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Moore families (also called closure systems) are set representations for lattices. For
instance, the Moore families called convex geometries represent lower locally distributive
lattices (they are also in duality with the path-independent choice functions of the con-
sumer theory in microeconomics). We present a review of a number of works on some
sets of Moore families defined on a finite set S which, ordered by set inclusion, are semi-
lattices or lattices. In particular, we study the lattice MP (respectively, the semilattice
GP ) of all Moore families (respectively, convex geometries) having the same poset P of
join-irreducible elements. For instance, we determine how one goes from a family F in
these lattices (or semilattices) to another one covered by F and also the changes induced
in the irreducible elements of F . In the case of convex geometries, this allows us to get
an algorithm computing all the elements of GP . At last, we characterize the posets P for
which |MP | or |GP | is less than or equal to 2.
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