The implicit function theorem and convexity

Emőke Imre

Óbuda University, Budapest (Hungary)

Let $\mathbf{f} : \mathbf{R}^{n+m} \to \mathbf{R}^m$ be a continuously differentiable function. \mathbf{R}^{n+m} is the direct sum $\mathbf{R}^n + \mathbf{R}^m$, a point of this is $(\mathbf{x}, \mathbf{y}) = (\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{y}_1, \dots, \mathbf{y}_m)$. Starting from the given function \mathbf{f} , the goal is to construct a function $\mathbf{g}\mathbf{R}^n \to \mathbf{R}^m$ whose graph $(\mathbf{x}, g(\mathbf{x}))$ is precisely the set of all (\mathbf{x}, \mathbf{y}) such that $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$.

Fix a point $(\mathbf{a}, \mathbf{b}) = (a_1, \ldots, a_n, b_1, \ldots, b_m)$ with $\mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$, where $\mathbf{0}$ is the element of \mathbf{R}^m . If the matrix $[(\partial f_i / \partial y_j)(\mathbf{a}, \mathbf{b})]$ is invertible, then there exists an open set U containing \mathbf{a} , an open set V containing \mathbf{b} , and a unique function g $U \to V$ such that

$$\{\mathbf{x}, \mathbf{g}(\mathbf{x}) \mid \mathbf{x} \in \mathbf{U}\} = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathbf{U}, \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{0}\}$$

which is continuously differentiable.

In this work, it is stated that there always exists a scalar, C^2 function $F : \mathbb{R}^{n+m} \to \mathbb{R}^1$ whose partial derivative with respect to the *m* parameters of **y** is $\mathbf{f} : \mathbb{R}^{n+m} \to \mathbb{R}^m$ and whose second partial derivative with respect to the *m* parameters of **y** is the Hessian according to the conditions of the theorem. Depending on the Hessian, the critical point where $\mathbf{f} = \mathbf{0}$ can be a local sub-minimum, a sub-maximum and may have several other local sub-geometries according to the Morse theorem. The implicit function collects the critical points of a local projection map.

Applications:

- 1. Any division $(\mathbf{x}, \mathbf{y}) = (x_1, \dots, x_n, y_1, \dots, y_m)$ where the type of the critical point is a minimum for every value of \mathbf{x} may lead to a hierarchical minimisation consisting of two kinds of smaller dimensional minimisations.
- 2. The graph of the implicit function assigns a transformed merit function (a section of the original merit function) which is minimised in the second minimisation with respect to \mathbf{x} (during of which the **y**-part is eliminated in every iteration step with respect to \mathbf{x} by sub-minimisation with respect to \mathbf{y}).
- 3. The solution of hierarchical minimisation is identical to the solution of the original minimisation if the type of the critical point is a global minimum for every value of \mathbf{x}

The globally positive definite cases:

- 5. In case of strictly convex $F : \mathbf{R}^{n+m} \to \mathbf{R}^1$, for any division $(\mathbf{x}, \mathbf{y}) = (x_1, \dots, x_n, y_1, \dots, y_m)$, the Hessian is globally positive definite for every value of \mathbf{x} .
- 6. In case of linearly dependent parameters, the second partial derivative with respect to the m parameters of \mathbf{y} is globally positive definite for every value of \mathbf{x} .