
Electronic Journal of Qualitative Theory of Differential Equations

2011, No. 63, 1-10; http://www.math.u-szeged.hu/ejqtde/

ULAM STABILITY AND DATA DEPENDENCE FOR FRACTIONAL

DIFFERENTIAL EQUATIONS WITH CAPUTO DERIVATIVE

JinRong Wang∗,1, Linli Lv1 Yong Zhou2

1. Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, P.R. China

2. Department of Mathematics, Xiangtan University, Xiangtan, Hunan 411105, P.R. China

ABSTRACT. In this paper, Ulam stability and data dependence for fractional differential equations

with Caputo fractional derivative of order α are studied. We present four types of Ulam stability results for

the fractional differential equation in the case of 0 < α < 1 and b = +∞ by virtue of the Henry-Gronwall

inequality. Meanwhile, we give an interesting data dependence results for the fractional differential equation

in the case of 1 < α < 2 and b < +∞ by virtue of a generalized Henry-Gronwall inequality with mixed

integral term. Finally, examples are given to illustrate our theory results.
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1. Introduction

Fractional differential equations have been proved to be strong tools in the modelling of many physical

phenomena. It draws a great application in nonlinear oscillations of earthquakes, many physical phenomena

such as seepage flow in porous media and in fluid dynamic traffic model. There has been a significant

development in fractional ordinary differential equations and partial differential equations. For more details

on fractional calculus theory, one can see the monographs of Kilbas et al. [17], Miller and Ross [20], Podlubny

[23], Tarasov [26] and the papers of Agarwal et al. [1, 2], Ahmad and Nieto [3], Balachandran et al. [5],

Bai [6], Benchohra et al. [7], Henderson and Ouahab [13], Li et al. [18, 19], Mophou and N’Guérékata [21],

Wang et al. [27, 28, 29, 30, 31], Zhang [34] and Zhou et al. [35, 36].

On the other hand, numerous monographs have discussed the data dependence in the theory of or-

dinary differential equations (see for example [4, 9, 10, 14, 22, 24]). Meanwhile, there are some special

data dependence in the theory of functional equations such as Ulam-Hyers, Ulam-Hyers-Rassias and Ulam-

Hyers-Bourgin. The stability properties of all kinds of equations have attracted the attention of many

mathematicians. Particularly, the Ulam-Hyers-Rassias stability was taken up by a number of mathemati-

cians and the study of this area has the grown to be one of the central subjects in the mathematical analysis

area. For more information, we can see the monographs Cadariu [8], Hyers [15] and Jung [16].
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Although, there are some work on the local stability and Mittag-Leffler stability for fractional differential

equations (see [11, 18, 19]), to the best of my knowledge, there are very rare works on the Ulam stability for

fractional differential equations. Motivated by [1, 25, 32], we will study the Ulam stability for the following

fractional differential equation

c
D

α
x(t) = f(t, x(t)), t ∈ [a, b), b = +∞,

where cDα is the Caputo fractional derivative of order α ∈ (0, 1) and the function f satisfies some conditions

will be specified later. Meanwhile, we will study the data dependence for the following fractional differential

equation
c
D

α
x(t) = f(t, x(t)), t ∈ [a, b), b < +∞,

where the Caputo fractional derivative of order α ∈ (1, 2).

In the present paper, we introduce four types of Ulam stability definitions for fractional differential equa-

tions: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized

Ulam-Hyers-Rassias stability. We present the four types of Ulam stability results for a fractional differential

equation in the case 0 < α < 1 and b = +∞ by virtue of a Henry-Gronwall inequality. Meanwhile, we give

data dependence results for a fractional differential equation in the case 1 < α < 2 and b < +∞ by virtue

of Henry-Gronwall inequality with mixed integral term. Finally, examples are given to illustrate our theory

results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this

paper. We denote (B, | · |) be a Banach space. Let a ∈ R, b ∈ R, a < b ≤ +∞, Let C([a, b), B) be the Banach

space of all continuous functions from [a, b) into B with the norm |y|C = sup{|y(t)| : t ∈ [a, b)}. If B := R,

we simply denote C([a, b), R) by C[a, b).

We need some basic definitions and properties of the fractional calculus theory which are used further in

this paper. For more details, see [17].

Definition 2.1. The fractional integral of order γ with the lower limit zero for a function f is defined as

I
γ
f(t) =

1

Γ(γ)

Z t

0

f(s)

(t − s)1−γ
ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where Γ(·) is the gamma function.

