Stability threshold for scalar linear periodic delay differential equations

Kyeongah Nah and Gergely Röst
We investigate the scalar periodic delay-differential equation

$$
\begin{equation*}
\dot{x}(t)=-a(t) x(t)+b(t) x(t-1), \tag{1}
\end{equation*}
$$

where a, b are assumed to be P-periodic continuous real functions with $a(t) \geq 0$ and $b(t) \geq 0$. In this talk, we prove that the stability threshold of (1) is $r=0$, where

$$
r:=\int_{0}^{P}(b(s)-a(s)) \mathrm{ds},
$$

if $b(u+1)-a(u)$ does not change its sign. We also construct a class of equations of which r fails to be a stability threshold without the condition $b(u+1)-a(u)$ keeping its sign. Finding explicit stability threshold of (1) under weaker condition is an interesting open question.

