), and the standing assumptions, we obtain for almost all ω ∈ Ω,

ln V(t, xt) ≤ ln
(

V(0, x0) + λ(t)β2+σ+2ε + ρ(t)
)
+ (β1 + ε) ln λ(t),

for k−1
2N ≤ t ≤ k

2N , k ≥ k1(ε).
Hence, we deduce that

lim
t→+∞

sup
ln V(t, xt)

ln λ(t)
≤ (β2 + σ + 2ε) ∨ m + β1 + ε, a.s.

Recall that, for t ≥ T̄ ≥ 0 and q ∈ N⋆, we have

ln

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q
)

≤ ln V(t, xt)− m ln λ(t)− ln υ′.
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Taking into account that ε > 0 is arbitrary, we derive that,

lim
t→+∞

sup

ln

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q
)

ln λ(t)
≤ − [m − (β1 + (β2 + σ) ∨ m)] , a.s.,

as required.

In the next corollary, we will deduce the practical convergence to the ball Br with a general
decay rate of stochastic differential delay equations.

Corollary 2.6. Let V : R+ × C([−τ, 0], Rn) → R+ be a functional from D. Assume that ln λ(t) is
uniformly continuous on t ≥ 0, and there exists a constant σ ≥ 0, such that

lim
t→+∞

ln ln t
ln λ(t)

≤ σ.

Let x(·) = x(·, 0, ξ) be a solution to system (1.1), and assume that there exist constants q ∈ N⋆, m ≥
0, β1 ∈ R, β2 ≥ 0, a non–increasing function ϕ(t) > 0 and a continuous non–negative function
ψ(t), such that for all t ≥ 0, assumptions (H1)–(H4) are satisfied. Then, if in addition there exists
υ̃ > υ > 0, such that ∥x(t, 0, ξ)∥ > υ̃ for all t ≥ 0, it follows

lim
t→+∞

sup
ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
q
)

ln λ(t)
≤ −γ, ; a.s.,

where γ = m − (β1 + (β2 + σ) ∨ m).
In particular, if m > β1 + (β2 + σ) ∨ m, then the solution to system (1.1) decays to the ball Br,

with r = (υ̃)
1
q almost surely practically with decay function λ(t) and order at least γ.

Remark 2.7. Observe that the condition m > β1 + (β2 + σ) ∨ m (or equivalently γ > 0) in the
corollary holds in the following cases:

• If β2 + σ ≤ m, then the condition becomes m > β1 + m. Therefore, this requires β1 < 0.

• If β2 + σ > m, then the condition turns to m > β1 + β2 + σ which again requires β1 < 0.
As a conclusion, the condition ensuring that γ is positive requires that β1 < 0, and this
implies that when β2 + σ ≤ m, then γ > 0, and when β2 + σ > m, then β1 must be
smaller than m − β2 − σ.

Proof. From Theorem 2.5, it follows that

lim
t→+∞

sup

ln

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q
)

ln λ(t)
≤ −γ, a.s.

Since, we have limt→+∞
ρ(t)

λm(t) = υ < υ̃, then there exists T̄ ≥ 0, such that ρ(t)
λm(t) ≤ υ̃, for all

t ≥ T̄ ≥ 0. Hence, we obtain

lim
t→+∞

sup
ln
(
∥x(t)∥ − (υ̃)

1
q
)

ln λ(t)
≤ lim

t→+∞
sup

ln

(
∥x(t)∥ −

(
ρ(t)

λm(t)

) 1
q
)

ln λ(t)
≤ −γ, textrma.s.

Hence, if m > β1 + (β2 + σ) ∨ m, then the solution to system (1.1) decays to the ball Br,

with r = (υ̃)
1
q almost surely practically with decay function λ(t) and order at least γ.
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Example 2.8. Consider the following one dimensional stochastic differential delay equation
with constant time delay.dx(t) =

[
− b + 1

2(1 + t)
x(t) +

1
1 + t

x(t − τ)

]
dt + (1 + t)−

1
2 dB(t), t ≥ 0,

x(t) = ξ(t), t ∈ [−τ, 0],
(2.3)

where b ∈ R+, B(t) is a one-dimensional Brownian motion and τ is a positive constant.
Define for Φ ∈ C([−τ, 0], R):

F(t, Φ) = − b + 1
2(1 + t)

Φ(0) +
1

1 + t
Φ(−τ), G(t, Φ) = (1 + t)−

1
2 , t ≥ 0.

