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Abstract. This paper establishes the multiplicity of solutions for a class of quasilinear
Schrödinger elliptic equations:

−∆u + V(x)u − γ

2
∆(u2)u = f (x, u), x ∈ R3,

where V(x) : R3 → R is a given potential and γ > 0. Furthermore, by the variational
argument and L∞-estimates, we are able to obtain the precise asymptotic behavior of
these solutions as γ → 0+.
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1 Introduction

This paper deals with multiplicity and asymptotic behavior of solitary wave solutions for
quasilinear Schrödinger equations of the form

i∂tz = −∆z + W(x)z − l(x, |z|2)z − γ

2
[∆ρ(|z|2)]ρ′(|z|2)z, (1.1)

where z : R3 × R → C, W : R3 → R is a given potential, γ is a real constant and l, ρ are real
functions. Quasilinear equations of the form (1.1) have been established in the past in several
areas of physics with different types of ρ. For example, the case ρ(t) = t was used in [18] for
the superfluid film equation in plasma physics; the case ρ(t) = (1 + t)1/2 was considered for
the self-channeling of a high-power ultrashort laser in matter, see [11] and [12]. These types
of equations also appear in fluid mechanics [19], in the theory of Heidelberg ferromagnetism
and magnus [20], in dissipative quantum mechanics [17] and in condensed matter theory [27].
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We now consider the case of the superfluid film equation in plasma physics, namely ρ(t) =
t. If we look for standing waves, that is, solutions of the form z(t, x) := exp(−iEt)u(x) with
E > 0, we are lead to investigate the following elliptic equation

−∆u + V(x)u − γ

2
∆(u2)u = f (x, u), x ∈ R3, (1.2)

with V(x) = W(x)− E and f : R3 × R → R given by f (x, t) := l(x, |t|2)t is a new nonlinear
term. Later on, we shall pose precisely the hypotheses on V and f .

Taking γ = 0, the equation (1.2) is a semilinear case, scholars have obtained a large number
of existence and multiplicity results based on variational methods, see e.g. [10, 14, 21, 22].
When γ > 0, the first existence of positive solutions is proved by Poppenberg, Schmitt and
Wang in [28] with a constrained minimization argument. While a general existence result
for (1.1) is due to Liu et al. in [25] through using of a change of variable to reformulate
the quasilinear problem (1.2) to a semilinear one in an Orlicz space framework. Colin and
Jeanjean in [13] used the same method of changing variables, but the classical Sobolev space
H1(RN) was chosen. We refer the readers to [5, 26, 31, 33, 34] for more results. Recently, in
[23], by using perturbation methods, Liu et al. proved the existence of nodal solutions for the
general quasilinear problem in bounded domains.

In the above references mentioned, the γ in the quasilinear problem (1.2) was assumed to
be a fixed constant. While, the constant γ represents several physical effect and is assumed
to be small in some situation. This indicates the importance of the study of the asymptotic
behavior of ground states as γ → 0+. But, asymptotic behavior of solutions for quasilinear
Schrödinger equations is much less studied. In [1], Adachi et al. considered the problem for
N = 3, λ > 0, γ > 0 and f (x, s) = |s|p−2s (4 < p < 6):

−∆u + λu − γ

2
∆(u2)u = |u|p−2u, x ∈ R3. (1.3)

They showed the ground states uγ of (1.3) satisfies uγ → u0 in H2(R3) ∩ C2(R3) as γ → 0+,
where u0 is a unique ground state of

−∆u + λu = |u|p−2u, x ∈ R3.

Then, in [34], Wang and Shen proved the asymptotic behavior of positive solutions for (1.3)
when p ∈ (2, 4), which complemented the result given by Adachi et al. in [1]. By applying
the blow-up analysis and the variational methods, in [2–4] Adachi et al. obtained the precise
asymptotic behavior of ground states when N ≥ 3 and the nonlinear term has H1-critical
growth or H1-supercritical growth.

However, the work in the literature always assumed that V(x) ≡ λ > 0 and studied the
asymptotic behavior of one ground state solution for (1.4). We are interested in the problem
that whether or not we can find the multiplicity of solutions for (1.4) with some suitable
potential conditions. Furthermore, as γ → 0+, whether these solutions have any asymptotic
behavior. Specifically, the main purpose of the present paper is to solve the following three
problems:

(Q1) We have the multiplicity of solutions for (1.4) in unbounded domains, which comple-
ments the results given by Liu et al. in [23].

(Q2) We obtain the asymptotic properties of solutions for (1.4) under some suitable potential
conditions. Our result, in the sense that we do not need the restrictive conditions V(x) ≡
λ > 0, improves the one obtained in [1].
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(Q3) All the papers mentioned above only studied the asymptotic behavior of a positive
ground state solution for (1.4). In this paper, we explore the asymptotic behavior of
multiple solutions for quasilinear Schrödinger equations. More precisely, we can obtain
the asymptotic behavior of sign-changing solution for (1.4).

For this purpose, we consider the multiplicity and asymptotic behavior of solutions for the
following one-parameter family of elliptic equations with general nonlinearities:

−∆u + V(x)u − γ

2
∆(u2)u = f (x, u), x ∈ R3, (1.4)

where γ > 0 and V(x) ∈ C(R3, R) satisfying:

(V0) : V(x) ≥ V0 > 0 for all x ∈ R3;

(V1) : For any M, r > 0, there is a ball Br(y) centered at y with radius r such that

µ({x ∈ Br(y) : V(x) ≤ M}) → 0, as |y| → ∞.

Remark 1.1. The condition (V1) was firstly introduced by Bartsch, Pankov and Wang [8] to
guarantee the compactness of embeddings of the work space. The limit of condition (V1) can
be replaced by one of the following simpler conditions:

(V2) : V(x) ∈ C(R3), µ({x ∈ R3 : V(x) ≤ M}) < ∞ for any M > 0 (see [9]);

(V3) : V(x) ∈ C(R3), V(x) is coercive, i.e., lim|x|→∞ V(x) = ∞.

For the continuous nonlinearity f , we suppose that it satisfies the following conditions:

( f1) : there exist a constant C and p ∈ (4, 6) such that

| f (x, t)| ≤ C(1 + |t|p−1), for all x ∈ R3, t ∈ R;

( f2) : limt→0
f (x,t)

t = 0 uniformly with respect to x ∈ R3;

( f3) : there exists θ > 4 such that

0 < θF(x, t) ≤ t f (x, t), for all x ∈ R3, t ̸= 0,

where F(x, t) =
∫ t

0 f (x, s)ds.

Note that (1.4) is the Euler–Lagrange equation associated to the natural energy functional:

I(u) =
1
2

∫
R3
(1 + γu2)|∇u|2dx +

1
2

∫
R3

V(x)u2dx −
∫

R3
F(x, u)dx,

which is not well defined in H1(R3). Due to this fact, the usual variational methods can not be
applied directly. This difficulty makes problem like (1.4) interesting and challenging. Inspired
by the work of Shen [29], we first establish the existence of signed solutions for a modified
quasilinear Schrödinger equation

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = f (x, u), x ∈ R3, (1.5)

where g(t) =
√

1 + γt2.
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In what follows, instead of using the dual method, we search the existence of sign-
changing solutions for the problem (1.4) via the perturbation method and invariant sets of
descending flow.

For asymptotic behavior of solutions for the problem (1.4), arguments we apply are rather
standard. Using a bootstrap argument, we obtain the uniform boundedness of L∞-norm of
uγ. Then we apply the uniform estimates for the energies to show the strong convergence in
H1

V(R
3) (H1

V(R
3) will be defined in Section 2), this is a key problem to the study.

Next, we give our main results.

Theorem 1.2. Assume that (V0), (V1), and ( f1)–( f3) hold. Then, for fixed γ ∈ (0, 1], the problem
(1.4) has at least three solutions: a positive solution uγ,1, a negative solution uγ,2 and a sign-changing
solution uγ,3.

Theorem 1.3. For fixed γ ∈ (0, 1], uγ,i (i = 1, 2, 3) are solutions of the problem (1.4). As γ → 0+,
then passing to a subsequence, there exist ui ∈ H1

V(R
3) ∩ L∞(R3) (i = 1, 2, 3) such that uγ,i → ui

strongly in H1
V(R

3), where u1 is a positive solution of problem

−∆u + V(x)u = f (x, u), x ∈ R3. (1.6)

u2 is a negative solution of the problem (1.6) and u3 is a sign-changing solution of the problem (1.6).

Remark 1.4. In order to prove the existence of a sign-changing solution, we need a restriction
p > 4 because of the degeneracy of the quasilinear term. Moreover we require that p is
H1-subcritical to prove the L∞-norm of the solutions of (1.5) are uniformly bounded. Since
4 < 2N

N−2 if and only if N < 4. Hence we only show the asymptotic behavior of multiple
solutions for the quasilinear Schrödinger for N = 3.

This paper is organized as follows. In Section 2, we describe the variational framework
associated with the problem (1.4). We give the proofs of existence of signed and sign-changing
solutions in Sections 3–4, respectively. Section 5 is devoted to the study of asymptotic behavior
of solutions.

