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Definition of Bracketings

Definition (Bracketings)

Term algebra: T (p) :=
(

Tω(x), ωT (p)
)

with
p ∈ N≥2

alphabet {x}
signature {ω}, ω p-ary operation symbol

We call the (unary!) terms t ∈ Tω(x) bracketings.

Definition (Occurence number)

The occurence number |t |ω of a bracketing t ∈ Tω(x) is the
number of occurences of the symbol ω in t .
=⇒ |x |ω = 0, |ωt1t2 . . . tp|ω = 1 +

p∑
k=1

|tk |ω
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Definition of Bracketings - 2

Notation
The set of bracketings with occurence number n:

B(p)
n := {t ∈ Tω(x) | |t |ω = n}

Example

B(2)
0 = {x}

B(2)
1 = {ωxx} = {(xx)}

B(2)
2 = {ωωxxx , ωxωxx} = {((xx)x), (x(xx))}
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Definition of p-ary Groupoids and Regular Operations

Definition (p-ary groupoid)

G = 〈G, f 〉 p-ary groupoid :⇐⇒ f : Gp −→ G p-ary operation

Definition (Enumeration)

For a bracketing t ∈ Tω(x), ε enumerates the symbols x in t
beginning with 1.

Sebastian Liebscher Generalized Associative Spectra



Definition of the Generalized Associative Spectrum
Generalizations of Basic Results

New Results
Summary

Definition of Bracketings
Definition of p-ary Groupoids and Regular Operations
Definition of the Generalized Associative Spectrum

Definition of p-ary Groupoids and Regular Operations

Definition (p-ary groupoid)

G = 〈G, f 〉 p-ary groupoid :⇐⇒ f : Gp −→ G p-ary operation

Definition (Enumeration)

For a bracketing t ∈ Tω(x), ε enumerates the symbols x in t
beginning with 1.

Sebastian Liebscher Generalized Associative Spectra



Definition of the Generalized Associative Spectrum
Generalizations of Basic Results

New Results
Summary

Definition of Bracketings
Definition of p-ary Groupoids and Regular Operations
Definition of the Generalized Associative Spectrum

Introductory Example

p = 2:

((xx)x)

�
�
��

A
A

A
Aq q q
q q

x x
xω

ω
(x(xx))

�
�A
A
AA�
�

q q
q q qx

x x

ω

ω

p = 3:

((xxx)xx)

�
�
��

A
A

A
Aq qq
qqq q

x x x
x xω

ω
(x(xxx)x)

�
�@
@

�
�A
A

q qqq qqqx x
x x x

ω

ω

(xx(xxx))

�
�A
A
AA�
�

q qqq qq qx x
x x x

ω

ω

7−→ ε

((x1x2)x3)

�
�
��

A
A

A
Aq q q
q q

x1 x2

x3
ω

ω
(x1(x2x3))

�
�A
A
AA�
�

q q
q q qx1

x2 x3

ω

ω

((x1x2x3)x4x5)

�
�
��

A
A

A
Aq qq
qqq q

x1x2x3

x4x5
ω

ω
(x1(x2x3x4)x5)

�
�@
@

�
�A
A

q qqq qqqx1 x5

x2x3x4

ω

ω

(x1x2(x3x4x5))

�
�A
A
AA�
�

q qqq qq qx1x2

x3x4x5

ω

ω

Sebastian Liebscher Generalized Associative Spectra



Definition of the Generalized Associative Spectrum
Generalizations of Basic Results

New Results
Summary

Definition of Bracketings
Definition of p-ary Groupoids and Regular Operations
Definition of the Generalized Associative Spectrum

Introductory Example

p = 2:

((xx)x)

�
�
��

A
A

A
Aq q q
q q

x x
xω

ω
(x(xx))

�
�A
A
AA�
�

q q
q q qx

x x

ω

ω

p = 3:

((xxx)xx)

�
�
��

A
A

A
Aq qq
qqq q

x x x
x xω

ω
(x(xxx)x)

�
�@
@

�
�A
A

q qqq qqqx x
x x x

ω

ω

(xx(xxx))

�
�A
A
AA�
�

q qqq qq qx x
x x x

ω

ω

7−→ ε

((x1x2)x3)

�
�
��

A
A

A
Aq q q
q q

x1 x2

x3
ω

ω
(x1(x2x3))

�
�A
A
AA�
�

q q
q q qx1

x2 x3

ω

ω

((x1x2x3)x4x5)

�
�
��

A
A

A
Aq qq
qqq q

x1x2x3

x4x5
ω

ω
(x1(x2x3x4)x5)

�
�@
@

�
�A
A

q qqq qqqx1 x5

x2x3x4

ω

ω

(x1x2(x3x4x5))

�
�A
A
AA�
�

q qqq qq qx1x2

x3x4x5

ω

ω

Sebastian Liebscher Generalized Associative Spectra



Definition of the Generalized Associative Spectrum
Generalizations of Basic Results

New Results
Summary

Definition of Bracketings
Definition of p-ary Groupoids and Regular Operations
Definition of the Generalized Associative Spectrum

Definition of p-ary Groupoids and Regular Operations

Definition (p-ary groupoid)

G = 〈G, f 〉 p-ary groupoid :⇐⇒ f : Gp −→ G p-ary operation

Definition (Enumeration)

For a bracketing t ∈ Tω(x), ε enumerates the symbols x in t
beginning with 1.