Now, we proceed to investigate the practical stability with a general decay rate of system
(2.3) by using a Lyapunov functional.

Consider the following functional,

V(t, xt) := (1 + t)|x(t)|2 +
∫ t

t−τ
|x(u)|2du.

Then, it is easy to check that for arbitrary α > 1, ϕ(t) = b
4(1+t)α , we have∫ t

0
LV(s, xs)ds +

∫ t

0

b
4(1 + s)α

|Vx(s, xs)G(s, xs)|2ds

≤
∫ t

0
ds −

∫ t

0
b|x(s)|2ds +

∫ t

0
2|x(s)||x(s − τ)|ds

+
∫ t

0
|x(s)|2ds −

∫ t

0
|x(s − τ)|2ds +

∫ t

0

b
(1 + s)α−2 |x(s)|

2ds

≤
∫ t

0
ds +

∫ t

0
(1 − b)|x(s)|2ds +

∫ t

0
|x(s − τ)|2ds

+
∫ t

0
|x(s)|2ds −

∫ t

0
|x(s − τ)|2ds +

∫ t

0

b
(1 + s)α−2 |x(s)|

2ds.

Consequently, we obtain∫ t

0
LV(s, xs)ds +

∫ t

0

1
b(1 + s)α

|Vx(s, xs)G(s, xs)|2ds

≤ t +
∫ t

0

[
2 − b
1 + s

+
b

(1 + s)α−1

]
(1 + s)|x(s)|2ds.

Hence, we see that

ψ(t) =
b

(1 + t)α−1 +
2 − b
1 + t

, ρ(t) = t.

Taking λ(t) = (1 + t), then by some easy computations, we can check that,

σ = 0, β1 = 2 − b, β2 = α, υ = 1, m = 1.

Finally, Corollary 2.6 allows us to conclude that

lim
t→+∞

sup
ln(|x(t)| − 1)

ln(1 + t)
≤ −γ, a.s.

Hence, we deduce that the solution to system (2.3) decays to the ball Br almost surely prac-
tically with decay function λ(t) = 1 + t, r = 1, and order at least γ = b − 1 − α, whenever
b > 1 + α.



Lyapunov functionals and practical stability for SDDEs with general decay rate 11

3 Method of Lyapunov functionals construction in practical stability
of stochastic delay differential equations

Notice that Corollary 2.6 implies that the almost sure practical stability with a general decay
rate of SDDE (1.1) can be reduced to the construction of appropriate Lyapunov functionals.

A formal procedure to construct Lyapunov functionals is described below, (see Krasovskii
[19], and V. Kolmanovskii and L. Shaikhet [17, 18, 23], for more details).

3.1 The formal procedure of constructing Lyapunov functionals

The formal procedure for constructing Lyapunov functionals consists of four steps.

Step 1 : Let us represent (1.1) in the following form:

dz(t, xt) = (F1(t, x(t)) + F2(t, xt)) dt + (G1(t, x(t)) + G2(t, xt)) dB(t), (3.1)

where z(t, xt) is some functional of xt, the functions F1(t, x(t)) and G1(t, x(t)), depend on t
and x(t) only and do not depend on the previous values x(t + θ), θ < 0, of the solution, and
there exists t ∈ R+, such that F1(t, ·) ̸= 0 or G1(t, ·) ̸= 0.

Step 2 : Consider the auxiliary differential equation without memory

dy(t) = F1(t, y(t))dt + G1(t, y(t))dB(t). (3.2)

Assume that the system (3.2) is almost sure practical stable with a general decay rate and there
exists a Lyapunov function v(t, y(t)), which satisfies the conditions of Corollary 2.6.

Step 3 : A Lyapunov functional V(t, xt) for Eq.(1.1) is constructed in the form V = V1 + V2,
where V1(t, xt) = v(t, z(t, xt)). Here the argument y of the function v(t, y) is replaced on the
functional z(t, xt) from the left–hand part of Eq.(3.1).