In what follows, C and Ci (i = 1, 2, . . . ) denote positive generic constants. In this paper,
the norms of Ls(RN)(s ≥ 1) is denoted by | · |s.

2 The modified problem

Let

H1
V(R

3) =

{
u ∈ H1(R3) :

∫
R3

(
|∇u|2 + V(x)u2) dx < +∞

}
with the inner product

⟨u, v⟩H1
V(R

3) =
∫

R3
(∇u · ∇v + V(x)uv) dx

and the norm
∥u∥2

H1
V
= ⟨u, u⟩H1

V(R
3).

From [9], we know that under the assumptions (V0) and (V1), the embedding H1
V(R

3) ↪→
Ls(R3) is compact for each s ∈ [2, 6).

Note that (1.4) is the Euler–Lagrange equation associated to the natural energy functional:

Iγ(u) =
1
2

∫
R3
(1 + γu2)|∇u|2dx +

1
2

∫
R3

V(x)u2dx −
∫

R3
F(x, u)dx,
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which is not well defined in H1(R3) or H1
V(R

3). Inspired by [13, 29, 30], we consider the
following quasilinear Schrödinger equation:

−div(g2
γ(u)∇u) + gγ(u)g′γ(u)|∇u|2 + V(x)u = f (x, u), x ∈ R3. (2.1)

Here we choose gγ(t) : R → R given by

gγ(t) =
√

1 + γt2.

It follows that gγ(t) ∈ C1(R, [1, ∞)), increases in [0,+∞) and decreases in (−∞, 0].
Next, we set

Gγ(t) =
∫ t

0
gγ(s)ds.

It is well known that Gγ(t) is an odd function and inverse function G−1
γ (t) exists. Moreover,

we summarize some properties of G−1
γ (t) as follows.

Lemma 2.1 ([30]).

(1) limt→0
G−1

γ (t)
t = 1;

(2) limt→+∞
G−1

γ (t)
t = 0;

(3) limt→+∞
|G−1

γ (t)|2
t = 2√

γ ;

(4) for all t, s ∈ R, then
Gγ(s) ≤ gγ(s)s, |G−1

γ (t)| ≤ |t|;

(5) 0 ≤ s
gγ(s)

g′γ(s) ≤ 1, for all s ∈ R;

(6) there exists a positive constant C independent of γ such that

|G−1
γ (t)| ≥

{
C|t| if |t| ≤ 1,

C|t|1/2 if |t| ≥ 1;

(7) there exists θ > 4 such that

0 <
θ

2
F(x, t)gγ(t) ≤ Gγ(t) f (x, t), for all x ∈ R3, t ̸= 0.

In what follows, taking the change variable

v = Gγ(u) =
∫ u

0
gγ(s)ds,

we observe that the functional Iγ(u) can be written of the following way

Jγ(v) =
1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

V(x)|G−1
γ (v)|2dx −

∫
R3

F(x, G−1
γ (v))dx.

From Lemma 2.1 and conditions (V0), (V1) and ( f1)–( f3), we obtain the functional Jγ(v) is
well-defined in H1

V(R
3), Jγ ∈ C1(H1

V(R
3), R) and

J′γ(v)φ =
∫

R3
∇v∇φdx +

∫
R3

V(x)
G−1

γ (v)

gγ(G−1
γ (v))

φdx −
∫

R3

f (x, G−1
γ (v))

gγ(G−1
γ (v))

φdx,
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for all φ ∈ H1
V(R

3).
Moreover, the critical points of the functional Jγ correspond to the weak solutions of the

following equation

−∆v + V(x)
G−1

γ (v)

gγ(G−1
γ (v))

=
f (x, G−1

γ (v))

gγ(G−1
γ (v))

, x ∈ R3. (2.2)

It is clear that if v is a critical point of Jγ, u = G−1
γ (v) is a critical point of Iγ, i.e. u = G−1

γ (v)
is a solution of (1.4).

3 The existence of signed solutions

In this section we fix 1 ≥ γ > 0. Let u+ = max{u, 0} and u− = min{u, 0}. Set

I±γ (u) =
1
2

∫
R3
(1 + γu2)|∇u|2dx +

1
2

∫
R3

V(x)u2dx −
∫

R3
F(x, u±)dx

and

J±γ (v) := I±γ (G−1
γ (v)) =

1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

V(x)|G−1
γ (v)|2dx −

∫
R3

F(x, (G−1
γ (v))±)dx.

Lemma 3.1. Assume that ( f1)–( f3), (V0) and (V1) hold. Then there exist ρ > 0 and e ∈ H1
V(R

3)

such that
J+γ (v) > 0, for ∥v∥H1

V
= ρ,

and J+γ (e) < 0.

Proof. By conditions ( f1), ( f2) and |G−1
γ (s)| ≤ |s|, for δ > 0 small enough, there exists Cδ > 0

such that
|F(x, G−1

γ (v)+)| ≤ δV(x)v2 + Cδ|v|p, for all x ∈ R3,

since we have

lim
|t|→0

G−1
γ (t)

t
= 1,

and

lim
|t|→∞

G−1
γ (t)

t
= 0.

Then, setting Hγ(x, t) := − 1
2 V(x)|G−1

γ (t)|2 + F(x, (G−1
γ (t))+), it follows that

lim
t→0

Hγ(x, t)
t2 = −1

2
V(x) < 0, lim

t→+∞

Hγ(x, t)
t6 = 0, for all x ∈ R3

and we have

J+γ (v) =
1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

V(x)|G−1
γ (v)|2dx −

∫
R3

F(x, (G−1
γ (v))+)dx

≥ 1
2

∫
R3

|∇v|2dx −
∫

R3
Hγ(x, v)dx

≥ 1
2

∫
R3

|∇v|2dx + (
1
2
− δ)

∫
R3

V(x)|v|2dx − Cδ

∫
R3

|v|6dx

≥ C∥v∥2
H1

V
− C∥v∥6

H1
V

,
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where we need sufficiently small δ > 0 and the Sobolev inequality. Thus, it implies J+γ (v) has
local minimum at v = 0.

On the other hand, the condition ( f3) implies that

F(x, t) ≥ Ctθ − C, for all t > 0, x ∈ R3.

For w ∈ C∞
0 (R3) with supp(w) = B1 and w(x) ≥ 0,

J+γ (tw) =
t2

2

∫
R3

|∇w|2dx +
1
2

∫
R3

V(x)|G−1
γ (tw)|2dx −

∫
R3

F(x, (G−1
γ (tw))+)dx

≤ t2

2

∫
R3

|∇w|2dx +
t2

2

∫
R3

V(x)|w|2dx − Ct
θ
2

∫
R3

|w| θ
2 dx − C.

Since θ > 4, it follows that J+γ (tw) → −∞ as t → ∞.

As a consequence of Lemma 3.1 and the Ambrosetti–Rabinowitz Mountain Pass Theorem,
for the constant

dγ = inf
η∈Γ

sup
t∈[0,1]

J+γ (η(t)),

where

Γ = {η : η ∈ C([0, 1], H1
V(R

3)), η(0) = 0, J+γ (η(1)) < 0},

there exists a Palais–Smale sequence {vn} at level dγ, that is J+γ (vn) → dγ and (J+γ )′(vn) → 0,
as n → ∞.

Lemma 3.2. Assume that ( f1)–( f3), (V0) and (V1) hold. Then the Palais–Smale sequence of J+γ is
bounded.

Proof. Let {vn} ⊂ H1
V(R

3) be a Palais–Smale sequence. Then

J+γ (vn) =
1
2

∫
R3

|∇vn|2dx +
1
2

∫
R3

V(x)|G−1
γ (vn)|2dx −

∫
R3

F(x, (G−1
γ (vn))+)dx

= dγ + on(1)
(3.1)

and for any φ ∈ H1
V(R

3), ⟨(J+γ )′(vn), φ⟩ = on(1)∥φ∥H1
V

, that is

∫
R3

(
∇vn∇φ + V(x)

G−1
γ (vn)

gγ(G−1
γ (vn))

φ

)
dx −

∫
R3

f (x, (G−1
γ (vn))+)

g(G−1
γ (vn))

φdx = on(1)∥φ∥H1
V

. (3.2)

Fixing φ = vn, we deduce that

on(1)∥vn∥H1
V
= ⟨(J+γ )′(vn), vn⟩

=
∫

R3

(
|∇vn|2 + V(x)

G−1
γ (vn)

gγ(G−1
γ (vn))

vn

)
dx

−
∫

R3

f (x, (G−1
γ (vn))+)

gγ(G−1
γ (vn))

vndx.