Definition 2.2. The Riemann-Liouville derivative of order γ with the lower limit zero for a function

f : [0,∞) → R can be written as

L
D

γ
f(t) =

1

Γ(n − γ)

dn

dtn

Z t

0

f(s)

(t − s)γ+1−n
ds, t > 0, n − 1 < γ < n.

Definition 2.3. The Caputo derivative of order γ for a function f : [0,∞) → R can be written as

c
D

γ
f(t) = L

D
γ

„

f(t) −
n−1
X

k=0

tk

k!
f

(k)(0)

«

, t > 0, n − 1 < γ < n.

Let ǫ be a positive real number, f : [a, b) × B → B be a continuous operator and ϕ : [a, b) → R+ be a

continuous function. We consider the following differential equation

(2.1) c
D

α
x(t) = f(t, x(t)), α ∈ (0, 1) (or (1, 2)), t ∈ [a, b),
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and the following inequalities

|cDα
y(t) − f(t, y(t))| ≤ ǫ, t ∈ [a, b),(2.2)

|cDα
y(t) − f(t, y(t))| ≤ ϕ(t), t ∈ [a, b),(2.3)

|cDα
y(t) − f(t, y(t))| ≤ ǫϕ(t), t ∈ [a, b).(2.4)

Definition 2.4. The equation (2.1) is Ulam-Hyers stable if there exists a real number cf > 0 such that

for each ǫ > 0 and for each solution y ∈ C1([a, b), B)(or C2([a, b), B)) of the inequality (2.2) there exists a

solution x ∈ C1([a, b), B)(or C2([a, b), B)) of the equation (2.1) with

|y(t) − x(t)| ≤ cf ǫ, t ∈ [a, b).

Definition 2.5. The equation (2.1) is generalized Ulam-Hyers stable if there exists θf ∈ C(R+, R+), θf (0) =

0 such that for each solution y ∈ C1([a, b), B)(or C2([a, b), B)) of the inequality (2.2) there exists a solution

x ∈ C1([a, b), B)(or C2([a, b), B) of the equation (2.1) with

|y(t) − x(t)| ≤ θf (ǫ), t ∈ [a, b).

Definition 2.6. The equation (2.1) is Ulam-Hyers-Rassias stable with respect to ϕ if there exists cf,ϕ > 0

such that for each ǫ > 0 and for each solution y ∈ C1([a, b),B)(or C2([a, b), B)) of the inequality (2.4) there

exists a solution x ∈ C1([a, b), B)(or C2([a, b), B)) of the equation (2.1) with

|y(t) − x(t)| ≤ cf,ϕǫϕ(t), t ∈ [a, b).

Definition 2.7. The equation (2.1) is generalized Ulam-Hyers-Rassias stable with respect to ϕ if there

exists cf,ϕ > 0 such that for each solution y ∈ C1([a, b), B)(or C2([a, b), B)) of the inequality (2.3) there

exists a solution x ∈ C1([a, b), B)(or C2([a, b), B)) of the equation (2.1) with

|y(t) − x(t)| ≤ cf,ϕϕ(t), t ∈ [a, b).

Remark 2.8. It is clear that: (i) Definition 2.4 =⇒ Definition 2.5; (ii) Definition 2.6 =⇒ Definition 2.7;

(iii) Definition 2.6 =⇒ Definition 2.4.

Remark 2.9. A function y ∈ C1([a, b), B)(or C2([a, b), B)) is a solution of the inequality (2.2) if and only

if there exists a function g ∈ C1([a, b), B)(or C2([a, b), B)) (which depend on y) such that

(i) |g(t)| ≤ ǫ, t ∈ [a, b);

(ii) cDαy(t) = f(t, y(t)) + g(t), t ∈ [a, b).

One can have similar remarks for the inequations (2.3) and (2.4).

So, the Ulam stabilities of the fractional differential equations are some special types of data dependence

of the solutions of fractional differential equations.

Remark 2.10. Let 0 < α < 1, if y ∈ C1([a, b), B) is a solution of the inequality (2.2) then y is a solution of

the following integral inequality
˛

˛

˛

˛

y(t) − y(a) −
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds

˛

˛

˛

˛

≤
(t − a)α

Γ(α + 1)
ǫ, t ∈ [a, b).

EJQTDE, 2011 No. 63, p. 3



Indeed, by Remark 2.9 we have that

c
D

α
y(t) = f(t, y(t)) + g(t),∀ t ∈ [a, b).