Step 4 : Usually, the functional V1(t, xt) almost satisfies the conditions of Corollary 2.6. To
fully satisfy these conditions, it is necessary to calculate LV1(t, xt) and estimate it. Then, we
choose the additional functional V2(t, xt) in a standard way.

Remark 3.1. The representation (3.1) is not unique. This fact allows, using different repre-
sentations of the type of (3.1) or different ways to estimate LV1(t, xt), to construct different
Lyapunov functionals and, as a result to obtain different sufficient conditions for the practical
stability with a general decay rate.

3.2 Construction of Lyapunov functionals for stochastic differential equations
with constant delay

Consider the following stochastic differential equation with constant delay:

dx(t) = ( f (t, x(t)) + F(t, x(t), x(t − h))) dt + G(t, x(t), x(t − τ))dB(t),

x(s) = ξ(s), s ∈ [−h̃, 0], (3.3)

where,
h̃ = max[h, τ], and f : R+ × Rn → ×Rn,

F : [0,+∞)× Rn × Rn → Rn, G : [0,+∞)× Rn × Rn → Rn×m.
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B(t) is an m-dimensional Brownian motion defined on the probability space {Ω,F , P}.
Observe that Eq. (3.3) is a particular case of Eq. (1.1).
We will apply the method described above to construct Lyapunov functionals for Eq. (3.3),

and, as a consequence, to obtain sufficient conditions ensuring the almost sure practical sta-
bility with decay function λ(t), where λ(·) ∈ C1(R+).

Theorem 3.2. Assume that ln λ(t) is uniformly continuous on t ≥ 0, and there exists a constant
σ ≥ 0, such that

lim
t→+∞

ln ln t
ln λ(t)

≤ σ.

Let ψ1(t) be a continuous non–negative function, and ρ(t) a non-negative continuous differentiable
function, such that for all t ≥ 0 ≥ 0 the following assumptions hold:

(A1) 2⟨x, f (t, x)⟩ ≤ (ψ1(t)− K)∥x∥2 +
ρ′(t)
λm(t)

, K > 0,

∥F̃(t, Φ)∥ ≤ α1∥Φ(−h)∥,

∥G̃(t, Φ)∥ ≤ α2∥Φ(−τ)∥,

∥Φ(0)G̃(t, Φ)∥ ≤ α3∥Φ(−τ)∥, (3.4)

where F̃(t, Φ) = F(t, Φ(0), Φ(−h)), G̃(t, Φ) = G(t, Φ(0), Φ(−τ)).

(A2)
lim

t→+∞
sup

∫ t
0 ψ1(s)ds
ln λ(t)

≤ α, α ∈ R.

lim
t→+∞

sup
t

ln λ(t)
= C ≥ 0, lim

t→+∞

ρ(t)
λm(t)

= υ > 0.

(A3)
∥x(t, 0, ξ)∥ >

(
ρ(t)

λm(t)

) 1
2

, for all t ≥ 0.

Then, if in addition there exists υ̃ ≥ υ > 0, such that ∥x(t, 0, ξ)∥ > υ̃ for all t ≥ 0, it follows

lim
t→+∞

sup
ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
2

)
ln λ(t)

≤ −γ, a.s.,

where γ = KC − (m + α + σ)− (2α1 + α̃)C, α̃ = α2
1 + α2

2.
In particular, if KC > m + α + σ + (2α1 + α̃)C, then the solution to system (3.3) decays to the

ball Br, with r = (υ̃)
1
2 almost surely practically, with decay function λ(t) and order at least γ.