(3.3)
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Therefore, by (3.1)–(3.3) and Lemma 2.1-(7), we have

θ

2
dγ + on(1) + on(1)∥vn∥H1

V
=

θ

2
J+γ (vn)− ⟨(J+γ )′(vn), vn⟩

≥ θ − 4
4

∫
R3

|∇vn|2dx

+
∫

R3
V(x)G−1

γ (vn)

(
θG−1

γ (vn)

4
− 1

gγ(G−1
γ (vn))

vn

)
dx

−
∫

R3

(
θ

2
F(x, (G−1

γ (vn))
+)−

f (x, (G−1
γ (vn))+)

gγ(G−1
γ (vn))

vn

)
dx

≥ θ − 4
4

(∫
R3

|∇vn|2dx +
∫

R3
V(x)(G−1

γ (vn))
2dx
)

.

Next, we will prove that there exists a constant C > 0 such that∫
R3

(
|∇vn|2 + V(x)(G−1

γ (vn))
2
)

dx ≥ C∥vn∥2
H1

V
.

Otherwise, there exists a sequence {vnk} ⊂ H1
V(R

3) such that

A2
k :=

∫
R3

(
|∇vnk |2 + V(x)(G−1

γ (vnk))
2
)

dx <
1
k
∥vnk∥2

H1
V

. (3.4)

Hence, by (3.4), A2
k

∥vnk∥
2
H1

V

→ 0. Consequently, in Lemma 2.4 of [30], we get a contradiction. This

shows that ∥vn∥H1
V
< +∞.

Lemma 3.3. Assume that ( f1)–( f3), (V0) and (V1) hold. Then J+γ has a positive critical point.

Proof. First, we show that the sequence {vn} possesses a convergent subsequence in H1
V(R

3).
Indeed, by the boundedness of {vn} and the compactness of embedding H1

V(R
3) ↪→ Ls(R3)

(2 ≤ s < 6), up to subsequence, one has vn ⇀ v weakly in H1
V(R

3), vn → v strongly in Ls(R3)

for all s ∈ [2, 6) and vn(x) → v(x) a.e. on R3.
By conditions ( f1), ( f2), Lemma 2.1-(4) and gγ(s) ≥ 1, one has∣∣∣∣∣

∫
R3

(
f (x, (G−1

γ (vn))+)

gγ(G−1
γ (vn))

−
f (x, (G−1

γ (v))+)

gγ(G−1
γ (v))

)
(vn − v)dx

∣∣∣∣∣
≤ C

∫
R3

(
|G−1

γ (vn)|+ |G−1
γ (vn)|p−1 + |G−1

γ (v)|+ |G−1
γ (v)|p−1

)
|vn − v|dx

≤ C
∫

R3

(
|vn|+ |vn|p−1 + |v|+ |v|p−1

)
|vn − v|dx

≤ C
(
(|vn|2 + |v|2)|vn − v|2 + (|vn|p−1

p + |v|p−1
p )|vn − v|p

)
.

(3.5)

On the other hand, as in Lemma 2.5 of [30], we know that

∫
R3

(
|∇(vn − v)|2 + V(x)

(
G−1

γ (vn)

gγ(G−1
γ (vn))

−
G−1

γ (v)

gγ(G−1
γ (v))

)
(vn − v)

)
dx

≥ C∥vn − v∥2
H1

V
.

(3.6)
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By virtue of (3.5) and (3.6), we have

o(1) = ⟨(J+γ )′(vn)− (J+γ )′(v), vn − v⟩

=
∫

R3

(
|∇(vn − v)|2 + V(x)

(
G−1

γ (vn)

gγ(G−1
γ (vn))

−
G−1

γ (v)

gγ(G−1
γ (v))

)
(vn − v)

)
dx

−
∫

R3

(
f (x, (G−1

γ (vn))+)

gγ(G−1
γ (vn))

−
f (x, (G−1

γ (v))+)

gγ(G−1
γ (v))

)
(vn − v)dx

≥ C∥vn − v∥2
H1

V
+ o(1).

This implies vn → v strongly in H1
V(R

3). By standard regular arguments, the weak limit v
of {vn} is a critical point of J+γ . Furthermore, from vn → v strongly in H1

V(R
3) and v can be

shown to be positive critical point of Jγ by applying the maximum principle in [16]. Hence,
u = G−1

γ (v) is a positive weak solution of (1.4). By the similar argument, we know that the
equation (1.4) also has a negative weak solution.

The next two results establish the uniform boundedness of H1
V-norm of vγ. This important

estimate will be used in Section 5.

Lemma 3.4. Assume that ( f1)–( f3), (V0) and (V1) hold. Let vγ be a critical point of J+γ with
J+γ (vγ) = dγ. Then there exists C > 0 (independent of γ) such that

∥vγ∥2
H1

V
≤ Cdγ. (3.7)

Proof. Let vγ be a critical point of J+γ . Similar with Lemma 3.2, we get the following estimates

θ

2
dγ =

θ

2
J+γ (vγ)− ⟨(J+γ )′(vγ), vγ⟩

≥ θ − 4
4

∫
R3

|∇vγ|2dx

+
∫

R3
V(x)G−1

γ (vγ)

(
θG−1

γ (vγ)

4
− 1

gγ(G−1
γ (vγ))

vγ

)
dx

−
∫

R3

(
θ

2
F(x, (G−1

γ (vγ))+)−
f (x, (G−1

γ (vγ))+)

gγ(G−1
γ (vγ))

vγ

)
dx

≥ θ − 4
4

(∫
R3

|∇vγ|2dx +
∫

R3
V(x)(G−1

γ (vγ))
2dx
)

≥ C∥vγ∥2
H1

V
,

which implies ∥vγ∥2
H1

V
≤ Cdγ.

Lemma 3.5. Assume γ ∈ [0, 1]. Then there exist positive constants m1, m2 (independent on γ), such
that

m1 ≤ J+γ (vγ) ≤ m2,

where vγ is a positive critical point of J+γ .

Proof. For ρ > 0, let

Σρ =

{
v ∈ H1

V(R
3) :

∫
R3

(
|∇v|2 + V(x)v2) dx ≤ ρ2

}
.
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Similar with Lemma 3.1, we have

J+γ (v) =
1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

V(x)|G−1
γ (v)|2dx −

∫
R3

F(x, (G−1
γ (v))+)dx

≥ 1
2

∫
R3

|∇v|2dx −
∫

R3
Hγ(x, v)dx

≥ 1
2

∫
R3

|∇v|2dx +

(
1
2
− δ

) ∫
R3

V(x)|v|2dx − Cδ

∫
R3

|v|6dx

≥ C∥v∥2
H1

V
− C∥v∥6

H1
V

,

where we need sufficiently small δ > 0 and the Sobolev inequality. Thus, if v ∈ ∂Σρ, take ρ

small enough, it implies that J+γ (v) ≥ Cρ2 := m1, where m1 does not depend on γ.
Note that

J+γ (vγ) = inf
η∈Γ

sup
t∈[0,1]

J+γ (η(t)),

where
Γ = {η : η ∈ C([0, 1], H1

V(R
3)), η(0) = 0, J+γ (η(1)) < 0}.

Since any path η(t) ∈ Γ always passes though ∂Σρ, then

J+γ (vγ) = inf
η∈Γ

sup
t∈[0,1]

J+γ (η(t)) ≥ inf
v∈∂Σρ

J+γ (v) ≥ m1.

Take φ ∈ C∞
0 (R3), φ ≥ 0, and define a path h : [0, 1] → H1

V(R
3) by h(t) = tTφ, where the

constant T > 0. For T large enough, we have

J+γ (h(1)) ≤ J+1 (h(1)) < 0,
∫

R3
|∇h(1)|2 + V(x)(G−1

γ (h(1)))2dx > ρ2.

Due to h(t) ∈ Γ, then we get

J+γ (vγ) ≤ sup
t∈[0,1]

J+γ (h(t)) ≤ sup
t∈[0,1]

J+1 (h(t)) := m2,

where m2 does not depend on γ.

4 The existence of sign-changing solutions

The goal of this section is to consider the existence of sign-changing solutions. To do this, we
define the work space E as follows

E = W1,4(R3) ∩ H1
V(R

3),

where

H1
V(R

3) :=
{

u ∈ H1(R3) :
∫

R3
V(x)u2dx < +∞

}
,

which endowed with the norm

∥u∥H1
V
=

(∫
R3

(
|∇u|2 + V(x)u2) dx

)1/2
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and W1,4(R3) endowed with the norm

∥u∥W =

(∫
R3
(|∇u|4 + u4)dx

)1/4

.

The norm of E is denoted by
∥u∥E = ∥u∥W + ∥u∥H1

V
.

Remark 4.1. It is noteworthy that the embedding from H1
V(R

3) into L2(R3) is compact (see
[9]). Applying the interpolation inequality, we obtain that the embedding from E into Ls(R3)

for 2 ≤ s < 12 is compact.

