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Abstract. In this paper, we study the existence of positive solutions for the following
generalized quasilinear Schrödinger equation

− div(gp(u)|∇u|p−2∇u) + gp−1(u)g′(u)|∇u|p + V(x)|u|p−2u

= K(x) f (u) + Q(x)g(u)|G(u)|p∗−2G(u), x ∈ RN ,

where N ≥ 3, 1 < p ≤ N, p∗ = Np
N−p , g ∈ C1(R, R+), V(x) and K(x) are positive con-

tinuous functions and G(u) =
∫ u

0 g(t)dt. By using a change of variable, we obtain the
existence of positive solutions for this problem by using the Mountain Pass Theorem.
Our results generalize some existing results.

Keywords: generalized quasilinear Schrödinger equation, positive solutions, critical
growth; p-Laplacian.
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Introduction

This article is concerned with a class of generalized quasilinear Schrödinger equation

− div(gp(u)|∇u|p−2∇u) + gp−1(u)g′(u)|∇u|p + V(x)|u|p−2u

= K(x) f (u) + Q(x)g(u)|G(u)|p∗−2G(u), x ∈ RN , (1.1)

where N ≥ 3, 1 < p ≤ N, p∗ = pN
N−p , g ∈ C1(R, R+), V(x) and K(x) are positive continuous

functions, Q(x) ≥ 0 is a bounded continuous function and G(u) =
∫ u

0 g(t)dt.
If p = 2 , then (1.1) will be reduced to the following generalized quasilinear Schrödinger

equation

−div(g2(u)∇u)+ g(u)g′(u)|∇u|2 +V(x)u = K(x) f (u)+Q(x)g(u)|G(u)|2∗−2G(u), x ∈ RN .

https://doi.org/10.14232/ejqtde.2023.1.3
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In nonlinear analysis, the existence of solitary wave solutions for the following quasi-linear
Schrödinger equation has been widely considered

i∂tz = −∆z + W(x)z − k(x, |z|)− ∆l(|z|2)l′(|z|2)z (1.2)

where z : R × RN → C, W : RN → R is a given potential, l : R → R and k : RN × R → R

are suitable functions. When l is different, the quasilinear equation of the form (1.2) can
express several physical phenomenon. Especially, l(s) = s was used for the superfluid film
[26, 27] equation in fluid mechanics by Kurihara [26]. For more physical background, we can
refer to [5, 6, 11, 25, 28, 36, 38, 39] and references therein. In addition, many conclusions about
the equation (1.2) with l(t) = tα for some α ≥ 1 have been studied, see [33–35, 37] and the
references therein. However, to our knowledge, only in the recent papers [20] and [40], the
equation (1.2) with a general l has been studied.

If we let z(t, x) = exp(−iEt)u(x), where E ∈ R and u is a real function, then (1.2) can be
reduce to (see [15]):

−∆u + V(x)u − ∆l(u2)l′(u2)u = h(x, u), x ∈ RN . (1.3)

If we take

g2(u) = 1 +
[(l2(u))′]2

2
,

then (1.3) turns into quasilinear elliptic equations (see [40])

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = h(x, u), x ∈ RN . (1.4)

Moreover, if we let

gp(u) = 1 +
[(l2(u))′]p

p
,

the (1.1) turns to the following (see [45])

−∆p + V(x)|u|p−2u − ∆p(l(u2))l′(u2)
2u
p

= h(x, u), x ∈ RN .

For (1.4), in [20, 21], Deng et al. proved the existence of positive solutions with critical ex-
ponents. In [20,21], they established the critical exponents, which are 2∗ and α2∗, respectively.
In [18, 19], Deng et al. established the existence of nodal solutions. Especially, in [18], the
authors gave some existence results about under critical growth condition. Moreover, in [29],
Li et al. proved the existence of ground state solutions and geometrically distinct solutions
via Nehari manifold method. In [30], the authors studied the existence of a positive solution,
a negative solution and infinitely many solutions via symmetric mountain theorem. In [9],
Chen et al. considered the existence and concentration behavior of ground state solutions for
(1.4) with subcritical growth. Afterwards, Chen et al. [10] proved the existence and concen-
tration behavior of ground state solutions for (1.4) with critical exponential 22∗ growth. For
more results, the readers can refer to [13, 14, 31, 40–43]. In 2016, Li et al. [31, 46] established
the existence of sign-changing solutions and ground state solutions with potential vanishing
at infinity as follows:

(g) g ∈ C1(R, R+) is even with g′(t) ≥ 0 for all t ∈ R+ and g(0) = 1.

(V) The potential function V is positive on RN and belongs to L∞(RN) ∩ Cα(RN) for some
α ∈ (0, 1).
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(K) K ∈ L∞(RN) ∩ Cα(RN) is positive.

(K1) If {An} ⊂ RN is a sequence of Borel sets such that |An| ≤ M, for all n and some M > 0,
then we have

lim
r→+∞

∫
An∩Bc

r (0)
K(x)dx = 0, uniformly in n ∈ N,

where Bc
r(0) = {x ∈ RN : |x| ≥ r}

(K2) The following condition holds:
K(x)
V(x)

∈ L∞(RN). (1.5)

Note that conditions (V)–(K2) are called potential vanishing at infinity. By using potential
vanishing at infinity, there are many papers (see [1, 4, 12, 23, 24, 31, 32, 43, 44, 46]) to study the
existence of solutions for different equations. Especially in [22], Deng et al. proved the exis-
tence of positive solutions with critical growth and potential vanishing at infinity by making
the change of variables v = r−1(u), where r is defined by

r′(t) =
1

(1 + 2r2(t))1/2 on [0,+∞),

r(−t) = r(t) on (−∞, 0].