Proof. Based upon the procedure of Lyapunov functionals construction, we consider the aux-
iliary equation without memory of the type (3.2) as

ẏ(t) = f (t, y(t)). (3.5)

Our target now is to prove that the solution to system (3.5) decays to the ball Br, with r =

(υ̃)
1
2 almost surely with decay function λ(t). To this end, we consider the function v(t, y) =

λm(t)∥y∥2, m ≥ 0 as a Lyapunov function for Eq. (3.5). Then, we have to prove that v(t, y)
satisfies all conditions of Corollary 2.6.
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Using (3.4), it follows that

∫ t

0
vs(s, y(s))ds +

∫ t

0
vx(s, y(s)) f (s, y(s))ds

≤
∫ t

0
mλ′(s)λm−1(s)∥y(s)∥2ds +

∫ t

0
2λm(s)⟨y(s), f (s, y(s)⟩ds

≤
∫ t

0
mλ′(s)λm−1(s)∥y(s)∥2ds +

∫ t

0

(
λm(s) [ψ1(s)− K] ∥y(s)∥2 + ρ′(s)

)
ds

≤
∫ t

0

[
m

λ′(s)
λ(s)

+ ψ1(s)− K
]

λm(s)∥y(s)∥2ds + ρ(t)− ρ(0).

That is,

∫ t

0
vs(s, y(s))ds +

∫ t

0
vx(s, y(s)) f (s, y(s))ds

≤
∫ t

0

[
m

λ′(s)
λ(s)

+ ψ1(s)− K
]

λm(s)∥y(s)∥2ds + ρ(t).

Thus, setting

ψ(t) = m
λ′(t)
λ(t)

+ ψ1(t)− K.

Then, using assumption (A2), one obtains

lim
t→+∞

sup

∫ t
0 ψ(s)ds
ln λ(t)

≤ m + α − KC.

Consequently, Corollary 2.6 allows us to conclude that,

lim
t→+∞

sup
ln
(
∥y(t)∥ − (υ̃)

1
2

)
ln λ(t)

≤ −γ, a.s.,

where γ = KC − (α + σ ∨ m). Hence, if KC > α + σ ∨ m, then the solution to system (3.4)
decays to the ball Br, with r = (υ̃)

1
2 almost surely practically with decay function λ(t) and

order at least γ.
Based on the procedure, now we construct a Lyapunov functional V for Eq. (3.3) in the

form V = V1 + V2, where V1(t, xt) = λm(t)∥x(t)∥2.
Following Corollary 2.6, we consider the function ϕ(t) = 1

4λm(t) , t ≥ 0, then, it follows that

∫ t

0
LV1(s, xs)ds +

∫ t

0
ϕ(s)∥V1x(s, xs)G̃(s, x(s), x(s − τ))∥2ds

=
∫ t

0
mλ′(s)λm−1(s)∥x(s)∥2ds +

∫ t

0
2λm(s)⟨ f (s, x(s)), x(s)⟩ds

+
∫ t

0
2λm(s)⟨F̃(s, x(s), x(s − h)), x(s)⟩ds +

∫ t

0
λm(s)∥G̃(s, x(s), x(s − τ))∥2ds

+
∫ t

0
λm(s)∥x(s)G̃(s, x(s), x(s − τ))∥2ds.
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Taking into account assumptions (3.4), we obtain

∫ t

0
LV1(s, xs)ds +

∫ t

0

1
4λm(s)

∥V1x(s, xs)G̃(s, x(s), x(s − τ))∥2ds

≤
∫ t

0
λm(s)

[
m

λ′(s)
λ(s)

+ ψ1(s)− K
]
∥x(s)∥2ds + ρ(t)

+
∫ t

0
2α1λm(s)∥x(s)∥∥x(s − h)∥ds +

∫ t

0
α2

2λm(s)∥x(s − τ)∥2ds

+
∫ t

0
α2

3λm(s)∥x(s − τ)∥2ds

≤
∫ t

0
λm(s)

([
m

λ′(s)
λ(s)

+ ψ1(s)− K
]
+ α1

)
∥x(s)∥2ds

+
∫ t

0
α1λm(s)∥x(s − h)∥2ds +

∫ t

0
α̃λm(s)∥x(s − τ)∥2ds + ρ(t),

where, α̃ = α2
2 + α2

3.
Set now

V2(t, xt) = α1

∫ t

t−h
λm(u + h)∥x(u)∥2du + α̃

∫ t

t−τ
λm(u + τ)∥x(u)∥2du.