In what follows, we formally formulate (1.4) in variational structure as follows

Iγ(u) =
1
2

∫
R3

(
|∇u|2 + V(x)u2 + γu2|∇u|2

)
dx −

∫
R3

F(x, u)dx. (4.1)

If u ∈ H1
V(R

3) ∩ L∞(R3) is a weak solution of (1.4), that is, for all φ ∈ C∞
0 (R3) the following

equation holds∫
R3

(∇u∇φ + V(x)uφ) dx + γ
∫

R3
u2∇u∇φdx + γ

∫
R3

|∇u|2uφdx −
∫

R3
f (x, u)φdx = 0. (4.2)

Notice that Iγ is an ill-behaved functional in H1
V(R

3). To avoid this difficulty, in the sequel, for
each µ, γ > 0 fixed, let us consider the perturbation functional Iµ,γ : E → R associated with
(1.4) given by

Iµ,γ(u) =
µ

4

∫
R3

(
|∇u|4 + u4

)
dx + Iγ(u). (4.3)

By deducing as in [15] (see also [23]), it is normal to verify that Iµ,γ ∈ C1(E, R) and for each
φ ∈ E, we get

⟨I′µ,γ(u), φ⟩ = µ
∫

R3

(
|∇u|2∇u∇φ + u3φ

)
dx +

∫
R3

(∇u∇φ + V(x)uφ) dx

+ γ
∫

R3
u2∇u∇φdx + γ

∫
R3

|∇u|2uφdx −
∫

R3
f (x, u)φdx.

(4.4)

In the following, we prove a compactness condition for Iµ,γ.

Lemma 4.2. For µ, γ > 0 fixed, then Iµ,γ satisfies the (PS) conditions.

Proof. Let {un} ⊂ E be a (PS) sequence for Iµ,γ, that is {un} satisfies:

|Iµ,γ(un)| ≤ c and I′µ,γ(un) → 0 as n → ∞.

Consider

Iµ,γ(un)−
1
θ
⟨I′µ,γ(un), un⟩

=
(µ

4
− µ

θ

)
∥un∥4

W +

(
1
2
− 1

θ

) ∫
R3

(
|∇un|2 + V(x)u2

n
)

dx

+

(
1
2
− 2

θ

)
γ
∫

R3
|∇un|2u2

ndx +
∫

R3

(
1
θ

un f (x, un)− F(x, un)

)
dx

≥
(µ

4
− µ

θ

)
∥un∥4

W +

(
1
2
− 1

θ

)
∥un∥2

H1
V

,

which deduces that {un} is bounded in E.
By a standard argument, we can prove that every bounded (PS) sequence

{un} ⊂ E of Iµ,γ possesses a convergent subsequence, cf. [15]. This completes the proof.
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In the following, we would like to construct a descending flow guaranteeing existence
of desired invariant sets for the functional Iµ,γ. For this purpose, we introduce an auxiliary
operator A : E → E, u 7→ Au := v satisfies

⟨J′µ,γ(v), ω⟩ = C0

∫
R3

u3ωdx +
∫

R3
f (x, u)ωdx, for all ω ∈ E, (4.5)

where

Jµ,γ(v) =
µ

4

∫
R3

(
|∇v|4 + v4

)
dx +

1
2

∫
R3

(
|∇v|2 + V(x)v2 + γv2|∇v|2

)
dx +

C0

4

∫
R3

v4dx,

and C0 > 0 large enough. It is normal to verify that Jµ,γ ∈ C1(E, R) and for all ω ∈ E we have

⟨J′µ,γ(v), ω⟩ = µ
∫

R3

(
|∇v|2∇v∇ω + v3ω

)
dx +

∫
R3

(∇v∇ω + V(x)vω) dx

+ γ
∫

R3

(
|∇v|2vω + v2∇v∇ω

)
dx + C0

∫
R3

v3ωdx.

Clearly, we notice that the following two statements are equivalent:

u is a fixed point of A and u is a critical point of Iµ,γ.

Lemma 4.3. For fixed µ ∈ (0, 1] and γ > 0, the operator u 7→ v = Au is well defined and continuous.
Moreover, there exist constants c1, c2, c3 > 0 such that

(1) ∥I′µ,γ(u)∥E∗ ≤ c1(∥u∥2
W + ∥Au∥2

W)∥u −Au∥W + c2∥u −Au∥H1
V

;

(2) ⟨I′µ,γ(u), u −Au⟩ ≥ c3(∥u −Au∥4
W + ∥u −Au∥2

H1
V
);

(3) for all u ∈ I−1
µ,γ([a, b]), if ∥I′µ,γ(u)∥E∗ ≥ α > 0, then there exists δ > 0 such that ∥u−Au∥E ≥ δ.

Proof. To prove the operator u 7→ v = Au is well defined and continuous, we consider

Φµ,γ(v) =
µ

4

∫
R3

(
|∇v|4 + v4

)
dx +

1
2

∫
R3

(
|∇v|2 + V(x)v2 + γv2|∇v|2

)
dx

+
C0

4

∫
R3

v4dx − C0

4

∫
R3

u3vdx −
∫

R3
f (x, u)vdx, for all v ∈ E.

Obviously, Φµ,γ ∈ C1(E, R). And one can see that Φµ,γ is weakly lower semicontinuous.
From conditions ( f1), ( f2) and the Sobolev embeddings theorem, for any δ > 0, there

exists Cδ, such that∫
R3

(
C0

4
u3 + f (x, u)

)
vdx ≤ C0

4
|u|36|v|2 + δ|u|2|v|2 + Cδ|u|

p−1
p |v|p ≤ C∥v∥E.

This deduces

Φµ,γ(v) ≥ C(∥v∥4
W + ∥v∥2

H1
V
)− C∥v∥E → +∞, as ∥v∥E → +∞.

Therefore, the functional Φµ,γ is coercive. We can see that the functional Φµ,γ is bounded from
below and maps bounded sets into bounded sets. In the following, we shall prove that the
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functional Φµ,γ is also strictly convex. In fact, since

⟨Φ′
µ,γ(v)− Φ′

µ,γ(ω), v − ω⟩

= 3µ
∫ 1

0

∫
R3

|∇θt|2|∇(v − ω)|2dxdt + 3µ
∫ 1

0

∫
R3

θ2
t (v − ω)2dxdt

+
∫

R3
(|∇(v − ω)|2 + V(x)(v − ω)2)dx + 4γ

∫ 1

0

∫
R3

∇θt∇(v − ω)θt(v − ω)dxdt

+ γ
∫ 1

0

∫
R3

|∇θt|2(v − ω)2dxdt + γ
∫ 1

0

∫
R3

θ2
t |∇(v − ω)|2dxdt

+ 3C0

∫ 1

0

∫
R3

θ2
t (v − ω)2dxdt,

where θt = tv + (1 − t)ω (t ∈ (0, 1)). By Young’s inequality, for any δ > 0, there exists Cδ > 0,
such that ∣∣∣∣4γ

∫ 1

0

∫
R3

∇θt∇(v − ω)θt(v − ω)dxdt
∣∣∣∣

≤ δ
∫ 1

0

∫
R3

|∇θt|2|∇(v − ω)|2dxdt + Cδ

∫ 1

0

∫
R3

θ2
t (v − ω)2dxdt.

Taking δ = 3µ
2 and choosing C0 >

C 3µ
2

3 , if v ̸= ω, we get

⟨Φ′
µ,γ(v)− Φ′

µ,γ(ω), v − ω⟩

≥ µ

2

∫
R3

(
(|∇v|2∇v − |∇ω|2∇ω)∇(v − ω) + (v3 − ω3)(v − ω)

)
dx

+
∫

R3

(
|∇(v − ω)|2 + V(x)(v − ω)2) dx

≥ C(∥v − ω∥4
W + ∥v − ω∥2

H1
V
)

> 0.

(4.6)

From the above analysis, we obtain that the functional Φµ,γ is coercive, bounded below,
weakly lower semicontinuous and strictly convex. Thus, the functional Φµ,γ admits a unique
minimizer v = A(u). Moreover, the operator A maps bounded sets into bounded sets.

Next, we will verify the continuity of the operator A on E. To prove this, let

K(u) =
C0

4

∫
R3

u4dx +
∫

R3
F(x, u)dx.

If {un} ⊂ E satisfying un → u strongly in E, setting v = A(u) and vn = A(un), then we can
obtain

⟨J′µ,γ(vn)− J′µ,γ(v), ω⟩ = ⟨K′(un)− K′(u), ω⟩, for all ω ∈ E. (4.7)

Furthermore, by the similar estimates of (4.6), for C0 large enough, we get

⟨J′µ,γ(vn)− J′µ,γ(v), vn − v⟩

≥ µ

2

∫
R3

(
(|∇vn|2∇vn − |∇v|2∇v)∇(vn − v) + (v3

n − v3)(vn − v)
)

dx

+
∫

R3

(
|∇(vn − v)|2 + V(x)(vn − v)2) dx

≥ C(∥vn − v∥4
W + ∥vn − v∥2

H1
V
).

(4.8)
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Then, combining (4.7) with (4.8), we have

C(∥vn − v∥4
W + ∥vn − v∥2

H1
V
) ≤ ⟨J′µ,γ(vn)− J′µ,γ(v), vn − v⟩

= ⟨K′(un)− K′(u), vn − v⟩
≤ ∥K′(un)− K′(u)∥E∗∥vn − v∥E.

Since K ∈ C1(E, R) and un → u strongly in E, we get that vn → v strongly in E and the
operator A is continuous.