However, conditions (V)–(K2) are weaker than the following well-known condition:

(VK) V, K : RN → R+ are smooth and there exist positive numbers α, β, a, b, and c such that

a
1 + |x|α ≤ V(x) ≤ b, 0 < K(x) ≤ c

1 + |x|β
, x ∈ R3,

which was firstly introduced in [2].
Before stating our results, let us recall some basic notions. Let

D1,p(RN) =
{

u ∈ Lp∗(RN) : ∇u ∈ Lp(RN)
}

with the norm

∥u∥D1,p =

(∫
RN

|∇u|pdx
) 1

p

.

Since the potential may vanish at infinity, it is natural to use the following working space:

E =

{
v ∈ D1,p(RN) :

∫
R3

V(x)|v|pdx < ∞
}

endowed with the norm

∥v∥ =

(∫
RN

(|∇v|p + V(x)|v|p)dx
) 1

2

, v ∈ E.

Moreover, we define the weighted Lebesgue space

Lq
K(R

N) =

{
u : u is measurable on RN and

∫
RN

K(x)|u|qdx < ∞
}
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endowed with the norm

∥u∥Lq
K
=

(∫
RN

(K(x)|u|q)dx
) 1

q

,

for some q ∈ (p, p∗).
By the conditions (V)–(K2), in [17], the authors got the following proposition.

Proposition 1.1 (see [17, Lemma 2.2]). Suppose that (V)–(K2) are satisfied. Then E is compactly
embedded in Lq

K(R
N) for all q ∈ (p, p∗) if (1.5) holds.

To resolve the equation (1.1), due to the appearance of the nonlocal term
∫

RN gp(u)|∇u|pdx,
the right working space seems to be

E0 =

{
u ∈ E :

∫
RN

gp(u)|∇u|pdx < ∞
}

.

But it is easy to see that E0 is not a linear space under the assumption of (g). To overcome
this difficulty, a variable substitution as follows: for any v ∈ E, Shen and Wang [40] make a
change of variable as

u = G−1(v) and G(u) =
∫ u

0
g(t)dt,

then ∫
RN

gp(u)|∇u|pdx =
∫

RN
gp(G−1(v))|∇G−1(v)|pdx := |∇v|pp < +∞, v ∈ E.

In such a case, we can deduce formally that the Euler–Lagrange functional associated with
the equation (1.1) is

J(u) =
1
p

∫
RN

[gp(u)|∇u|p + V(x)up]dx −
∫

RN
K(x)F(u)dx − 1

p∗

∫
RN

Q(x)|G(u)|p∗dx.

Therefore, by this change of variables E can be used as the working space and the equation
(1.1) in form can be transformed into

J (v) =
1
p

∫
RN

(|∇v|p + V(x)|G−1(v)|p)dx

−
∫

RN
K(x)F(G−1(v))dx − 1

p∗

∫
RN

Q(x)|v|p∗dx, x ∈ RN . (1.6)

By the fact of g is a nondecreasing positive function that |G−1(v)| ≤ |v|. From this and our
hypotheses, it is clear that J is well defined in E and J ∈ C1.

Furthermore, one can easily derive that if v ∈ C2(RN) is a critical point of (1.6), then
u = G−1(v) ∈ C2(RN) is a classical solution to the equation (1.1). To obtain a critical point of
(1.6), we only need to seek for the weak solution to the following equation

−∆pv + V(x)
|G−1(v)|p−2G−1(v)

g(G−1(v))
= K(x)

f (G−1(v))
g(G−1(v))

+ Q(x)|v|p∗−2v, x ∈ RN . (1.7)

Here, we say that v ∈ E is a weak solution to the equation (1.7) if it holds that

⟨J ′(v), φ⟩ =
∫

RN
|∇v|p−2∇v∇φ +

∫
RN

V(x)
|G−1(v)|p−2G−1(v)

g(G−1(v))
φ

−
∫

RN
K(x)

f (G−1(v))
g(G−1(v))

φ −
∫

RN
Q(x)|v|p∗−2vφ, φ ∈ E.
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Then it is standard to obtain that v ∈ E is a weak solution to the equation (1.7) if and only if
v is a critical point of the functional J in E. To sum up, it is sufficient to find a critical point
of the functional J in E to achieve a classical solution to the equation (1.1).

Very recently, Song and Chen [45] studied the existence of weak solutions for (1.1) when
V is a positive potential bounded away from zero and h(x, u) = h(u) is a nonlinear term of
subcritical type. Now, it is natural to ask whether problem (1.1) has the existence of positive
solutions in the case where h satisfies critical growth? To the best of our knowledge, there
are few results on such above questions in current literature. Actually, this is one of the
motivations for us to study the existence of positive solutions of (1.1) with critical growth.
Motivated by the above works, in this paper, our goal is to deal with critical growth case and
give the existence of positive solutions of (1.1) with potential vanishing at infinity.

Now, we answer the question in the affirmative, which is given in the front of the article.
Before stating our results, we need to give the following assumptions on f :

( f ) f ∈ C(R, R), f (t) = 0 for t ≤ 0 and f has a “quasicritical” growth, namely

lim
|t|→∞

f (t)
g(t)|G(t)|p∗−1 = 0.

( f1) limt→0+
f (t)

g(t)|G(t)|p−1 = 0 if (1.5) holds.

( f2) There exists a µ ∈ (p, p∗) such that for any t > 0

0 < µg(t)F(t) ≤ G(t) f (t) for all s ∈ R,

where F(u) =
∫ u

0 f (t)dt.

In addition, we also assume that

(Q1) There is a point x0, such that
Q(x0) = sup

x∈RN
Q(x).

(Q2) For x close to x0, we have

Q(x) = Q(x0) + O(|x − x0|p) as x → x0.

