RANDOM APPROXIMATIONS BY GENERALIZED
 DISC-POLYGONS

Dániel István Papvári
University of Szeged (Hungary)
(Joint work with Ferenc Fodor and Viktor Vígh)

For two convex discs K and L, we say that K is L-convex if it is equal to the intersection of all translates of L that contain K. We study the following probability model: let K and L be C_{+}^{2} smooth convex discs such that K is L-convex. Select n i.i.d. uniform random points x_{1}, \ldots, x_{n} from K, and consider the intersection $K_{(n)}$ of all translates of L that contain all of x_{1}, \ldots, x_{n}. The set $K_{(n)}$ is a random L-convex polygon in K. We study the expectation of the number of vertices and missed area of $K_{(n)}$ as n tends to infinity. We consider two special cases: in the first case we assume that the curvatures of K and L can be bounded away from each other uniformly, in the other case we let $K=L$. This is joint work with F . Fodor and V. Vígh (Szeged).