Next, we shall verify (1) and (2) as follows. By (4.5), we get

⟨I′µ,γ(u), φ⟩ = ⟨J′µ,γ(u)− J′µ,γ(v), φ⟩, for φ ∈ E. (4.9)

Furthermore, we have the following estimates

⟨J′µ,γ(u)− J′µ,γ(v), φ⟩

= 3µ
∫ 1

0

∫
R3

|∇ωt|2∇(u − v)∇φdxdt + 3µ
∫ 1

0

∫
R3

ω2
t (u − v)φdxdt

+
∫

R3
(∇(u − v)∇φ + V(x)(u − v)φ)dx + 2γ

∫ 1

0

∫
R3

∇ωt∇(u − v)ωt φdxdt

+ γ
∫ 1

0

∫
R3

|∇ωt|2(u − v)φdxdt + 2γ
∫ 1

0

∫
R3

ωt(u − v)∇ωt∇φdxdt

+ γ
∫ 1

0

∫
R3

ω2
t ∇(u − v)∇φdxdt + 3C0

∫ 1

0

∫
R3

ω2
t (u − v)φdxdt,

(4.10)

where ωt = tu + (1− t)v. By |ωt| ≤ |u|+ |v|, |∇ωt| ≤ |∇u|+ |∇v|, the Hölder inequality and
(4.9), we can get

|⟨I′λ(u), φ⟩| ≤ c1(∥u∥2
W + ∥v∥2

W)∥u − v∥W∥φ∥E + c2∥u − v∥H1
V
∥φ∥E.

In fact, there hold

3µ
∫ 1

0

∫
R3

|∇ωt|2∇(u − v)∇φdxdt + 3µ
∫ 1

0

∫
R3

ω2
t (u − v)φdxdt

≤ C(|∇u|24 + |∇v|24)|∇(u − v)|4|∇φ|4 + C(|u|24 + |v|24)|u − v|4|φ|4
≤ C(∥u∥2

W + ∥v∥2
W)∥u − v∥W∥φ∥E

and ∫
R3
(∇(u − v)∇φ + V(x)(u − v)φ)dx ≤ C∥u − v∥H1

V
∥φ∥E.

Using similar methods, we can also estimate other terms in (4.10). Hence

∥I′µ,γ(u)∥E∗ ≤ c1(∥u∥2
W + ∥v∥2

W)∥u − v∥W + c2∥u − v∥H1
V

.

For (2), by the similar estimates of (4.6), set φ = u − v, we have

⟨I′µ,γ(u), u − v⟩ = ⟨J′µ,γ(u)− J′µ,γ(v), u − v⟩

≥ µ

2

∫
R3

(
(|∇u|2∇u − |∇v|2∇v)∇(u − v) + (u3 − v3)(u − v)

)
dx

+
∫

R3

(
|∇(u − v)|2 + V(x)(u − v)2) dx

≥ c3(∥u − v∥4
W + ∥u − v∥2

H1
V
).
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In order to prove (3), we consider

Iµ,γ(u)−
1
θ
⟨I′µ,γ(u), u⟩

=
(µ

4
− µ

θ

)
∥u∥4

W +

(
1
2
− 1

θ

) ∫
R3

(
|∇u|2 + V(x)u2) dx

+

(
γ

2
− 2γ

θ

) ∫
R3

|∇u|2u2dx +
∫

R3

(
1
θ

u f (x, u)− F(x, u)
)

dx

≥
(µ

4
− µ

θ

)
∥u∥4

W +

(
1
2
− 1

θ

)
∥u∥2

H1
V

.

Hence, for any δ > 0, there exists Cδ, such that

∥u∥4
W + ∥u∥2

H1
V
≤ C(|Iµ,γ(u)|+ ∥I′µ,γ(u)∥E∗∥u∥E)

= C(|Iµ,γ(u)|+ ∥I′µ,γ(u)∥E∗(∥u∥W + ∥u∥H1
V
))

≤ C(|Iµ,γ(u)|+ Cδ∥I′µ,γ(u)∥4/3
E∗ + δ∥u∥4

W + Cδ∥I′µ,γ(u)∥2
E∗ + δ∥u∥2

H1
V
).

Taking δ > 0 small enough, by direct calculation, we obtain the following estimates

∥u∥2
W ≤ C(1 + |Iµ,γ(u)|1/2 + ∥I′µ,γ(u)∥E∗) (4.11)

Combining (4.11) and Lemma 4.3-(1), we can obtain

∥I′µ,γ(u)∥E∗ ≤ c1(∥u∥2
W + ∥v∥2

W)∥u − v∥W + c2∥u − v∥H1
V

≤ C(1 + ∥u∥2
W + ∥u − v∥2

E)∥u − v∥E

≤ C̃(1 + |Iµ,γ(u)|1/2 + ∥I′µ,γ(u)∥E∗ + ∥u − v∥2
E)∥u − v∥E.

For u ∈ I−1
µ,γ([a, b]) and ∥I′µ,γ(u)∥E∗ ≥ α > 0, without loss of generality, let ∥u − v∥E ≤ 1

2C̃
, we

obtain

∥I′µ,γ(u)∥E∗ ≤ C̃

(
1 + b1/2 +

1
(2C̃)2

)
∥u − v∥E +

1
2
∥I′µ,γ(u)∥E∗ ,

and
∥u − v∥E ≥ C∥I′λ(u)∥E∗ ≥ Cα.

Consider a positive cone P in E defined by P := {u ∈ E : u ≥ 0 a.e. on x ∈ R3}. For an
arbitrary ε > 0, let

P±
ε =

{
u ∈ E : V0

∫
R3

u2
∓dx + S

(∫
R3

|u∓|6dx
) 1

3

< ε

}
,

where S = infu∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

(
∫

R3 |u|6dx)1/3 , u+ = max{u, 0}, u− = min{u, 0}.

Lemma 4.4. There exists ε0 > 0 such that for all ε ∈ (0, ε0), then

A(∂P+
ε ) ⊂ P+

ε and A(∂P−
ε ) ⊂ P−

ε .
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Proof. Since the proofs of the two conclusions are similar, we just give the proof of A(∂P+
ε ) ⊂

P+
ε .

Let u ∈ E, v = A(u), v satisfying (4.5). Taking ω = v−, we have

µ
∫

R3

(
|∇v−|4 + v4

−

)
dx +

∫
R3

(
|∇v−|2 + V(x)v2

−
)

dx

+ 2γ
∫

R3
|∇v−|2v2

−dx + C0

∫
R3

v4
−dx

= C0

∫
R3

u3v−dx +
∫

R3
f (x, u)v−dx.

(4.12)

Next, we will give the estimates of both sides of above equality. On one hand, we have

µ
∫

R3

(
|∇v−|4 + v4

−

)
dx +

∫
R3

(
|∇v−|2 + V(x)v2

−
)

dx

+ 2γ
∫

R3
|∇v−|2v2

−dx + C0

∫
R3

v4
−dx

≥ V0

∫
R3

v2
−dx + S

(∫
R3

|v−|6dx
)1/3

.

(4.13)

On the other hand, by Young inequality, we obtain

C0

∫
R3

u3v−dx +
∫

R3
f (u)v−dx

≤ δ
∫

R3
u−v−dx + Cδ

∫
R3

u5
−v−dx

≤ 1
2

δ
∫

R3
(u2

− + v2
−)dx +

S
2

(∫
R3

|v−|6dx
)1/3

+ Cδ

(∫
R3

|u−|6dx
)5/3

, for any δ > 0.

(4.14)

Fix δ = V0 and choose ε0 such that Cδ(
ε0
S )

4 ≤ S
2 . For 0 < ε < ε0 and u ∈ P+

ε , we have

Cδ

(∫
R3

|u−|6dx
)4/3

≤ Cδ

( ε

S

)4
≤ S

2
. (4.15)

By (4.13)–(4.15), we get

V0

∫
R3

v2
−dx + S

(∫
R3

|v−|6dx
) 1

3

≤ V0

∫
R3

u2
−dx + S

(∫
R3

|u−|6dx
) 1

3

.

Therefore, for u ∈ ∂P+
ε , u ̸= 0, we have

V0

∫
R3

v2
−dx + S

(∫
R3

|v−|6dx
) 1

3

< ε,

which implies v ∈ P+
ε . This completes the proof.

From the above analysis, we know that A is merely continuous. But A itself is not ap-
plicable to construct a descending flow for Iµ,γ, and we have to construct a locally Lipschitz
continuous operator B which inherits the main properties of A.
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Lemma 4.5. Let E0 = E \ K, K = {u ∈ E : I′µ,γ(u) = 0}. There exist a locally Lipschitz continuous
operator B : E0 → E such that

(1) 1
2∥u −B(u)∥E ≤ ∥u −A(u)∥E ≤ 2∥u −B(u)∥E for all u ∈ E0;

(2) ⟨I′µ,γ(u), u −B(u)⟩ ≥ c∗3(∥u −Bu∥4
W + ∥u −Bu∥2

H1
V
) for all u ∈ E0;

(3) ∥I′µ,γ(u)∥E∗ ≤ c∗1(∥u∥2
W + ∥Bu∥2

W)∥u −Bu∥W + c∗2∥u −Bu∥H1
V

for all u ∈ E0;

(4) B(∂P+
ε ) ⊂ P+

ε , B(∂P−
ε ) ⊂ P−

ε for ε ∈ (0, ε0),

where c∗1 , c∗2 , c∗3 are different constants.