Now, we state our main results by the following theorems.

Theorem 1.2. Suppose that (g), (V)–(K2), (Q1)–(Q2) and ( f )–( f2) are satisfied. Then problem (1.1)
has at least one positive solution if either N ≥ p2 or p < N < p∗ and µ > p∗ − p

p−1 .

Applying Theorem 1.2 to the case when Q(x) = 1 and p = 2, we can get the following
corollary.

Corollary 1.3. Suppose that (g), (V)–(K2) and ( f )–( f2) are satisfied. Then the following problem

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = K(x) f (u) + g(u)|G(u)|2∗−2G(u), x ∈ RN

has at least one positive solution if either N ≥ 4 or N = 3 and µ > 2∗ − 2.

The paper is organized as follows. In Section 2, we prove a solution of (1.1) with critical
growth and potential vanishing at infinity. In Appendix A, we give some useful lemmas,
respectively.

In the following, we denote by Lp(RN) the usual Lebesgue space with norms ∥u∥p =(∫
RN |u|pdx

) 1
p , where 1 ≤ p < ∞; for any z ∈ R2 and R > 0, BR(z) := {x ∈ R2 : |x − z| < R};

C possibly denotes the different constants in different place.
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Main results

In this section, we present some useful lemmas and corollaries. Now, let us recall the following
lemma which has been proved in [30].

Lemma 2.1 ([30]). For the function g, G, and G−1, the following properties hold:

(1) the functions G(·) and G−1(·) are strictly increasing and odd;

(2) G(s) ≤ g(s)s for all s ≥ 0; G(s) ≥ g(s)s for all s ≤ 0;

(3) g(G−1(s)) ≥ g(0) = 1 for all s ∈ R;

(4) G−1(s)
s is decreasing on (0,+∞) and increasing on (−∞, 0);

(5) |G−1(s)| ≤ 1
g(0) |s| = |s| for all s ∈ R;

(6) |G−1(s)|
g(G−1(s)) ≤

1
g2(0) |s| = |s| for all s ∈ R;

(7) G−1(s)s
g(G−1(s)) ≤ |G−1(s)|2 for all s ∈ R;

(8) lim|s|→0
G−1(s)

s = 1
g(0) = 1 and

lim
|s|→+∞

G−1(s)
s

=

{
1

g(∞)
, if g is bounded,

0, if g is unbounded.

The next two lemmas show that the functional J verifies the mountain pass geometry.

Lemma 2.2. Suppose that (V)–(K2), (Q1)–(Q2), and ( f )–( f2)are satisfied. Then there exist α, ρ > 0
such that J (v) ≥ α for all ∥v∥ = ρ.

Proof. It follows from (1.6) that

J (v) =
1
p

∫
RN

[|∇v|p + V(x)|G−1(v)|p]dx −
∫

RN
K(x)F(G−1(v))dx

− 1
p∗

∫
RN

Q(x)|v+|p∗dx

=
1
p
∥∇v∥p

p −
∫

RN

(
− 1

p
V(x)|G−1(v)|p + K(x)F(G−1(v))

)
dx

− 1
p∗

∫
RN

Q(x)|v+|p∗dx

≥ 1
p
∥∇v∥p

p −
∫

RN

(
− 1

p
V(x)|G−1(v)|p + K(x)F(G−1(v))

)
dx

− 1
p∗

∫
RN

Q(x)|v|p∗dx.

(2.1)

On the one hand, if (1.5) holds and let A(x, s) := − 1
p |G−1(s)|p + K(x)

V(x)F(G−1(s)), then by
Lemma 2.1-(8), we have

lim
s→0+

A(x, s)
|s|p = lim

s→0

[
− 1

p

∣∣∣∣G−1(v)
s

∣∣∣∣p + K(x)
V(x)

F(G−1(s))
|s|p

]
= − 1

p
(2.2)
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and

lim
s→+∞

A(x, s)
|s|p∗ = lim

s→+∞

[
− 1

p

∣∣∣∣G−1(v)
s

∣∣∣∣p ( 1
|s|p∗−p

)
+

K(x)
V(x)

F(G−1(s))
|s|p∗

]
= 0, (2.3)

since

lim
|s|→+∞

G−1(s)
s

=

{
1

g(∞)
, if g is bounded,

0, if g is unbounded.

Thus, by (2.2) and (2.3), for ε > 0 sufficiently small, there exists a constant Cε > 0 such that

V(x)A(x, s) ≤
(
− 1

p
+ ε

)
V(x)|s|p + CεV(x)|s|p∗ . (2.4)

Then by Proposition 1.1, (2.4), (2.1) and (Q1), we have

J (v) ≥ 1
p
|∇v|p −

(
− 1

p
+ ε

) ∫
RN

V(x)|v|pdx − Cε

∫
RN

V(x)|v|p∗dx − 1
p∗

Q(x0)
∫

RN
|v|p∗dx

≥ 1
p
∥v∥p − C

∫
RN

|v|p∗dx − 1
p∗

Q(x0)
∫

RN
|v|p∗dx

≥
(

1
p
− εC

)
∥v∥p − C∥v∥p∗ ,

since there exists C > 0 such that 0 < K(x) ≤ C and 0 < V(x) ≤ C. It follows that

J (v) ≥ C∥v∥p − C∥v∥p∗ , (2.5)

if we choose sufficiently small ρ > 0, which implies that

J (v) ≥ Cρp − Cρp∗ =: α > 0.

This completes the proof.

Lemma 2.3. Suppose that (V)–(K2), (Q1)–(Q2), and ( f )–( f2)are satisfied. Then there exists e ∈ E
such that J (e) < 0 and ∥e∥ > ρ.

