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Problem Results Quasilinear

Definitions

Definition

For an algebra A the term satisfiability problem (TERM-SAT(A))
is a decision problem with

Instance: A pair of terms (s, t)

with the tables of the
fundamental operations of A corresponding to
all function symbols occurring in s and t.

Question: Does the equation

sA(x) = tA(x)

have a solution?

If (s, t) is a pair of polynomials we get the polynomial satisfiability
problem (POL-SAT(A)).
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Some results

Lattices (Schwarz)

For a lattice L

POL-SAT(L) in P if L is distributive

POL-SAT(L) is NP-complete, else.

Groups (Goldmann, Russell)

For a group G

POL-SAT(G) in P if G is nilpotent.

POL-SAT(G) is NP-complete if G is not solvable.
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Problem

Question 1

Does the computational complexity of TERM-SAT(A) depend on
Clo(A), the clone of term operations of A ?
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Bad news

Example

POL-SAT(S3, ◦) is in P. (G. Horváth, C.Szabó)

POL-SAT(S3, ◦, []) is NP-complete. (P. Idziak)
[x, y] = x−1 ◦ y−1 ◦ x ◦ y

Clo(S3, ◦) = Clo(S3, ◦, [])



Problem Results Quasilinear

Bad news

Example

POL-SAT(S3, ◦) is in P. (G. Horváth, C.Szabó)
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Good news

Theorem

For any two-element algebra A the computational complexity of
TERM-SAT(A) depends only on Clo(A).
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Goal

Definition

We say that TERM-SAT for a clone C is

representation-independent iff for arbitrary algebras A,B
such that Clo(A) = Clo(B) = C,
TERM-SAT(A) and TERM-SAT(B) are polynomial-time
equivalent.

representation-dependent, else.

If TERM-SAT is representation-independent for C we say

TERM-SAT for C is in P.
or

TERM-SAT for C is NP-complete.
or

TERM-SAT for C is . . .
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Goal

Goal

Characterize the clones where TERM-SAT is
representation-independent.
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Maximal clones

Full clone

Theorem

For a primal algebra A, TERM-SAT(A) is NP-complete.

Maximal clones

Theorem

For every maximal clone C on a set A with |A| > 2 the
TERM-SAT for C is representation-independent.

Moreover, TERM-SAT(A), where Clo(A) = C,

is in P, if C is affine or determined by a singleton,

is NP-complete otherwise.
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Question 2

How hard is TERM-SAT for the previous clones really?
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Definitions

Definition

DQL is the class of decision problems solvable by
deterministic multitype Turing machine in quasilinear time
i.e. O(n(log(n)k)).
NQL is the class of decision problems solvable by
nondeterministic multitype Turing machine in quasilinear
time.

For completeness in NQL we use reductions done by
deterministic multitype Turing machines in quasilinear time.
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Definitions

Theorem (Schnorr 1978)

SAT is NQL-complete,

3−colorability is NQL-complete,

Anticlique is NQL-complete,

Graph isomorphism is in NQL.

Observation

For an algebra A with a finite number of basic operations
TERM-SAT(A) is in NQL.
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Results

Theorem

For a two element algebra A = (2, f1, f2, . . . , fr)
TERM-SAT(A) is NQL-complete if Clo(2, d,¬) ⊆ Clo(A)
TERM-SAT(A) is DQL, else.

d(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)
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Theorem

For a three element primal algebra A = (3, f1, f2, . . . , fr)
TERM-SAT(A) is NQL-complete

Theorem

For a three element algebra A = (3, f1, f2, . . . , fr) such that
Clo(A) is maximal

TERM-SAT(A) is NQL-complete if TERM-SAT(A) is
NP-complete

TERM-SAT(A) is in DQL, else
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Results

Problem

Is TERM-SAT(A) for every primal algebra A NQL-complete?

Theorem

If the answer to the previous problem is positive then for an
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Results

Theorem

Let C be a maximal clone on a set A generated by an order
relation. For an algebra A = (A, f1, f2, . . . , fr) such that
Clo(A) = C

TERM-SAT(A) is NQL-complete if A > 2
TERM-SAT(A) is in DQL, else
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Results

Thank you
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