Then, ∫ t

0
LV2(s, xs)ds = α1

∫ t

0
λm(s + h)∥x(s)∥2ds − α1

∫ t

0
λm(s)∥x(s − h)∥2ds

+ α̃
∫ t

0
λm(s + τ)∥x(s)∥2ds − α̃

∫ t

0
λm(s)∥x(s − τ)∥2ds

≃ α1

∫ t

0
λm(s)∥x(s)∥2ds − α1

∫ t

0
λm(s)∥x(s − h)∥2ds

+ α̃
∫ t

0
λm(s)∥x(s)∥2ds − α̃

∫ t

0
λm(s)∥x(s − τ)∥2ds.

That is, for V = V1 + V2, we obtain∫ t

0
LV(s, xs)ds +

∫ t

0

1
4λm(s)

∥Vx(s, xs)G̃(s, x(s), x(s − τ))∥2ds

≤
∫ t

0
λm(s)

[
m

λ′(s)
λ(s)

+ ψ1(s) + 2α1 + α̃ − K
]
∥x(s)∥2ds + ρ(t).

That is, we have

ψ(t) = m
λ′(t)
λ(t)

+ ψ1(t) + 2α1 + α̃ − K, ϕ(t) =
1

4λm(t)
.

Therefore, we obtain

lim
t→+∞

sup

∫ t
0 ψ(s)ds
ln λ(t)

≤ m + α + (2α1 + α̃ − K)C,

lim
t→+∞

inf
ln ϕ(t)
ln λ(t)

≥ −m.
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Finally, Corollary 2.6 allows us to conclude that,

lim
t→+∞

ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
2

)
ln λ(t)

≤ −γ,

where γ = KC − (m + α + σ) − (2α1 + α̃)C. Thus, if KC > (m + α + σ) + (2α1 + α̃)C, the
solution to system (3.3) decays to the ball Br, with r = (υ̃)

1
2 almost surely practically with

decay function λ(t).

Now, we provide an illustrative example that implements the previous result.

Example 3.3. Consider the following one dimensional stochastic differential delay equation
with constant time delay.

dx(t) =
[(

a + e−
3
2 t − 4K

)
x(t) +

1
2(1 + |x(t)|) + cos(t)x(t − h)

]
dt

+g(x(t))
x(t − h)

1 + |x(t)|dB(t), t ≥ 0,

x(t) = ξ(t), t ∈ [−h, 0],

(3.6)

where a, K ∈ R+, g(·) : R → R is a bounded Lipschitz continuous function, such that g(0) ̸=
0, and |g(x)| ≤ L, x ∈ R, L > 0, B(t) is a one-dimensional Brownian motion and h is a
positive constant.

We can set this problem in our formulation by taking,

f (t, x) =
1
2

(
a + e−

3
2 t − 4K

)
x +

1
2(1 + |x(t)|) ,

F̃(t, Φ) = cos(t)Φ(−h),

G̃(t, Φ) = g(Φ(0))
Φ(−h)

1 + |Φ(0)| ,

x ∈ R, Φ ∈ C([−h, 0], R).
We will consider the decay function λ(t) = et and m = 1. Indeed, we can apply Theorem

3.2 in a straightforward way since,

2⟨x, f (t, x)⟩ ≤
(

a + e−
3
2 t − 4K

)
|x|2 + et

et ,

|F̃(t, Φ)| ≤ |Φ(−h)|,
|G̃(t, Φ)| ≤ L|Φ(−h)|,

|Φ(0)G̃(t, Φ)| ≤ L|Φ(−h)|.

Therefore, we can set
ρ(t) = et, ψ1(t) = (a + e−

3
2 t).

Then, we can choose constants in Theorem 3.2 as follows:

σ = 0, C = 1, α = a, α1 = 1, α2 = α3 = L, υ = 1.

Eventually, we deduce that

lim
t→+∞

sup
ln(|x(t)| − 1)

t
≤ −γ, a.s.,
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where γ = 4K − (3 + a + 2L2). Hence, if 4K > 3 + a + 2L2, we deduce that the solution to
system (3.6) is almost surely practically exponentially stable with decay function λ(t) = et

and order at least γ.