Proof. For any fixed v0 ∈ E with v0 ≥ 0 and v0 ̸≡ 0, by (1.6) and Lemma 2.1-(5) , we have

J (tv0) =
1
p

∫
RN

[|t∇v0|p + V(x)|G−1(tv0)|p]dx −
∫

RN
K(x)F(G−1(tv0))dx

− 1
p∗

∫
RN

Q(x)|tv0|p
∗
dx

≤ tp

p
∥v0∥p − tp∗

p∗

∫
RN

Q(x)|v0|p
∗
dx

→ − ∞, as t → +∞,

which gives that the results hold if we take e = tv0 with t sufficiently large. This completes
the proof.

As a consequence of Lemma 2.2 and Lemma 2.3, for the constant

c0 = inf
γ∈Γ

sup
t∈[0,1]

J (γ(t)) > 0,
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where
Γ = {γ ∈ C([0, 1], E), γ(0) = 0, γ(1) ̸= 0, J (γ(1)) < 0} .

Note that from Lemma 2.3, Γ ̸= ∅. By the Mountain Pass Theorem in [3], then we have the
existence of sequence {vn} ⊂ E satisfying

J (vn) → c0 and J ′(vn) → 0 n → +∞. (2.6)

The above sequence is called a (PS)c0 sequence for J .

Lemma 2.4. The sequence {vn} in (2.6) are satisfied. Then {vn} is bounded in E.

Proof. Since {vn} ⊂ E is a (PS)c0 sequence for J , we have

J (vn) =
1
p

∫
RN

(|∇vn|p + V(x)|G−1(vn)|p)dx −
∫

RN
K(x)F(G−1(vn))dx

− 1
p∗

∫
RN

Q(x)|v+n |p
∗
dx → c0

(2.7)

and for any φ ∈ C∞
0 (RN),

⟨J ′(vn), φ⟩ =
∫

RN
|∇vn|p−2∇vn∇φ +

∫
RN

V(x)
|G−1(vn)|p−2G−1(vn)

g(G−1(vn))
φ

−
∫

RN
K(x)

f (G−1(v))
g(G−1(vn))

φ −
∫

RN
Q(x)|v+n |p

∗−2v+n φ = o(1)∥φ∥,
(2.8)

as n → ∞. Since C∞
0 (RN) is dense in E, by choosing φ = vn we deduce that

⟨J ′(vn), vn⟩ =
∫

RN
|∇vn|p +

∫
RN

V(x)
|G−1(vn)|p−2G−1(vn)

g(G−1(vn))
vn −

∫
RN

K(x)
f (G−1(v))

g(G−1(vn))
vn

−
∫

RN
Q(x)|v+n |p

∗−2v+n vn = o(1)∥vn∥,

as n → ∞. It follows from (2.7), (2.8) and Lemma 2.1 that

µc0 + o(1)− ⟨J ′(vn), vn⟩
≥ µJ (vn)− ⟨J ′(vn), vn⟩

=
µ − p

p

∫
RN

|∇vn|pdx +
∫

RN
V(x)|G−1(vn)|p−2

[
1
p

µ|G−1(vn)|2 −
G−1(vn)

g(G−1(vn))
vn

]
dx

−
∫

RN
K(x)

(
µF(G−1(vn))−

f (G−1(vn))

g(G−1(vn))
vn

)
dx −

(
µ

p∗
− 1
) ∫

RN
Q(x)|v+n |p

∗
dx

≥ µ − p
p

[∫
RN

|∇vn|pdx +
∫

RN
V(x)|G−1(vn)|pdx

]
.

(2.9)

By ( f2), we have F(s) ≥ CG(s)µ ≥ CG(s)p for all s ≥ 1. Then∫
{x:||G−1(vn)|>1}

V(x)|vn|pdx

≤ C
∫
{x:|G−1(vn)>1}

K(x)F(G−1(vn))dx

≤ C
∫

RN
K(x)F(G−1(vn))dx +

C
p∗

∫
RN

Q(x)|v+n |p
∗
dx

≤ C
[

1
p

(∫
RN

|∇vn|pdx +
∫

RN
V(x)|G−1(vn)|pdx

)
− c0 + on(1)

]
.

(2.10)
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On the other hand, for the case x ∈ {x : |G−1(vn)| ≤ 1} we know that

1
gp(1)

∫
{x:||G−1(vn)|≤1}

V(x)|vn|pdx ≤ C
∫
{x:|G−1(vn)≤1}

V(x)|G−1(vn)|pdx

≤ C
∫

RN
V(x)|G−1(vn)|pdx.

(2.11)

Since g(s) is nondecreasing. Combining (2.9), (2.10) with (2.11), we deduce that {vn} is
bounded in E. This completes the proof.

We are going to verify that the level value c0 is in an interval where the (PS) condition
holds. To this end, by the method developed by [8], we also introduce a well-known fact that
the minimization problem

S = inf{|∇v|pp : v ∈ D1,p(RN), |v|p∗ = 1}

has a solution given by

vϵ(x) =
c(N, p)ϵ(N−p)/(p2−p)

(ϵp/(p−1) + |x − x0|p/(p−1))(N−p)/p

and
|∇vϵ|pp = |vϵ|p

∗

p∗ = SN/p.

For small enough R > 0, define a cut-off function ψ(x) ∈ C∞
0 (RN) such that ψ(|x|) = 1

for |x − x0| ≤ R, ψ(|x|) ∈ (0, 1) for R < |x − x0| < 2R and |∇ψ| ≤ C
R , and ψ(|x|) = 0 for

|x − x0| ≥ 2R. Define
wϵ(x) = ψ(x)vϵ(x) (2.12)

and

σϵ(x) = wϵ(x)
[∫

RN
Q(x)wp∗

ϵ (x)dx
]− 1

p∗

. (2.13)

Denote

Vmax := max
x∈B2R(x0)

V(x),

Kmin := min
x∈B2R(x0)

K(x).