Then

y(t) − y(a) =
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds +

1

Γ(α)

Z t

a

(t − s)α−1
g(s)ds, t ∈ [a, b).

This implies that

y(t) = y(a) +
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds +

1

Γ(α)

Z t

a

(t − s)α−1
g(s)ds, t ∈ [a, b).

From this it follows that
˛

˛

˛

˛

y(t) − y(a) −
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds

˛

˛

˛

˛

=

˛

˛

˛

˛

1

Γ(α)

Z t

a

(t − s)α−1
g(s)ds

˛

˛

˛

˛

≤
1

Γ(α)

Z t

a

(t − s)α−1|g(s)|ds

≤
ǫ

Γ(α)

Z t

a

(t − s)α−1
ds

≤
(t − a)α

Γ(α + 1)
ǫ.

We have similar remarks for the solutions of the inequations (2.3) and (2.4).

In what follows, we collect the Henry-Gronwall inequality (see Lemma 7.1.1, [12]), which can be used in

fractional differential equations with initial value conditions.

Lemma 2.11. Let z, ω : [0, T ) → [0, +∞) be continuous functions where T ≤ ∞. If ω is nondecreasing and

there are constants κ ≥ 0 and q > 0 such that

z(t) ≤ ω(t) + κ

Z t

0

(t − s)q−1
z(s)ds, t ∈ [0, T ),

then

z(t) ≤ ω(t) +

Z t

0

"

∞
X

n=1

(κΓ(q))n

Γ(nq)
(t − s)nq−1

ω(s)

#

ds, t ∈ [0, T ).

If ω(t) = ā, constant on 0 ≤ t < T , then the above inequality is reduce to

z(t) ≤ āEq(κΓ(q)tq), 0 ≤ t < T,

where Eq is the Mittag-Leffler function [17] defined by

Eβ(y) :=

∞
X

k=0

yk

Γ(kβ + 1)
, y ∈ C, Re(β) > 0.

Remark 2.12. (i) There exists a constant M∗

κ > 0 independent of ā such that

z(t) ≤ M
∗

κ ā for all 0 ≤ t < T.

(ii) For more generalized Henry-Gronwall inequalities see Ye et al. [33].

To end this section, we collect a generalized Henry-Gronwall inequality with mixed integral term, which

can be used in boundary value problems for fractional differential equations.
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Lemma 2.13. Let b < +∞ and y ∈ C([0, b], B) satisfy the following inequality:

|y(t)| ≤ a1 + b1

Z t

0

(t − s)α−1|y(s)|λds + c1

Z b

0

(b − s)α−1|y(s)|λds,(2.5)

where α ∈ (1, 2), λ ∈ [0, 1 − 1
p
] for some 1 < p < +∞, a1, b1, c1 ≥ 0 are constants. Then there exists a

constant M := (b1 + c1)
h

bp(α−1)+1

p(α−1)+1

i 1
p

> 0 such that

|y(t)| ≤ (a1 + 1)eMb
.

Proof. Similar to the proof of Lemma 3.2 in our previous work [32], one can obtain the result immediately. �

3. Ulam stability results

Let 0 < α < 1. Without loss of generality, we consider the equation (2.1) and the inequality (2.3) in the

case b = +∞.

We suppose that:

(H1) f ∈ C([a, +∞) × B, B);

(H2) There exists mf > 0 such that

|f(t, u1) − f(t, u2)| ≤ mf |u1 − u2|, for each t ∈ [a, +∞), and all u1, u2 ∈ B;

(H3) Let ϕ ∈ C([a, +∞), R+) be an increasing function. There exists λϕ > 0 such that

1

Γ(α)

Z t

a

(t − s)α−1
ϕ(s)ds ≤ λϕϕ(t), for each t ∈ [a, +∞).

We obtain the following generalized Ulam-Hyers-Rassias stable results.

Theorem 3.1. In the conditions (H1), (H2) and (H3) the equation (2.1) (b = +∞) is generalized Ulam-

Hyers-Rassias stable.

Proof. Let y ∈ C1([a, +∞), B) be a solution of the inequality (2.3) (b = +∞). Denote by x the unique

solution of the Cauchy problem

(

cDαx(t) = f(t, x(t)), 0 < α < 1, t ∈ [a, +∞),

x(a) = y(a).
(3.1)

Then we have

x(t) = y(a) +
1

Γ(α)

Z t

a

(t − s)α−1
f(s, x(s))ds, t ∈ [a, +∞).