3.3 Construction of Lyapunov functionals for stochastic differential equations
with time-varying delay

Consider the following stochastic differential equation with time-varying delay:

dx(t) = [ f (t, x(t)) + F(t, x(t), x(t − h(t)))] dt + G(t, x(t), x(t − τ(t)))dB(t),

h(t) ∈ [0, h0], τ(t) ∈ [0, τ0], h = max[h0, τ0],

x(s) = ξ(s), s ∈ [−h, 0], (3.7)

where,

f : R+ × Rn → ×Rn, F : [0,+∞)× Rn × Rn → Rn, G : [0,+∞)× Rn × Rn → Rn×m.

B(t) is an m–dimensional Brownian motion defined on the probability {Ω,F , P}.
Observe that Eq.(3.7) is a particular case of Eq. (1.1).

Now, we aim to apply the procedure of constructing Lyapunov functionals for Eq. (3.7), in
order to obtain sufficient conditions ensuring the almost sure practical uniform exponential
stability, with decay function λ(t) = et. The construction of Lyapunov functionals for general
decay functions will be analyzed elsewhere.

Theorem 3.4. Let ψ1(t) be a continuous non–negative function, ψ2(t) > 0 a non-increasing function
and ρ(t) a continuous non-negative differentiable function, such that for all t ≥ 0 ≥ 0 the following
assumptions hold:

(A′
1) 2⟨x, f (t, x)⟩ ≤ (ψ1(t)− K)∥x∥2 +

ρ′(t)
emt , K > 0,

∥F̃(t, Φ)∥ ≤ ψ2(t)∥Φ(−h(t))∥,

∥G̃(t, Φ)∥ ≤ α2∥Φ(−τ(t))∥,

∥Φ(0)G̃(t, Φ)∥ ≤ α3∥Φ(−τ(t))∥, (3.8)

where F̃(t, Φ) = F(t, Φ(0), Φ(−h(t))), G̃(t, Φ) = G(t, Φ(0), Φ(−τ(t))), and
h(t) ∈ [0, h0], ḣ(t) ≤ h1 ≤ 1,

τ(t) ∈ [0, τ0], τ̇(t) ≤ τ1 ≤ 1. (3.9)

(A′
2) lim

t→+∞
sup

∫ t
0 ψ1(s)ds

t
≤ α, α > 0,

lim
t→+∞

sup

∫ t
0 ψ2(s)ds

t
≤ a, a > 0,

lim
t→+∞

ρ(t)
emt = υ > 0.

(A′
3) ∥x(t, 0, ξ)∥ >

(
ρ(t)
emt

) 1
2

, for all t ≥ 0.
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Then, if in addition there exists υ̃ ≥ υ > 0, such that ∥x(t, 0, ξ)∥ > υ̃ for all t ≥ 0, it follows

lim
t→+∞

ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
2

)
ln λ(t)

≤ −γ, a.s.,

where γ = K − (m + α)−
(
1 + emh0

1−h1

)
a − α̃ emτ0

1−τ1
, α̃ = α2

1 + α2
2.

In particular, if K > m + α +
(
1 + emh0

1−h1

)
a + α̃ emτ0

1−τ1
, the solution to system (3.7) decays to the ball

Br, with r = (υ̃)
1
2 almost surely uniformly practically exponentially stable, i.e., with decay function

λ(t) = et, and order at least γ.

Proof. Proceeding as in the proof of Theorem 3.2, we consider the auxiliary equation without
memory of the type (3.2) as

ẏ(t) = f (t, y(t)). (3.10)

We have to prove that the solution to system (3.10) decays to the ball Br, with r = (υ̃)
1
2 almost

surely with decay function λ(t). To this end, we consider the function v(t, y) = emt∥y∥2, m ≥ 0
as a Lyapunov function for Eq. (3.10).

Then, we have to prove that v(t, y) satisfies all conditions of Corollary 2.6.
On account of (3.8), it follows that

∫ t

0
vs(s, y(s))ds +

∫ t

0
vx(s, y(s)) f (s, y(s))ds ≤

∫ t

0
[m + ψ1(s)− K] ems∥y(s)∥2ds + ρ(t).