Similar to the discussion of [17, 22], by ∂vϵ/∂−→n ≤ 0, we have that∫
BR(x0)

|∇wϵ|pdx =
∫

BR(x0)
|∇vϵ|pdx ≤

∫
BR(x0)

|vϵ|p
∗
dx,

and by the assumption (Q2) we also have

Q(x0)
∫

BR(x0)
|∇vϵ|p

∗
dx ≤ Q(x)

∫
BR(x0)

|∇vϵ|p
∗
dx + O(ϵp).

Simple calculations as [16] gives that∫
RN\BR(x0)

|vϵ|p
∗
dx = O(ϵN/p−1),
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Aϵ :=
∫

RN\BR(x0)
|∇wϵ|p

∗
dx = O(ϵ(N−p)/(p−1)

and ∫
RN

|σϵ|2dx =


kϵp + O(ϵ(N−p)/(p−1)), if N > p2,

kϵp| ln ϵ|+ O(ϵ(N−p)/(p−1)), if N = p2,

O(ϵ(N−p)/(p−1)), if N < p2,

(2.14)

as ϵ → 0, where k is a positive constant. Therefore, we can get∫
RN

|∇wϵ|pdx =
∫

BR(x0)
|∇wϵ|pdx + Aϵ

≤
∫

BR(x0)
|vϵ|p

∗
dx + Aϵ

≤ S
[∫

BR(x0)
|vϵ|p

∗
dx
] p

p∗

+ Aϵ

≤ S(∥Q∥L∞(RN))
− p

p∗

[∫
BR(x0)

Q(x)|vϵ|p
∗
dx
] p

p∗

+ O(ϵp) + O(ϵ(N−p)/(p−1)).

Set Vϵ ≡
∫

RN |∇σϵ|pdx, since for small ϵ > 0, say ϵ ≤ ϵ0, it is easy to see that∫
BR(x0)

Q(x)|wϵ|p
∗
dx ≥ Cϵ0

for some positive constant Cϵ0 . The definition of Vϵ and the last two inequalities imply that

Vϵ ≤ S(∥Q∥L∞(RN))
− p

p∗ + O(ϵp) + O(ϵ(N−p)/(p−1)). (2.15)

Lemma 2.5. Suppose that (V)–(K2), (Q1)–(Q2), and ( f )–( f2)are satisfied. Then there exists v0 ∈
E \ {0} such that

0 < sup
t≥0

J (tv0) <
1
N

SN/p[∥Q∥L∞(RN)]
p−N

p (2.16)

if either N ≥ p2 or p < N < p2 and µ > p∗ − p
p−1 .

Proof. Firstly, we claim that for ϵ > 0 small enough, there exists a constant tϵ > 0 such that

J (tϵσϵ) = max
t≥0

J (tσϵ)

and
0 < A1 < tϵ < A2 < +∞ for all ϵ > 0 small enough,

where A1 and A2 are positive constants independent of ϵ.
By ( f )–( f1), for any δ > 0, there exists Cδ > 0 such that

| f (t)| ≤ δg(t)|G(t)|p−1 + Cδg(t)|G(t)|p∗−1. (2.17)

Now, we consider

J (tσϵ) =
1
p

∫
RN

[tp|∇σϵ|p + V(x)|G−1(tσϵ)|p]dx −
∫

RN
K(x)F(G−1(tσϵ))dx

− 1
p∗

∫
RN

Q(x)|tσ+
ϵ |p∗dx

≤ tp

p
∥σϵ∥p −

∫
RN

K(x)F(G−1(tσϵ))dx − tp∗

p∗

∫
RN

Q(x)|σϵ|p
∗
dx

→ − ∞, as t → ∞.
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Clearly, limt→+∞ J (tσϵ) = −∞ for all ϵ > 0. Since J (0) = 0 and J (tσϵ) = −∞, there exists
tϵ > 0 such that

J (tϵσϵ) = max
t≥0

J (tσϵ) and
dJ (tσϵ)

dt

∣∣∣∣
t=tϵ

= 0.

Thus we have

tp−1
ϵ

∫
B2R(x0)

|∇σϵ|pdx +
∫

B2R(x0)
V(x)

|G−1(tϵσϵ)|p−2G−1(tϵσϵ)

g(G−1(tϵσϵ))
σϵdx

=
∫

B2R(x0)
K(x)

f (G−1(tϵσϵ))

g(G−1(tϵσϵ))
σϵdx + tp∗−1

ϵ

∫
B2R(x0)

Q(x)|σϵ|p
∗
dx.

(2.18)

On the one hand, if there is a sequence tϵn → +∞, as ϵn → 0+, by the above equality,
we get

tp−1
ϵn

∫
B2R(x0)

|∇σϵn |pdx +
∫

B2R(x0)
V(x)

|G−1(tϵn σϵn)|p−2G−1(tϵn σϵn)

g(G−1(tϵσϵn))
σϵn dx

≥ tp∗−1
ϵn

∫
B2R(x0)

Q(x)|σϵn |p
∗
dx.

Hence by Lemma 2.1-(7), we get

tp−1
ϵn

[∫
B2R(x0)

|∇σϵn |pdx +
∫

B2R(x0)
V(x)|σϵn |pdx

]
≥ tp∗−1

ϵn

∫
B2R(x0)

Q(x)|σϵn |p
∗
dx,

which gives a contradiction since p∗ > p.
On the other hand, we suppose there is a sequence t′ϵn

→ 0 as ϵn → 0+. If (1.5) holds, by
(2.17), for any δ > 0 there exists Cδ > 0 such that

∫
RN

K(x)
f (G−1(tϵn σϵn))

g(G−1(tϵn σϵn))
σϵn dx ≤ δt′p−1

ϵn

∫
RN

K(x)|σϵn |pdx + Cδ(t′ϵn
)p∗−1

∫
RN

K(x)|σϵn |p
∗
dx

≤ δCt′p−1
ϵn

∫
RN

(|∇σϵn |p + V(x)|σϵn |p) dx

+ Cδ(t′ϵn
)p∗−1

∫
RN

K(x)|σϵn |p
∗
dx.