Proof. The proof is similar to the proofs in [6] and [7]. We omit the details.

From the above discussions, it is worth pointing that P+
ε and P−

ε are invariant sets of
descending flow τ, where ε ∈ (0, ε0) and τ satisfies the following initial value problem{

d
dt τ(t, u) = −(id −B)τ(t, u),

τ(0, u) = u.

By applying invariant sets of descending flow, we can find one sign-changing critical point
of the functional Iµ,γ. For this purpose, we adapt some abstract results in [24].

Let I ∈ C1(E, R), P, Q ⊂ E be open sets, M = P ∩ Q, Σ = ∂P ∩ ∂Q and W = P ∪ Q. For
c ∈ R, let Kc = {u ∈ E : I(u) = c, I′(u) = 0} and Ic = {u ∈ E : I(u) ≤ c}.

Definition 4.6. {P, Q} is called an admissible family of invariant sets with respect to I at level
c, provided that the following deformation property holds: if Kc \ W = ∅, then, there exists
ε1 > 0 such that for ε ∈ (0, ε1), there exists η ∈ C(E, E) satisfying

(1) η(P) ⊂ P, η(Q) ⊂ Q;

(2) η|Ic−2ε = id;

(3) η(Ic+ε \ W) ⊂ Ic−ε.

Theorem 4.7 ([24]). Assume that {P, Q} is an admissible family of invariant sets with respect to I at
any level c ≥ c∗ := infu∈Σ I(u) and there exists a map φ0 : χ → E satisfying

(1) φ0(∂1χ) ⊂ P and φ0(∂2χ) ⊂ Q;

(2) φ0(∂0χ) ∩ M = ∅;

(3) supu∈φ0(∂0χ) I(u) < c∗,

where χ = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 ≤ 1}, ∂1χ = {0} × [0, 1], ∂2χ = [0, 1] × {0} and
∂0χ = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 = 1}. Define

c = inf
φ∈Γ

sup
u∈φ(χ)\W

I(u),

where Γ := {φ ∈ C(χ, E) : φ(∂1χ) ⊂ P, φ(∂2χ) ⊂ Q, φ|∂0χ = φ0|∂0χ}. Then c ≥ c∗, and
Kc \ W ̸= ∅.
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To apply Theorem 4.7 to obtain one sign-changing critical point of Iµ,γ, we take P = P+
ε ,

Q = P−
ε , I = Iµ,γ. Then we need to prove the following crucial lemma.

Lemma 4.8. If Kc \ W = ∅, then there exists ε2 > 0 such that, for 0 < ε < ε′ < ε2, there exists a
continuous map σ : [0, 1]× E → E satisfying

(1) σ(0, u) = u for u ∈ E;

(2) σ(t, u) = u for t ∈ [0, 1], u /∈ I−1
µ,γ[c − ε′, c + ε′];

(3) σ(1, Ic+ε
µ,γ \ W) ⊂ Ic−ε

µ,γ ;

(4) σ(t, P+
ε ) ⊂ P+

ε and σ(t, P−
ε ) ⊂ P−

ε for t ∈ [0, 1].

Proof. The proof is similar to many existing literature (see [25, 32]). For the readers’ conve-
nience, here we give the details.

Let Nδ(Kc) := {u ∈ E : d(E, Kc) < δ}. If Kc \ W = ∅, then Kc ⊂ W. Thus for δ > 0 small
enough, we get

Nδ(Kc) ⊂ W.

By Lemma 4.2, we know that Iµ,γ satisfies the (PS)-condition. Hence Kc is compact and exist
ε2, α > 0 such that

∥I′µ,γ(u)∥E∗ ≥ α, for all u ∈ I−1
µ,γ([c − ε2, c + ε2]) \ Nδ/2(Kc).

Using Lemma 4.3-(3) and Lemma 4.5-(1),(2), we can find β > 0 such that

⟨I′µ,γ(u),
u − Bu

∥u − Bu∥E
⟩ ≥ β, for all u ∈ I−1

µ,γ([c − ε2, c + ε2]) \ Nδ/2(Kc).

Assume

ε2 < min{βδ

4
, ε0},

where ε0 is defined in Lemma 4.4. Defining two Lipschitz continuous functionals g, q : E →
[0, 1], satisfying

g(u) =

{
0, if u ∈ Nδ/4(Kc),

1, if u /∈ Nδ/2(Kc)

and

q(u) =

{
0, if u /∈ I−1

µ,γ([c − ε′, c + ε′]),

1, if u ∈ I−1
µ,γ([c − ε, c + ε]).

Consider the following initial value problem{
dτ(t,u)

dt = −Φ(τ(t, u)),

τ(0, u) = u,
(4.16)

where Φ(u) = g(u)q(u) u−Bu
∥u−Bu∥E

. Using the existence and uniqueness theory of ODE, we obtain

that the problem (4.16) has a unique solution τ(·, u) ∈ C(R+, E). Let σ(t, u) = τ( 2ε
β t, u), then

we verify (1)–(3). In fact, (1) and (2) are obvious. It suffices to verify (3). To do this, we
consider the following two cases.
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Case 1. There exists t0 ∈ [0, 2ε
β ] such that Iµ,γ(τ(t0, u)) < c − ε. Using Lemma 4.5-(2), we

obtain that Iµ,γ(τ(t, u) is decreasing for t ≥ 0. Therefore, Iµ,γ(σ(1, u)) ≤ c − ε.

Case 2. For u ∈ Ic+ε
µ,γ \ W and t ∈ [0, 2ε

β ], then Iµ,γ(τ(t, u)) > c − ε. In this case, we claim
that τ(t, u) ∈ Nδ/2(Kc) for any t ∈ [0, 2ε

β ]. Indeed, if for some t0 ∈ [0, 2ε
β ] such that τ(t0, u) ∈

Nδ/2(Kc), then
δ

2
≤ ∥τ(t0, u)− u∥E ≤

∫ t0

0
∥τ′(s, u)∥Eds ≤ t0 <

δ

2
,

which is a contradiction. Thus, g(τ(t, u))q(τ(t, u)) ≡ 1 for all t ∈ [0, 2ε
β ]. Hence,

Iµ,γ(σ(1, u)) = Iµ,γ(τ(
2ε

β
, u))

= Iµ,γ(u)−
∫ 2ε

β

0
⟨I′µ,γ(τ(s, u)), Φ(τ(s, u))⟩ds

≤ c + ε − 2ε

= c − ε.

The proof is completed.

Next, we will construct φ0 satisfying the hypotheses in Theorem 4.7. Choose u1, u2 ∈
C∞

0 (R3) which satisfy supp(u1) ∩ supp(u2) = ∅ and u1 ≤ 0, u2 ≥ 0. Let φ0(t, s) := R(tu1 +

su2) for (t, s) ∈ χ, where χ = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 ≤ 1} and R is a positive constant
to be determined later. Obviously, for t, s ∈ [0, 1], φ0(0, s) = Rsu2 ∈ P+

ε and φ0(t, 0) = Rtu1 ∈
P−

ε .

Lemma 4.9. Assume that (V0), (V1) and ( f1)–( f3) hold. Then the functional Iµ,γ has a sign-changing
critical point.

Proof. It is sufficient to check assumptions (2)–(3) in applying Theorem 4.7.
Notice that ρ = min{|tu1 + (1 − t)u2|2 : 0 ≤ t ≤ 1} > 0. Then,

|u|2 ≥ ρR for u ∈ φ0(∂0χ).

Furthermore, for u ∈ M = P+
ε ∩ P−

ε , we have that

|u|22 ≤ 2
V0

ε.

Hence, φ0(∂0χ) ∩ M = ∅ for R large enough.
To verify (3), for any u ∈ Σ, from the conditions ( f1) and ( f2) and the definition of Σ, for

all δ > 0, there exists Cδ > 0, such that

Iµ,γ(u) ≥ −
∫

R3
F(x, u)dx ≥ −δ

∫
R3

u2dx − Cδ

∫
R3

u6dx ≥ −C(ε + ε3),

which implies that
c∗ ≥ −C(ε + ε3). (4.17)

On the other hand, by the condition ( f3), we have F(x, t) ≥ C|t|θ for all x ∈ R3. For any
u ∈ φ0(∂0χ), then

Iµ,γ(u) =
µ

4
∥u∥4

W +
1
2
∥u∥2

H1
V
+

γ

2

∫
R3

u2|∇u|2dx −
∫

supp(u1)∩supp(u2)
F(x, u)dx

≤ µ

4
∥u∥4

W +
1
2
∥u∥2

H1
V
+

γ

2

∫
R3

u2|∇u|2dx − C|u|θθ

≤ C∥u∥4
E − C|u|θθ ,

(4.18)



20 X. Zhang and C. Huang

which together with (4.17) implies that for R large enough and ε small enough, we obtain

sup
u∈φ0(∂0χ)

Iµ,γ(u) < c∗.