By differential inequality (2.3), we have

˛

˛

˛

˛

y(t) − y(a) −
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds

˛

˛

˛

˛

≤
1

Γ(α)

Z t

a

(t − s)α−1
ϕ(s)ds

≤ λϕϕ(t), t ∈ [a, +∞).
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From these relation it follows

|y(t) − x(t)|

≤

˛

˛

˛

˛

y(t) − y(a) −
1

Γ(α)

Z t

a

(t − s)α−1
f(s, x(s))ds

˛

˛

˛

˛

≤

˛

˛

˛

˛

y(t) − y(a) −
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds

+
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds −

1

Γ(α)

Z t

a

(t − s)α−1
f(s, x(s))ds

˛

˛

˛

˛

≤

˛

˛

˛

˛

y(t) − y(a) −
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds

˛

˛

˛

˛

+
1

Γ(α)

Z t

a

(t − s)α−1|f(s, y(s)) − f(s, x(s))|ds

≤ λϕϕ(t) +
mf

Γ(α)

Z t

a

(t − s)α−1|y(s) − x(s)|ds.

By Lemma 2.11 and Remark 2.12(i), there exists a constant M∗

f > 0 independent of λϕϕ(t) such that

|y(t) − x(t)| ≤ M
∗

f λϕϕ(t) := cf,ϕϕ(t), t ∈ [a, +∞).

Thus, the equation (2.1) (b = +∞) is generalized Ulam-Hyers-Rassias stable. �

Corollary 3.2. (i) Under the assumptions of Theorem 3.1, we consider the equation (2.1) (b = +∞) and

the inequality (2.4). One can repeat the same process to verify that the equation (2.1) (b = +∞) is Ulam-

Hyers-Rassias stable.

(ii) Under the assumptions (H1) and (H2), we consider the equation (2.1) (b = +∞) and the inequality

(2.2). One can repeat the same process to verify that the equation (2.1) (b = +∞) is Ulam-Hyers stable.

4. Data Dependence

Let 1 < α < 2, we reconsider the equation (2.1) (b < +∞) and the inequality (2.2).

We suppose that:

(H4) f ∈ C([a, b] × B).

(H5) There exist mf > 0 and λ ∈ [0, 1 − 1
p
] for some 1 < p < ∞ such that

|f(t, u1) − f(t, u2)| ≤ mf |u1 − u2|
λ
, for each t ∈ [a, b], and all u1, u2 ∈ B.

The following result is interesting although the proof is not very difficult.

Theorem 4.1. Assumptions (H4) and (H5) hold. Let y ∈ C2[a, b] be a solution of the inequality (2.2).

Denote by x the solution of the following fractional boundary value problem
(

cDαx(t) = f(t, x(t)), 1 < α < 2, t ∈ [a, b],

x(a) = y(a), x(b) = y(b).
(4.1)

Then the following relation holds:

|y(t) − x(t)| ≤ cf (ǫ + 1), t ∈ [a, b],(4.2)

where

cf := e
Mb max



(b − a)α

Γ(α + 1)
, 1

ff

> 0 and M :=
2mf

Γ(α)

»

bp(α−1)+1

p(α − 1) + 1

–

1
p

.
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Proof. By Lemma 3.17 of [1], it is clear that the solution of the fractional boundary value problem (4.1)

given by

x(t) =
b − t

b − a
y(a) +

t − a

b − a
y(b) +

a − t

b − a

1

Γ(α)

Z b

a

(b − s)α−1
f(s, x(s))ds

+
1

Γ(α)

Z t

a

(t − s)α−1
f(s, x(s))ds.

By differential inequality (2.2), we have
˛

˛

˛

˛

y(t) −
b − t

b − a
y(a) −

t − a

b − a
y(b) −

a − t

b − a

1

Γ(α)

Z b

a

(b − s)α−1
f(s, y(s))ds

−
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds

˛

˛

˛

˛

≤
ǫ

Γ(α)

Z b

a

(t − s)α−1
ds

≤
(b − a)αǫ

Γ(α + 1)
.