By (2.18), we have

t′p−1
ϵn

(∫
RN

|∇σϵn |pdx
)
+
∫

RN
V(x)

|G−1(t′ϵn
σϵn)|p−2G−1(t′ϵn

σϵn)

(t′ϵn
σϵn)g(G−1(t′ϵσϵn))

σ2
ϵn

dx

≤ δCt′p−1
ϵn

∫
RN

(|∇σϵn |p + V(x)|σϵn |p) dx + (t′ϵn
)p∗−1

∫
RN

Q(x)|σϵn |p
∗
dx

+ Cδ(t′ϵn
)p∗−1

∫
RN

K(x)|σϵn |p
∗
dx.

Thus taking δ = 1
2C , we have

t′p−1
ϵn

(
1
p

∫
RN

|∇σϵn |pdx +
∫

RN
V(x)

[
|G−1(t′ϵn

σϵn)|p−2G−1(t′ϵn
σϵn)

|t′ϵn
σϵn |p−1g(G−1(t′ϵσϵn))

− 1
p

]
|σϵn |pdx

)
≤ (t′ϵn

)p∗−1
∫

RN
Q(x)|σϵn |p

∗
dx + Cδ(t′ϵn

)p∗−1
∫

RN
K(x)|σϵn |p

∗
dx.

(2.19)
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When t′ϵn
→ 0, we have

G−1(t′ϵn
σϵn)

|t′ϵn
σϵn |p−1g(G−1(t′ϵσϵn))

>
1
p

.

Therefore (2.19) is also impossible because of p∗ > p. So we complete the proof of our claim.

Since 0 < A1 < tϵ < A2 < +∞ for ϵ small enough, together with the definition of Vmax

and Kmin, we know that

J (tσϵ) =
1
p

∫
RN

(tp|∇σϵ|p + V(x)|G−1(tσϵ)|p)dx −
∫

RN
K(x)F(G−1(tσϵ))dx

− tp∗

p∗

∫
RN

Q(x)|σϵ|p
∗
dx

=
tp

p
Vϵ +

1
p

∫
B2R(x0)

V(x)|G−1(tσϵ)|pdx −
∫

B2R(x0)
K(x)F(G−1(tσϵ))dx − tp∗

p∗

≤ tp
ϵ

p
Vϵ +

1
p

∫
B2R(x0)

V(x)|G−1(tϵσϵ)|pdx −
∫

B2R(x0)
K(x)F(G−1(tϵσϵ))dx − tp∗

ϵ

p∗

≤ tp
ϵ

p
Vϵ +

1
p

Vmax

∫
B2R(x0)

|G−1(tϵσϵ)|pdx − Kmin

∫
B2R(x0)

F(G−1(tϵσϵ))dx − tp∗
ϵ

p∗

≤ tp
ϵ

p
Vϵ +

tp
ϵ

p
Vmax

∫
B2R(x0)

|σϵ|pdx − Kmin

∫
B2R(x0)

F(G−1(tϵσϵ))dx − tp∗
ϵ

p∗
.

By virtue of tp

p Vϵ − tp∗

p∗ ≤ 1
N VN/p

ϵ for all t ≥ 0, the estimate (2.15) on Vϵ and the above inequality
imply that

sup
t≥0

J (tσϵ) = J (tϵσϵ)

≤ 1
N

SN/p
[
∥Q∥L∞(RN)

]− N−p
p

+ O(ϵp) + O(ϵ(N−p)/(p−1))

+
tp
ϵ

p
Vmax

∫
B2R(x0)

|σϵ|pdx − Kmin

∫
B2R(x0)

F(G−1(tϵσϵ))dx

≤ 1
N

SN/p
[
∥Q∥L∞(RN)

]− N−p
p − Kmin

∫
B2R(x0)

F(G−1(tϵσϵ))dx + O(ϵp)

+ O(ϵ(N−p)/(p−1)) +


kϵp + O(ϵ(N−p)/(p−1)), if N > p2,

kϵp| ln ϵ|+ O(ϵ(N−p)/(p−1)), if N = p2,

O(ϵ(N − p)/(p − 1)), if N < p2.

(2.20)

By ( f2), we have F(s) ≥ CG(s)µ for all s > 0. Therefore

∫
B2R(x0)

F(G−1(tϵσϵ))dx ≥ C
∫

B2R(x0)
(tϵσϵ)

µdx ≥ CAµ
1

∫
BR(x0)

(σϵ)
µdx.
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It follows from (2.20), the above inequality and the definition of σϵ that

sup
t≥0

J (tσϵ) ≤
1
N

SN/p
[
∥Q∥L∞(RN)

]− N−p
p − CAµ

1

∫
BR(x0)

(σϵ)
µdx + O(ϵp)

+ O(ϵ(N−p)/(p−1)) +


kϵp + O(ϵ(N−p)/(p−1)), if N > p2,

kϵp| ln ϵ|+ O(ϵ(N−p)/(p−1)), if N = p2,

O(ϵ(N − p)/(p − 1)), if N < p2,

≤ 1
N

SN/p
[
∥Q∥L∞(RN)

]− N−p
p − Cϵ

N− N−p
p µ

∫ R
ϵ

0

rN−1

(1 + rp/(p−1))
µ(N−p)

p

dr

+ O(ϵp) + O(ϵ(N−p)/(p−1)) +


kϵp + O(ϵ(N−p)/(p−1)), if N > p2,

kϵp| ln ϵ|+ O(ϵ(N−p)/(p−1)), if N = p2,

O(ϵ(N − p)/(p − 1)), if N < p2.