Hence, by Theorem 4.7, Iµ,γ has at least one critical point u in E \ (P+
ε ∪ P−

ε ).

The next result establishes an important estimate associated with critical values.

Lemma 4.10. Assume 0 < µ < 1 and 0 < γ < 1. Then there exists a positive constant m3

(independent on µ and γ), such that
Iµ,γ(uµ,γ) ≤ m3,

where uµ,γ is a sign-changing critical point of Iµ,γ.

Proof. For fixed 0 < µ < 1 and 0 < γ < 1, take a path φ1,1(s, t) : [0, 1] × [0, 1] → E \ {0},
φ1,1(t, s) := T(tu1 + su2), where the constant T > R (R is defined in the proof of Lemma 4.9).
A simple computation ensures that φ1,1(0, s) ∈ P+

ε , φ1,1(t, 0) ∈ P−
ε and φ1,1(∂0χ) ∩ M = ∅. By

the similar estimates of (4.18), taking T sufficiently large, we obtain

I1,1(φ1,1(t, s)) ≤ −C1 for all (t, s) ∈ ∂0χ, (4.19)

where C1 > 0 is large enough.
On the other hand, for ε small enough, we have

inf
u∈Σ

Iµ,γ(u) > − sup
u∈Σ

∫
R3

F(x, u)dx ≥ −C2, (4.20)

here choose C1 large enough, such that 0 < C2 < C1. Then estimates (4.19) and (4.20) ensure
that

max
(t,s)∈∂0χ

Iµ,γ(φ1,1(t, s)) ≤ max
(t,s)∈∂0χ

I1,1(φ1,1(t, s)) ≤ −C2 < inf
u∈Σ

Iµ,γ(u).

This implies
φ1,1(s, t) ∈ Γ,

where Γ := {φ ∈ C(χ, E) : φ(∂1χ) ⊂ P+
ε , φ(∂2χ) ⊂ P−

ε , φ|∂0χ = φ0|∂0χ}, and so

Iµ,γ(uµ,γ) = inf
φ∈Γ

sup
u∈φ(χ)\W

Iµ,γ(u) ≤ sup
u∈φ1,1(χ)

Iµ,γ(u) ≤ max
(t,s)∈[0,1]×[0,1]

I1,1(φ1,1(t, s)) := m3,

where m3 is independent on γ and µ.

Finally, the existence of a sign-changing critical point to the original functional Iγ is based
on the following convergence result for the perturbation functional Iµ,γ.

Proposition 4.11 ([23]). Let µi → 0 and {ui} ⊂ E be a sequence of critical points of Iµi ,γ satisfying
I′µi ,γ(ui) = 0 and Iµi ,γ(ui) ≤ C for some C independent of i. Then as i → ∞, up to a subsequence
ui → uγ in H1

V(R
3), ui∇ui → uγ∇uγ in L2(R3), µi

∫
R3

(
|∇ui|4 + u4

i
)

dx → 0, Iµi ,γ(ui) → Iγ(uγ)

and uγ is a critical point of Iγ.

Lemma 4.12. Assume 0 < γ < 1. Then there exist a positive constant m3 and a sign-changing critical
point uγ of Iγ, such that

Iγ(uγ) ≤ m3,

where m3 is independent on γ.
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Proof. From Lemma 4.9 and Lemma 4.10, it permits to apply the Proposition 4.11. Therefore,
there exists a critical point uγ of Iγ such that uγ ∈ H1

V(R
3)∩ L∞(R3). In the following, we will

show that uγ is a sign-changing critical point of Iγ. To this end, we need estimate uγ+ ̸= 0 as
follows. Consider ⟨I′µi ,γ(ui), ui+⟩ = 0, it follows from Sobolev inequality and the conditions
( f1), ( f2) that

V0

∫
R3

|ui+|2dx + S
(∫

R3
|ui+|6dx

) 1
3

≤ V0

∫
R3

|ui+|2dx +
∫

R3
|∇ui+|2dx

≤
∫

R3
f (x, ui+)ui+dx

≤ δ
∫

R3
|ui+|2dx + Cδ

∫
R3

|ui+|6dx,

where δ > 0 small enough. This implies |ui+|6 ≥ C > 0. Recall that ui+ → uγ+ strongly in
L6(R3). Therefore, we see that uγ+ ̸= 0. By the same argument we can prove that uγ− ̸= 0.
Hence we obtain uγ is a sign-changing critical point of Iγ.

Moreover, by Lemma 4.10, we obtain

Iµ,γ(uµ,γ) ≤ m3,

where m3 is independent on γ and µ.
Having this in mind, taken µ → 0, from the Proposition 4.11 we have

Iγ(uγ) ≤ m3,

where uγ is sign-changing critical point of Iγ.

Before concluding this section, we would like to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. From Lemma 3.3 and Lemma 4.12, the problem (1.4) has at least three
solutions: a positive solution uγ,1, a negative solution uγ,2 and a sign-changing solution uγ,3.

5 Asymptotic behavior of solutions

In this section, our goal is to study the asymptotic behavior of uγ = G−1(vγ). Having this in
mind, we are going to show the L∞ estimates of the critical points of Jγ.

Lemma 5.1. If vγ ∈ H1
V(R

3) is a weak solution of problem (2.2), then vγ ∈ L∞(R3). Moreover, there

exists a constant C > 0 independents of γ such that |vγ|∞ ≤ C∥vγ∥
4

6−p

H1
V

.

Proof. The result can be proved similarly to [5, 14] but we give a proof for the convenience of
the readers. In what follows, for simplicity, we denote vγ by v. Let v ∈ H1

V(R
3) be a weak

solution of −∆v + V(x) G−1
γ (v)

gγ(G−1
γ (v))

=
f (x,G−1

γ (v))
gγ(G−1

γ (v))
, i.e.

∫
R3

∇v∇φdx +
∫

R3
V(x)

G−1
γ (v)

gγ(G−1
γ (v))

φdx =
∫

R3

f (x, G−1
γ (v))

gγ(G−1
γ (v))

φdx, for all φ ∈ H1
V(R

3). (5.1)
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Set T > 0, and denote

vT =


−T, if v ≤ −T,

v, if − T < v < T,

T, if v ≥ T.

Choosing φ = |vT|2(η−1)v in (5.1), where η > 1 to be determined later, we get∫
R3

|∇v|2 · |vT|2(η−1)dx + 2(η − 1)
∫
{x: |v(x)|<T}

|v|2(η−1)|∇v|2dx

+
∫

R3
V(x)

G−1
γ (v)

gγ(G−1
γ (v))

|vT|2(η−1)vdx

=
∫

R3

f (x, G−1
γ (v))

gγ(G−1
γ (v))

|vT|2(η−1)vdx.

Combining the fact that the second term in the left side of the above equation is nonnegative
and Lemma 2.1-(4), we obtain∫

R3
|∇v|2|vT|2(η−1)dx +

∫
R3

V(x)
G−1

γ (v)

gγ(G−1
γ (v))

|vT|2(η−1)vdx

≤
∫

R3

f (x, G−1
γ (v))

gγ(G−1
γ (v))

|vT|2(η−1)vdx

≤ δ
∫

R3

G−1
γ (v)

gγ(G−1
γ (v))

|vT|2(η−1)vdx + Cδ

∫
R3

|G−1
γ (v)|p−1

gγ(G−1
γ (v))

|vT|2(η−1)vdx

≤ δ
∫

R3

G−1
γ (v)

gγ(G−1
γ (v))

|vT|2(η−1)vdx + Cδ

∫
R3

|v|p|vT|2(η−1)dx.

(5.2)

Taking δ small enough in (5.2), we have∫
R3

|∇v|2|vT|2(η−1)dx ≤ C
∫

R3
|v|p|vT|2(η−1)dx. (5.3)

On the other hand, using the Sobolev inequality, we have(∫
R3
(|v||vT|η−1)6dx

) 1
3

≤ C
∫

R3
|∇(vvη−1

T )|2dx

≤ C
∫

R3
|∇v|2|vT|2(η−1)dx + C(η − 1)2

∫
R3

|∇v|2|vT|2(η−1)dx

≤ Cη2
∫

R3
|∇v|2|vT|2(η−1)dx,

where we used that (a + b)2 ≤ 2(a2 + b2) and η2 ≥ (η − 1)2 + 1.
By (5.3), the Hölder inequality and the Sobolev embedding theorem,(∫

R3
(|v||vT|η−1)6dx

) 1
3

≤ Cη2
∫

R3
|v|p−2v2|vT|2(η−1)dx

≤ Cη2
(∫

R3
|v|6dx

) p−2
6
(∫

R3
(|v||vT|η−1)

12
8−p dx

) 8−p
6

≤ Cη2∥v∥p−2
H1

V

(∫
R3

|v|
12η
8−p dx

) 8−p
6

,
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where we used the fact that |vT| ≤ |v|. In what follows, taking ζ = 12
8−p , we get

(∫
R3
(|v||vT|η−1)6dx

) 1
3

≤ Cη2∥v∥p−2
H1

V
|v|2η

ηζ .