Definition (Regular operation)

For a bracketing t ∈ Tω(x) and a p-ary groupoid G,
the regular operation tε;G is the term operation of ε(t).
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Definition of the Generalized Associative Spectrum

Example

6=

((xx)x)ε;〈R,−〉 (a1, a2, a3) = (a1 − a2)− a3

(x(xx))ε;〈R,−〉 (a1, a2, a3) = a1 − (a2 − a3)

=

((x(xx))x)ε;〈R,−〉 (a1, a2, a3, a4) = (a1 − (a2 − a3))− a4

(x(x(xx)))ε;〈R,−〉 (a1, a2, a3, a4) = a1 − (a2 − (a3 − a4))

Definition (Associative spectrum)
For a p-ary groupoid G, the n-th element of the associative
spectrum of G is the number of different regular operations of
bracketings of occurence number n:

sG(n) :=
∣∣∣{tε;G

∣∣∣ t ∈ B(p)
n

}∣∣∣ .
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General Associative Law

Example

6=
((xx)x)ε;〈R,−〉 (a1, a2, a3) = (a1 − a2)− a3,

(x(xx))ε;〈R,−〉 (a1, a2, a3) = a1 − (a2 − a3)

s〈R,−〉(2) = 2

Proposition (General associative law)
For a p-ary groupoid G it holds:

G is associative (i.e. sG(2) = 1)⇐⇒ ∀n ∈ N : sG(n) = 1
sG(n) = 1 for n ∈ N≥2 =⇒ ∀m ∈ N, m ≥ n : sG(m) = 1
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Estimations of the Generalized Associative Spectrum

Definition (Generalized CATALAN numbers)

Generalized CATALAN numbers
(

C(p)
n

)
n∈N

:

C(p)
n :=

1
(p − 1) · n + 1

·
(

p · n
n

)

Proposition
For a p-ary groupoid G it holds:

∀n ∈ N : 1 ≤ sG(n) ≤ C(p)
n

∀n ∈ N>0 : sG(n) ≤
∑

i:{1,...,p}→N,
Pp

k=1 i(k)=n−1

 p∏
j=1

sG(i(j))

 .
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Substructures, Homomorphic Images and
Isomorphisms

Proposition
For two p-ary groupoids G, H it holds:

if H and G are isomorphic or antiisomorphic then

∀n ∈ N : sH(n) = sG(n).

if H is a subgroupoid or homorphic image of G then

∀n ∈ N : sH(n) ≤ sG(n).

Remark (antiisomorphic)

ϕ (fH (g1, . . . , gp)) = fG (ϕ(gp), . . . , ϕ(g1))
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A Binary Example with a Quadratic Spectrum

Example

The associative spectrum of the groupoid G := 〈Z6[Y ],⊕〉 with
the operation

⊕ : (Z6[Y ])2 −→ Z6[Y ]
(X1, X2) 7−→ 3Y · X1 + 2Y · X2

is quadratic:

∀n ∈ N≥2 : sG(n) =
n2 + n − 2

2
.

(The operations occurring in the definition of ⊕ are addition and
multiplication in the polynomial ring 〈Z6[Y ], +, ·〉.)
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Congruence Relations with the Invariance Property

Proposition
For a p-ary groupoid G the bracketing congruence

IdG :=
{

(s, t) ∈ (Tω(x))2
∣∣∣ sε;G = tε;G

}

is a congruence relation in T (p) with the invariance property:
∀ (s, t) ∈ IdG : |s|ω = |t |ω
∀ (s, t) ∈ IdG ∀t1, . . . , tk ∈ Tω(x) :(

sε;T (p)
(t1, . . . , tk ), tε;T (p)

(t1, . . . , tk )
)
∈ IdG

where k is the number of symbols x in s (and t).
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Congruence Relations with the Invariance Property
Are All You Need

Remark
For a p-ary groupoid G it holds:

∀n ∈ N : sG(n) =
∣∣∣{ [t ]IdG

∈ Tω(x)/IdG

∣∣∣ t ∈ B(p)
n

}∣∣∣ .

Theorem (No need for groupoids)

For a congruence relation Σ in T (p) with the invariance property
there exists a p-ary groupoid G with:

Σ = IdG.
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Examples with Polynomial Spectra of Arbitrary Degree

Theorem
With the concept of the congruence relations with the
invariance property it is possible to find the following spectra:

s(p)
k (n) =



C(p)
n for n < k

(p − 1) · (n − k) + 1
k !

·

·
k−1∏
`=1

((p − 1) · n + k + 1− `)
for n ≥ k

with k ∈ N, k ≥ 1.
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Summary

Associative spectra can be generalized to p-ary operations
in a natural way.
The concept of the congruence relations with the
invariance property is a powerful tool to study associative
spectra.

Thank you
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