(2.21)

For N ≥ p2 and µ ∈ (p, p∗), there exists a constant C > 0 such that∫ ∞

0

rN−1

(1 + rp/(p − 1))
µ(N−p)

p

dr ≥ C > 0.

If N ≥ p2 and µ ∈ (p, p∗), then we have

N − N − p
p

µ < p ≤ N − p. (2.22)

Combined (2.21) with (2.22), when ϵ → 0, we have

sup
t≥0

J (tσϵ) <
1
N

SN/p
[
∥Q∥L∞(RN)

]− N−p
p

. (2.23)

If p < N < p2 and µ ∈ (p∗ − p/(p − 1), p∗), then we know that (2.23) also holds. Then we can
get the following inequality

N − N − p
p

µ < N − p < p.

Hence inequality (2.23) also follows from (2.21) if we choose ϵ small enough. Thus we can
imply that the inequality (2.16) holds by taking u0 = σϵ for sufficiently small ϵ.

Next, we will prove the main results in this paper.

Proof of Theorem 1.2. By Lemma 2.2 and Lemma 2.3, all conditions of Mountain Pass Lemma
in [3] are satisfied. Let {vn} be a (PS)c0 sequence of J . Then

J (vn) =
1
p

∫
RN

[|∇vn|p + V(x)|G−1(vn)|p]dx −
∫

RN
K(x)F(G−1(vn))dx

− 1
p∗

∫
RN

Q(x)|v+n |p
∗
dx = c0 + on(1)

(2.24)

and

⟨J ′(vn), vn⟩ =
∫

RN

[
|∇vn|p + V(x)

|G−1(vn)|p−2G−1(vn)

g(G−1(vn))
vn

]
−
∫

RN
K(x)

f (G−1(v))
g(G−1(vn))

vn

−
∫

RN
Q(x)|v+n |p

∗−2v+n vndx = on(1)∥vn∥.



14 Z. Li

From Lemma 2.4, we know that {vn} is bounded in E. Passing to sequence, there exists a
subsequence of {vn} (still denoted by {vn}) such that

vn ⇀ v in E

vn → v in Lq
K(R

N) for p < q < p∗,

vn → v a.e. in RN .

(2.25)

Let

f̃ (x, v) =
f (G−1(v))
g(G−1(v))

+
V(x)
K(x)

|v|p−2v − V(x)
K(x)

|G−1(v)|p−2G−1(v)
g(G−1(v))

,

and

F̃(x, v) =
∫ v

0
f̃ (x, v)dx = F(G−1(v)) +

1
p

V(x)
K(x)

|v|p − 1
p

V(x)
K(x)

|G−1(v)|p,

then

J (v) =
1
p

∫
RN

(|∇v|p + V(x)|v|p)dx −
∫

RN
K(x)F̃(x, v)dx − 1

p∗

∫
RN

Q(x)|v+|p∗dx.

Similar to [43], we can verify that

lim
s→0

F̃(x, s)
|s|p = 0, lim

s→∞

F̃(x, s)
|s|p∗ = 0, lim

s→0

f̃ (x, s)
|s|p−1 = 0, lim

s→∞

f̃ (x, s)
|s|p∗−1 = 0. (2.26)

By Corollary A.3, we can get

lim
n→∞

∫
RN

K(x)F̃(x, G−1(vn)) =
∫

RN
K(x)F̃(x, G−1(v)),

lim
n→∞

∫
RN

K(x)
f̃ (x, G−1(vn))

g(G−1(vn))
vn =

∫
RN

K(x)
f̃ (x, G−1(v))
g(G−1(v))

v. (2.27)

Since J ′(vn) → 0, by (2.27), we can get∫
RN

(|∇v|p + V(x)|v|p)dx −
∫

RN
K(x) f̃ (x, v)vdx −

∫
RN

Q(x)|v+|p∗dx = 0.

Denote ϑn = vn − v, then by (2.6) and the Brézis–Lieb Lemma in [7], we have

J (v) +
1
p

∫
RN

(|∇ϑn|p + V(x)|ϑn|p)dx − 1
p∗

∫
RN

Q(x)|ϑn|p
∗
dx = c0 + o(1) (2.28)

and ∫
RN

(|∇ϑn|p + V(x)|ϑn|p)dx −
∫

RN
Q(x)|ϑn|p

∗
dx = o(1).

Without loss of generality we can suppose∫
RN

(|∇ϑn|p + V(x)|ϑn|p)dx → l as n → ∞ (2.29)

and then we have ∫
RN

Q(x)|ϑn|p
∗
dx → l, n → ∞. (2.30)



Existence of positive solutions for a class of p-Laplacian type generalized quasilinear 15

Moreover, by Sobolev’s inequality, we know that∫
RN

|∇ϑn|pdx ≥ S
(∫

RN
|ϑn|p

∗
dx
)p/p∗

≥ S
[
∥Q∥L∞(RN)

]−p/p∗
(∫

RN
Q(x)|ϑn|p

∗
dx
)p/p∗

.

(2.31)

Using (2.29), (2.30), (2.31), if l > 0, then we have

l ≥ SN/p
[
∥Q∥L∞(RN)

] p−N
p

.

By (2.28), we have

J (v) =
(

c0 −
1
p
− 1

p∗

)
l ≤ c0 −

1
N

SN/p
[
∥Q∥L∞(RN)

] p−N
p

< 0.