From Fatou’s lemma, it follows that

|v|6η ≤ (Cη2∥v∥p−2
H1

V
)

1
2η |v|ηζ . (5.4)

Let us define ηn+1ζ = 6ηn where n = 0, 1, 2, . . . and η0 = 8−p
2 . By (5.4) we have

|v|6η1 ≤ (Cη2
1∥v∥p−2

H1
V
)

1
2η1 |v|6η0 ≤ (C∥v∥p−2

H1
V
)

1
2η1

+ 1
2η0 η

1
η0
0 η

1
η1
1 |v|6.

By Moser’s iteration method we have

|v|6ηn ≤ (C∥v∥p−2
H1

V
)

1
2η0

∑n
i=0(

ζ
6 )

i

(η0)
1

η0
∑n

i=0(
ζ
6 )

i
(

6
ζ
)

1
η0

∑n
i=0 i( ζ

6 )
i
|v|6.

Thus, we have

|v|∞ ≤ C∥v∥
4

6−p

H1
V

.

Now we are ready to prove H1
V-strong convergence of the weak solution of problem (1.4).

Lemma 5.2. Assume uγ is a solution of (1.4), then uγ → u0 strongly in H1
V(R

3) as γ → 0+, where
u0 is a solution of (1.6).

Proof. If uγ is a signed solution of (1.4), Lemma 3.4 and Lemma 3.5 guarantee that

∥vγ∥H1
V
< C,

for some C > 0. This together with the fact that

∥uγ∥H1
V
= ∥G−1(vγ)∥H1

V
≤ C∥vγ∥H1

V
,

gives {uγ} is uniformly bounded in H1
V(R

3), that is

∥uγ∥H1
V
< C,

where C is independent on γ.
Similarly, if uγ is a sign-changing solution of (1.4), from Lemma 3.4 and Lemma 4.12, it

follows that {uγ} is uniformly bounded in H1
V(R

3) as well.
Thus, if uγ is a solution of (1.4), then there exists u0 ∈ H1

V(R
3) such that, as γ → 0+

passing to a subsequence

uγ ⇀ u0 weakly in H1
V(R

3),

uγ → u0 strongly in Lp(R3) (p ∈ [2, 6)),

uγ → u0 a.e. on K := supp φ, φ ∈ C∞
0 (R3).

Moreover, there exists a function ϕ ∈ Lp(R3) such that |uγ| ≤ ϕ a.e. on K for all γ.
Since uγ ⇀ u0 weakly in H1

V(R
3), we have∫

R3
(∇uγ∇φ + V(x)uγ φ) dx →

∫
R3

(∇u0∇φ + V(x)u0φ) dx for all φ ∈ C∞
0 (R3). (5.5)
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By conditions ( f1) and ( f2), the Lebesgue dominated theorem and the fact that uγ → u0

strongly in Lp(R3), we get∫
R3

f (x, uγ)φdx →
∫

R3
f (x, u0)φdx for all φ ∈ C∞

0 (R3). (5.6)

In what follows, define the following functional:

I(u) =
1
2

∫
R3

(
|∇u|2 + V(x)u2) dx −

∫
R3

F(x, u)dx.

Next we are going to show that ⟨I′(u0), φ⟩ = 0 for all φ ∈ C∞
0 (R3). Indeed, uγ is a critical

point of Iγ, i.e. for all φ ∈ C∞
0 (R3), we have∫

R3
(∇uγ∇φ + V(x)uγ φ) dx + γ

∫
R3

(
|∇uγ|2uγ φ +∇uγ∇φu2

γ

)
dx

−
∫

R3
f (x, uγ)φdx = 0. (5.7)

On the other hand, by Lemma 5.1,

|uγ|∞ ≤ C|vγ|∞ ≤ C∥vγ∥
4

6−p

H1
V
≤ C

and so, from ∥uγ∥H1
V
≤ C,

γ
∫

R3

(
|∇uγ|2uγ φ +∇uγ∇φu2

γ

)
dx

≤ Cγ|φ|∞
∫

R3
|∇uγ|2dx + Cγ

∫
R3

|∇uγ||∇φ|dx

≤ Cγ
(
|φ|∞|∇uγ|22 + |∇φ|2|∇uγ|2

)
→ 0, as γ → 0+.

(5.8)

In view of (5.5)–(5.8), for all φ ∈ C∞
0 (R3), we obtain∫

R3
(∇u0 + V(x)u0 − f (x, u0)) φdx = 0, (5.9)

which yields that u0 is a weak solution of problem (1.6).
Next we will show that the test function φ in (5.7) can be taken as arbitrary functions

ψ ∈ H1
V(R

3) ∩ L∞(R3). First, without loss of generality, for ψ ≥ 0, choose a sequence {φn} ⊂
C∞

0 (R3) such that φn ≥ 0, φn → ψ strongly in H1
V(R

3), φn → ψ a.e. x ∈ R3 and |φn|∞ ≤
|ψ|∞ + 1. Take φn as the test function in (5.7), letting n → ∞ we know that (5.7) holds for
φ = ψ. Hence we can take φ = uγ in (5.7), then∫

R3

(
|∇uγ|2 + V(x)u2

γ

)
dx + 2γ

∫
R3

|∇uγ|2u2
γdx −

∫
R3

f (x, uγ)uγdx = 0. (5.10)

Since u0 is a weak solution of (1.6), taking φ = u0 in (5.9), we have∫
R3

(
|∇u0|2 + V(x)u2

0
)

dx −
∫

R3
f (x, u0)u0dx = 0. (5.11)

Similar with (5.6), we obtain∫
R3

f (x, uγ)uγdx →
∫

R3
f (x, u0)u0dx, as γ → 0+. (5.12)
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By (5.10)–(5.12) and the lower semicontinuity of ∥uγ∥H1
V

, we get

γ
∫

R3
|∇uγ|2u2

γdx → 0, as γ → 0+

and ∫
R3

(
|∇uγ|2 + V(x)u2

γ

)
dx →

∫
R3

(
|∇u0|2 + V(x)u2

0
)

dx, as γ → 0+.

This combined with the fact that uγ ⇀ u0 weakly in H1
V(R

3) gives

uγ → u0 strongly in H1
V(R

3) as γ → 0+.

Proof of Theorem 1.3. From Lemma 3.3, we know that for all γ ∈ (0, 1], there exists a positive
critical point uγ,1. Then, by Lemma 5.2, we obtain uγ,1 → u1 strongly in H1

V(R
3) as γ → 0+,

where u1 is critical point of I. Note that at this stage, we do not know whether u1 ̸= 0. To this
end, by Lemma 3.5, we know that

0 < m1 ≤ I+γ (uγ,1)

and so, by uγ,1 → u1 strongly in H1
V(R

3) as γ → 0+,

I+γ (u1) ≥ m1 > 0.

Consequently, u1 ̸= 0, then u1 can be shown to be positive critical point of I+γ by applying the
maximum principle in [16], that is, u1 is a positive solution of (1.6). Similarly, we can show u2

is a negative solution of problem (1.6).
On the other hand, by Lemma 4.12, for all γ ∈ (0, 1], there exists a positive constant m3

such that Iγ has a sign-changing solution uγ,3 with Iγ(uγ,3) ≤ m3. By Lemma 5.2, as γi → 0+,
there exists a sequence of sign-changing critical points {uγi ,3} of Iγi , converges to a critical
point u3 ∈ H1

V(R
3) ∩ L∞(R3) of I. Next, we will show u3 is a sign-changing critical point of I.

Taking φ = (uγ,3)+ := u+
γ,3 in the equation ⟨I′γ(uγ,3), φ⟩ = 0, by the conditions ( f1), ( f2) and

Poincare inequalities and Sobolev inequalities we have

C
∫

R3
(u+

γ,3)
2dx + C

(∫
R3
(u+

γ,3)
6dx
)1/3

≤
∫

R3

(
|∇u+

γ,3|
2 + V(x)(u+

γ,3)
2
)

dx

≤
∫

R3
f (x, u+

γ,3)u
+
γ,3dx

≤ δ
∫

R3
(u+

γ,3)
2dx + Cδ

∫
R3
(u+

γ,3)
6dx.

This implies that there exists C > 0 such that
∫

R3(u+
γ,3)

6dx ≥ C for γ ∈ (0, 1]. Now by Lemma
5.2, we have uγ,3 → u3 strongly in H1

V(R
3) as γ → 0+. This combined with the Sobolev

embedding gives ∫
R3
(u3+)

6dx = lim
γ→0+

∫
R3
(u+

γ,3)
6dx ≥ C > 0.

Thereby, we can infer that u3+ ̸= 0. By the same argument we can show u3− ̸= 0. This
completes the proof.
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