## On the subsemilattices of formular subalgebras and congruences of the lattices of subalgebras and congruences of universal algebras

## A.G. Pinus

We study the questions of independence of subsemilattices of formular subalgebras (congruences) of universal algebras from the lattices of subalgebras (congruences) of these algebras.

The subalgebras  $\mathcal{B} = \langle B; \sigma \rangle$  of the algebra  $\mathcal{A} = \langle A; \sigma \rangle$  is open formular (parametric open formular), it there exists some quantifierfree formula  $\phi(x)$  of the signature  $\sigma(\phi(x, y_1, \ldots, y_n))$  and elements  $b_1, \ldots, b_n \in A$  such that  $B = \{a \in A \mid \mathcal{A} \models \phi(a)\}$   $\{B = \{a \in A \mid \mathcal{A} \models \phi(a, b_1, \ldots, b_n)\}$ .

The down subsemilattice of all open formular (all parametric open formular) subalgebras of the lattice  $Sub \mathcal{A}$  of all subalgebras of the algebra  $\mathcal{A}$  we denote as  $PSub \mathcal{A}$  ( $PPSub \mathcal{A}$ ).

**THEOREM 1.** For any algebraic lattice L and its 0—1-down subsemilattices  $L_0, L_1$  such that  $L_0 \subseteq L_1$  there exists some universal algebra  $\mathcal{A}$  and isomorphism  $\varphi$  of the lattice L on the lattice  $Sub\ \mathcal{A}$  such that  $\varphi(L_0) = PSub\ \mathcal{A}$ ,  $\varphi(L_1) = PSub\ \mathcal{A}$ .

**THEOREM 2.** The equation  $PSub \mathcal{A} = Sub \mathcal{A}$  is true for some finite algebra  $\mathcal{A}$  iff all its inner isomorphisms (the isomorphisms between subalgebras of algebra  $\mathcal{A}$ ) are its inner automorphisms (the automorphisms of subalgebras of algebra  $\mathcal{A}$ ).

By analogy the definition of open formular subalgebra we define the concept of open formular congruences of the algebra  $\mathcal{A}$ . The down subsemilattice of the lattice  $Con\ \mathcal{A}$  of all congruence of algebra  $\mathcal{A}$  we denote as  $Con\ OF\ \mathcal{A}$ .

**THEOREM 3.** For any algebraic lattice L and 0—1-down subsemilattice  $L_0$  of the lattice 0+L there exists some universal algebra  $\mathcal{A}$  and the isomorphism  $\varphi$  of the lattice 0+L on the lattice  $Con\ \mathcal{A}$  such that  $\varphi(L_0)=Con\ OF\mathcal{A}$ .