From these relation it follows

|y(t) − x(t)|

≤

˛

˛

˛

˛

y(t) −
b − t

b − a
y(a) −

t − a

b − a
y(b) −

a − t

b − a

1

Γ(α)

Z b

a

(b − s)α−1
f(s, x(s))ds

−
1

Γ(α)

Z t

a

(t − s)α−1
f(s, x(s))ds

˛

˛

˛

˛

≤

˛

˛

˛

˛

y(t) −
b − t

b − a
y(a) −

t − a

b − a
y(b) −

a − t

b − a

1

Γ(α)

Z b

a

(b − s)α−1
f(s, y(s))ds

−
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds

˛

˛

˛

˛

+

˛

˛

˛

˛

a − t

b − a

1

Γ(α)

Z b

a

(b − s)α−1
f(s, y(s))ds−

a − t

b − a

1

Γ(α)

Z b

a

(b − s)α−1
f(s, x(s))ds

+
1

Γ(α)

Z t

a

(t − s)α−1
f(s, y(s))ds−

1

Γ(α)

Z t

a

(t − s)α−1
f(s, x(s))ds

˛

˛

˛

˛

≤
(b − a)α

Γ(α + 1)
ǫ +

|a − t|

b − a

1

Γ(α)

Z b

a

(b − s)α−1|f(s, y(s)) − f(s, x(s))|ds

+
1

Γ(α)

Z t

a

(t − s)α−1|f(s, y(s)) − f(s, x(s))|ds

≤
(b − a)α

Γ(α + 1)
ǫ +

mf

Γ(α)

Z b

a

(b − s)α−1|y(s) − x(s)|λds

+
mf

Γ(α)

Z t

a

(t − s)α−1|y(s) − x(s)|λds.

Applying Lemma 2.13 to the above inequality and yields the aim inequality (4.2). �

5. Example

In this section, some examples are given to illustrate our theory results.

Let 0 < α < 1. We consider in the case B := R the equation

c
D

α
x(t) = 0, t ∈ [a, b),(5.1)
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and the inequation

|cDα
y(t)| ≤ ǫ, t ∈ [a, b).(5.2)

Let y ∈ C1[a, b) be a solution of the inequation (5.2). Then there exists g ∈ C[a, b) such that:

(i) |g(t)| ≤ ǫ, t ∈ [a, b),

(ii) c
D

α
y(t) = g(t), t ∈ [a, b).(5.3)

Integrating (5.3) from a to b by virtue of Definition 2.4, we have

y(t) = y(a) +
1

Γ(α)

Z t

a

(t − s)α−1
g(s)ds, t ∈ [a, b).

We have, for all c ∈ R,

|y(t) − c| =

˛

˛

˛

˛

y(a) − c +
1

Γ(α)

Z t

a

(t − s)α−1
g(s)ds

˛

˛

˛

˛

≤ |y(a) − c| +
1

Γ(α)

Z t

a

(t − s)α−1|g(s)|ds

≤ |y(a) − c| +
ǫ

Γ(α)

Z t

a

(t − s)α−1
ds

≤ |y(a) − c| +
(t − a)αǫ

Γ(α + 1)
, t ∈ [a, b).

If we take c := y(a), then

|y(t) − y(a)| ≤
(t − a)αǫ

Γ(α + 1)
, t ∈ [a, b).

If b < +∞, then

|y(t) − y(a)| ≤
(b − a)αǫ

Γ(α + 1)
, t ∈ [a, b).

So, the equation (5.1) is Ulam-Hyers stable.

Let b = +∞. The function

y(t) =
(t − a)αǫ

Γ(α + 1)

is a solution of the inequality (5.2) and

|y(t) − c| =

˛

˛

˛

˛

(t − a)αǫ

Γ(α + 1)
− c

˛

˛

˛

˛

→ +∞, as t → +∞.

So, the equation (5.1) is not Ulam-Hyers stable on the interval [a, +∞).

Let us consider the inequation

|cDα
y(t)| ≤ ϕ(t), t ∈ [a, +∞).(5.4)

Let y be a solution of (5.4) and x(t) = y(a), t ∈ [a, +∞) a solution of the equation (5.1). We have that

|y(t) − x(t)| = |y(t) − y(a)| ≤
1

Γ(α)

Z t

a

(t − s)α−1
ϕ(s)ds, t ∈ [a, +∞)

If there exists cϕ > 0 such that

1

Γ(α)

Z t

a

(t − s)α−1
ϕ(s)ds ≤ cϕϕ(t), t ∈ [a, +∞),

then the equation (5.1) is generalized Ulam-Hyers-Rassias stable on [a, +∞) with respect to ϕ.
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