Thus, setting

ψ(t) = m + ψ1(t)− K.

and using Corollary 2.6, it follows that

lim
t→+∞

sup
ln
(
∥y(t)∥ − (υ̃)

1
2

)
t

≤ −γ, a.s.,

where γ = K − (α + σ ∨ m). Hence, if K > α + σ ∨ m, then the solution to system (3.10)
decays to the ball Br, with r = (υ̃)

1
2 almost surely practically uniformly exponentially stable

with order at least γ. Based on the procedure, now we construct a Lyapunov functional V for
Eq. (3.7) in the form V = V1 + V2, where V1(t, xt) = emt∥x(t)∥2.

Following Corollary 2.6, we consider the function ϕ(t) = 1
4emt , t ≥ 0, then it follows that

∫ t

0
LV1(s, xs)ds +

∫ t

0
ϕ(s)∥V1x(s, xs)G̃(s, xs)∥2ds

=
∫ t

0
ems∥x(s)∥2ds +

∫ t

0
2ems⟨ f (s, x(s)), x(s)⟩ds

+
∫ t

0
2ems⟨F̃(s, xs), x(s)⟩ds +

∫ t

0
ems∥G̃(s, xs)∥2ds +

∫ t

0
ems∥x(s)G̃(s, xs)∥2ds.



18 T. Caraballo, F. Ezzine and M. A. Hammami

Taking into account assumption (A′
1), it follows that

∫ t

0
LV1(s, xs)ds +

∫ t

0

1
4ems ∥V1x(s, xs)G̃(s, xs)∥2ds

≤
∫ t

0
ems [m + ψ1(s)− K] ∥x(s)∥2ds + ρ(t)

+
∫ t

0
2ψ2(s)ems∥x(s)∥∥x(s − h(s))∥ds +

∫ t

0
α2

2ems∥x(s − τ(s))∥2ds

+
∫ t

0
α2

3ems∥x(s − τ(s))∥2ds

≤
∫ t

0
ems (m + ψ1(s)− K + ψ2(s)) ∥x(s)∥2ds

+
∫ t

0
ψ2(s)ems∥x(s − h(s))∥2ds +

∫ t

0
α̃ems∥x(s − τ(s))∥2ds + ρ(t),

where α̃ = α2
2 + α2

3.
Set now

V2(t, xt) =
1

1 − h1

∫ t

t−h(t)
em(u+h0)ψ2(u)∥x(u)∥2du +

α̃

1 − τ1

∫ t

t−τ(t)
em(u+τ0)∥x(u)∥2du.

Then,∫ t

0
LV2(s, xs)ds

=
1

1 − h1

∫ t

0
em(s+h0)ψ2(s)∥x(s)∥2ds

− 1
1 − h1

∫ t

0
(1 − ḣ(s))em(s−h(s)+h0))ψ2(s − h(s))∥x(s − h(s))∥2ds

+
α̃

1 − τ1

∫ t

0
em(s+τ0)∥x(s)∥2ds − α̃

1 − τ1

∫ t

0
(1 − τ̇(s))em(s−τ(s)+τ0)∥x(s − τ(s))∥2ds

≤ 1
1 − h1

∫ t

0
em(s+h0)ψ2(s)∥x(s)∥2ds

− 1
1 − h1

∫ t

0
(1 − h1)emsem(h0−h(s))ψ2(s − h(s))∥x(s − h(s))∥2ds

+
α̃

1 − τ1

∫ t

0
em(s+τ0)∥x(s)∥2ds − α̃

1 − τ1

∫ t

0
(1 − τ1)emsem(τ0−τ(s))∥x(s − τ(s))∥2ds

≤ 1
1 − h1

∫ t

0
em(s+h0)ψ2(s)∥x(s)∥2ds −

∫ t

0
emsψ2(s)∥x(s − h(s))∥2ds

+
α̃

1 − τ1

∫ t

0
em(s+τ0)∥x(s)∥2ds − α̃

∫ t

0
ems∥x(s − τ(s))∥2ds.