On the other hand, by ( f2), we have

J (v) =
1
p

∫
RN

[|∇v|p + V(x)|G−1(v)|p]dx −
∫

RN
K(x)F(G−1(v))dx

− 1
p∗

∫
RN

Q(x)|v|p∗dx

=
1
p

∫
RN

V(x)|G−1(v)|p−2
[
|G−1(v)|2 − G−1(v)v

g(G−1(v))

]
dx +

(
1
p
− 1

p∗

) ∫
RN

Q(x)|v|p∗dx

−
∫

RN
K(x)

[
F(G−1(v))− f (G−1(v))

g(G−1(v))
v
]

dx

≥ 0,

which is a contradiction. It shows that l = 0. By the definition of ϑn we conclude that J
satisfies (PS)c0 condition and thus

J (v) = c0 > 0 and J ′(v) = 0.

which gives that u = G−1(v) is a positive solution of (1.1). This completes the proof.

Appendix A

In this part, we want to give some very useful lemmas.

Lemma A.1 ([17, Lemma 2.3]). Suppose that (V)–(K2) hold, and h : RN × R → R is a continuous
function, which satisfies the following conditions:

(h1) h has a quasicritical growth, that is, lim
|s|→+∞

h(x,s)
|s|p∗−1 = 0;

(h2) if (1.5) holds, then h satisfies lim
s→0

h(x,s)
|s|p = 0.

If a sequence {vn} converges weakly to v in E, then

lim
n→∞

∫
RN

KH(x, vn) =
∫

RN
KH(x, v),

lim
n→∞

∫
RN

Kh(x, vn)vn =
∫

RN
Kh(x, v)v,

where H(x, s) =
∫ s

0 h(x, t)dt for all s ∈ R.
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Lemma A.2. Under the assumptions of Lemma A.1, if vn ⇀ v in E, then for each ϕ ∈ E it holds that

lim
n→∞

∫
RN

K [h(x, vn)− h(x, v)] ϕdx = 0. (A.1)

Proof. Motivated by [1, 31, 46], since vn ⇀ v in E and E ↪→ Lp∗(RN), then there exists M > 0
such that

∥vn∥, ∥v∥ ≤ M |v|p
∗

p∗ ≤ M, n ∈ N.

Now, we consider the case that (V)–(K1), (1.5), (h1) and (h2) hold. it follows from (h1) and
(h2) that for any ε > 0 and q ∈ (p, p∗) there exists Cε > 0 such that

h(x, s) ≤ ε(|s|p−1 + |s|p∗−1) + Cε|s|q−1, s ∈ R. (A.2)

By (1.5), we have that

K(x)h(x, s) ≤ ε(|K/V|∞V(x)|s|p + |K|∞|s|p
∗
) + CεK(x)|s|q−1, x ∈ RN and s ∈ R. (A.3)

According to Proposition 1.1, it holds that
∫

RN K|vn|q →
∫

RN K|v|q as n → ∞. Then there exists
R = Rε large enough such that

∫
Bc

R

K|vn|q,
∫

Bc
R

K|v|q ≤
(

ε

Cε

)q/(q−1)

, n ∈ N. (A.4)

where Bc
R = {x ∈ RN : |x| ≥ R}. Hence, we can derive from (A.3), the Hölder inequality,

(A.2) and (A.4) that∫
Bc

R

K|h(x, vn)ϕ| ≤
∫

Bc
R

ε(|K/V|∞V(x)|vn|p−1 + |K|∞|vn|p
∗−1) + Cε

∫
Bc

R

K(x)|vn|q−1|ϕ|

≤ ε
[
|K/V|∞∥vn∥∥ϕ∥+ |K|∞|vn|p

∗−1
p∗ |ϕ|p∗

]
+ Cε

(∫
Bc

R

K(x)|vn|q
)(q−1)/q

|ϕ|Lq
K

≤ Cε. (A.5)

where C is independent of ε. Similarly, it holds that for some constant C2 independent of ε,∫
Bc

R

Kh(x, v)ϕ ≤ Cε. (A.6)

Next, we only need to prove that

lim
n→∞

∫
BR

Kh(x, vn)ϕ =
∫

BR

Kh(x, v)ϕ. (A.7)

In fact, since vn ⇀ v in E, then exists a subsequence of {vn} (still denoted by {vn}) such
that vn(x) → v(x) for a.e. x ∈ RN . Thus h(x, vn) → h(x, v) for a.e. x ∈ RN . Moreover, it
follows from (A.3) that {h(x, vn)} is bounded in Lp∗/(p∗−p)(BR). Hence h(x, vn) ⇀ h(v) in
Lp∗/(p∗−p)(BR) as n → ∞, and (A.7) holds as a consequence of the fact that Kϕ ∈ Lp∗(RN).
Thus we can get that

lim
n→∞

∫
BR

Kh(x, vn)ϕ =
∫

BR

Kh(x, v)ϕ.

Combining (A.5), (A.6) with (A.7), (A.1) holds. This completes the proof.
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Corollary A.3. Under the assumptions of Lemma A.1, if vn ⇀ v in E, then it holds that

lim
n→∞

∫
RN

KF̃(x, G−1(vn)) =
∫

RN
KF̃(x, G−1(v)), (A.8)

lim
n→∞

∫
RN

K
f̃ (x, G−1(vn))

g(G−1(vn))
vn =

∫
RN

K
f̃ (x, G−1(v))
g(G−1(v))

v, (A.9)

and

lim
n→∞

∫
RN

K
f̃ (x, G−1(vn))

g(G−1(vn))
ϕ =

∫
RN

K
f̃ (x, G−1(v))
g(G−1(v))

ϕ, ϕ ∈ E. (A.10)
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