That is, for V = V1 + V2, we obtain∫ t

0
LV(s, xs)ds +

∫ t

0

1
4ems ∥Vx(s, xs)G̃(s, x(s), x(s − τ))∥2ds

≤
∫ t

0
ems
(

m + ψ1(s)− K +

(
1 +

emh0

1 − h1

)
ψ2(s) + α̃

emτ0

1 − τ1

)
∥x(s)∥2ds + ρ(t).
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That is, we have

ψ(t) = m + ψ1(t)− K +

(
1 +

emh0

1 − h1

)
ψ2(t) + α̃

emτ0

1 − τ1
,

ϕ(t) =
1

4emt .

Therefore, we obtain

lim
t→+∞

sup

∫ t
0 ψ(s)ds

t
≤ m + α − K +

(
1 +

emh0

1 − h1

)
a + α̃

emτ0

1 − τ1
,

lim
t→+∞

inf
ln ϕ(t)

t
= −m.

Using Corollary 2.6, we infer that

lim
t→+∞

ln
(
∥x(t, 0, ξ)∥ − (υ̃)

1
2

)
ln λ(t)

≤ −γ, a.s.,

where γ = K − (m + α)−
(
1 + emh0

1−h1

)
a − α̃

emτ0

1 − τ1
.

Then, if K > m + α +
(
1+ emh0

1−h1

)
a + α̃ emτ0

1−τ1
, the solution to system (3.7) decays to the ball Br,

with r = (υ̃)
1
2 almost surely uniformly practically exponentially stable with decay function

λ(t) = et, and order at least γ.

We analyze now an example to show how the previous theorem can be implemented.

Example 3.5. Consider the following one dimensional stochastic differential delay equation
with constant time delay.

dx(t) =
[

1
2
(b + | cos(t)| − K) x(t) +

1
2

e−t

1 + |x(t)| +
1

t + 1
x(t − h(t))

]
dt

+
x(t − τ(t))
1 + |x(t)| dB(t), t ≥ 0,

x(t) = ξ(t), t ∈ [−h, 0],

(3.11)

with the conditions,

h(t) ∈ [0, h0], ḣ(t) ≤ h1 ≤ 1,

τ(t) ∈ [0, τ0], τ̇(t) ≤ τ1 ≤ 1,

where b, K ∈ R+, x ∈ R, B(t) is a one-dimensional Brownian motion, and h = max[h0, τ0].
We can set this problem in our formulation by taking,

f (t, x) =
1
2
(a + | cos(t)| − K) x +

1
2

e−t

1 + |x| ,

F̃(t, Φ) =
1

t + 1
Φ(−h(t)),

G̃(t, Φ) =
Φ(−τ(t))
1 + |Φ(0)| ,
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x ∈ R, Φ ∈ C([−h, 0], R).
For m = 2, we can check that

2⟨x, f (t, x)⟩ ≤ (b − K)|x|2 + et

e2t ,

|F̃(t, Φ)| ≤ 1
t + 1

|Φ(−h(t))|,

|G̃(t, Φ)| ≤ |Φ(−τ(t))|,
|Φ(0)G̃(t, Φ)| ≤ |Φ(−τ(t))|.

Hence, we see that

ψ1(t) = (b + | cos(t)|), ψ2(t) =
1

t + 1
, ρ(t) = et.

Then, we can choose constants in Theorem 3.4 as follows:

α = b, a = 0, α2 = α3 = 1, υ = 1.

Finally, Theorem 3.4 allows us to conclude that,

lim
t→+∞

sup
ln(|x(t)| − 1)

t
≤ −γ, a.s.,

where γ = K − (2 − b) − e2τ0
1−τ1

. Hence, if K > 2 + b + 2 e2τ0
1−τ1

, we deduce that the solution
to system (3.11) is almost surely practically exponentially stable, i.e., with decay function
λ(t) = et, and order at least γ.

4 Conclusion

We investigated herein the practical convergence to a small ball centered at the origin with
a general decay rate of stochastic differential delay equations. We then establish sufficient
conditions ensuring practical stability with a general decay rate of SDDEs by using Lyapunov
functionals. Furthermore, we construct suitable Lyapunov functionals for stochastic differen-
tial equations with constant and time–varying delay to obtain sufficient conditions ensuring
the practical stability with a general decay rate. Finally, based on the established stability
criteria, some examples are given to check the correctness of the derived results.
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