Semilattice ordered algebras I Free algebras

Agata Pilitowska Anna Zamojska-Dzienio

Faculty of Mathematics and Information Science, Warsaw University of Technology

Conference on Universal Algebra and Lattice Theory Szeged, June 2012

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

An algebra $(A, \Omega, +)$ is called a **semilattice ordered** \mathcal{V} -algebra if

Definition

An algebra $(A, \Omega, +)$ is called a semilattice ordered \mathcal{V} -algebra if

• (A, Ω) belongs to a variety \mathcal{V} ,

Definition

An algebra $(A, \Omega, +)$ is called a semilattice ordered \mathcal{V} -algebra if

$$old O$$
 (A,Ω) belongs to a variety ${\mathcal V}_{i}$

④ (A, +) is a (join) semilattice (with semilattice order ≤, i.e.
 $x \le y \iff x + y = y$),

Definition

An algebra $(A, \Omega, +)$ is called a **semilattice ordered** \mathcal{V} -algebra if

0
$$(A, \Omega)$$
 belongs to a variety \mathcal{V}_{i}

- (A, +) is a (join) semilattice (with semilattice order ≤, i.e.
 $x ≤ y \iff x + y = y$),
- ${f 0}$ the operations from the set Ω distribute over the operation +.

Definition

An algebra $(A, \Omega, +)$ is called a **semilattice ordered** \mathcal{V} -algebra if

$$old O$$
 (A,Ω) belongs to a variety ${\mathcal V}_{i}$

- $\textbf{0} the operations from the set Ω distribute over the operation +.$

The operation ω **distributes over** + means that for any $x_1, \ldots, x_i, y_i, \ldots, x_n \in A$

$$\omega(x_1,\ldots,x_i+y_i,\ldots,x_n) = \omega(x_1,\ldots,x_i,\ldots,x_n) + \omega(x_1,\ldots,y_i,\ldots,x_n),$$

for any $1 \leq i \leq n$.

• If
$$x_i \leq y_i$$
 for each $i = 1, ..., n$, then $\omega(x_1, ..., x_n) \leq \omega(y_1, ..., y_n)$.

• If
$$x_i \leq y_i$$
 for each $i = 1, ..., n$, then
 $\omega(x_1, ..., x_n) \leq \omega(y_1, ..., y_n).$

$$\omega(x_{11},\ldots,x_{n1})+\ldots+\omega(x_{1r},\ldots,x_{nr}) \leq \\ \omega(x_{11}+\ldots+x_{1r},\ldots,x_{n1}+\ldots+x_{nr}).$$

• If
$$x_i \leq y_i$$
 for each $i = 1, ..., n$, then
 $\omega(x_1, ..., x_n) \leq \omega(y_1, ..., y_n).$

$$\omega(x_{11},\ldots,x_{n1})+\ldots+\omega(x_{1r},\ldots,x_{nr}) \leq \\ \omega(x_{11}+\ldots+x_{1r},\ldots,x_{n1}+\ldots+x_{nr}).$$

$$(x,\ldots,x) \leq x \text{ iff } \omega(x_1,\ldots,x_n) \leq x_1 + \ldots + x_n.$$

・ロト ・部ト ・ヨト ・ヨト

æ

• Semilattice ordered semigroups

э

- 4 聞 と 4 臣 と 4 臣 と

• Semilattice ordered semigroups semirings with idempotent additive reduct, distributive bisemilattices, distributive lattices;

- Semilattice ordered semigroups semirings with idempotent additive reduct, distributive bisemilattices, distributive lattices;
- Modals = semilattice ordered modes

- Semilattice ordered semigroups semirings with idempotent additive reduct, distributive bisemilattices, distributive lattices;
- Modals = semilattice ordered modes

Definition

An algebra (M, Ω) is called a **mode** if it is **idempotent** and **entropic**:

$$\begin{aligned} \omega(x, \dots, x) &= x, \qquad (\text{idempotent law}), \\ \omega(\phi(x_{11}, \dots, x_{n1}), \dots, \phi(x_{1m}, \dots, x_{nm})) &= \\ \phi(\omega(x_{11}, \dots, x_{1m}), \dots, \omega(x_{n1}, \dots, x_{nm})), \qquad (\text{entropic law}), \end{aligned}$$

for every *m*-ary $\omega \in \Omega$ and *n*-ary $\phi \in \Omega$.

• For semilattice ordered modes one has

$$\omega(x_1,\ldots,x_n)\leq x_1+\ldots+x_n,$$

for any $\omega \in \Omega$.

э

• = • • = •

• For semilattice ordered modes one has

$$\omega(x_1,\ldots,x_n)\leq x_1+\ldots+x_n,$$

for any $\omega \in \Omega$.

• Semilattice modes = entropic modals

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

• For semilattice ordered modes one has

$$\omega(x_1,\ldots,x_n)\leq x_1+\ldots+x_n,$$

for any $\omega \in \Omega$.

• Semilattice modes = entropic modals

$$\omega(x_{11},\ldots,x_{n1})+\ldots+\omega(x_{1r},\ldots,x_{nr})=$$

$$\omega(x_{11}+\ldots+x_{1r},\ldots,x_{n1}+\ldots+x_{nr})$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

・ロン ・聞と ・ ヨン ・ ヨン

э

Let $\mathcal{P}_{>0}(A)$ be the family of all non-empty subsets of a given set A. For any *n*-ary operation $\omega : A^n \to A$ we define **the complex operation** $\omega : \mathcal{P}_{>0}(A)^n \to \mathcal{P}_{>0}(A)$ in the following way:

$$\omega(A_1,\ldots,A_n):=\{\omega(a_1,\ldots,a_n)\mid a_i\in A_i\}.$$

Let $\mathcal{P}_{>0}(A)$ be the family of all non-empty subsets of a given set A. For any *n*-ary operation $\omega : A^n \to A$ we define **the complex operation** $\omega : \mathcal{P}_{>0}(A)^n \to \mathcal{P}_{>0}(A)$ in the following way:

$$\omega(A_1,\ldots,A_n):=\{\omega(a_1,\ldots,a_n)\mid a_i\in A_i\}.$$

The set $\mathcal{P}_{>0}A$ also carries a join semilattice structure under the set-theoretical union \cup . B. Jónsson and A. Tarski proved that complex operations distribute over the union \cup .

Let $\mathcal{P}_{>0}(A)$ be the family of all non-empty subsets of a given set A. For any *n*-ary operation $\omega : A^n \to A$ we define **the complex operation** $\omega : \mathcal{P}_{>0}(A)^n \to \mathcal{P}_{>0}(A)$ in the following way:

$$\omega(A_1,\ldots,A_n):=\{\omega(a_1,\ldots,a_n)\mid a_i\in A_i\}.$$

The set $\mathcal{P}_{>0}A$ also carries a join semilattice structure under the set-theoretical union \cup . B. Jónsson and A. Tarski proved that complex operations distribute over the union \cup .

For any algebra $(A, \Omega) \in \mathcal{O}$, the **extended power algebra** $(\mathcal{P}_{>0}A, \Omega, \cup)$ is a semilattice ordered \mathcal{O} -algebra.

Let $\mathcal{P}_{>0}(A)$ be the family of all non-empty subsets of a given set A. For any *n*-ary operation $\omega : A^n \to A$ we define **the complex operation** $\omega : \mathcal{P}_{>0}(A)^n \to \mathcal{P}_{>0}(A)$ in the following way:

$$\omega(A_1,\ldots,A_n):=\{\omega(a_1,\ldots,a_n)\mid a_i\in A_i\}.$$

The set $\mathcal{P}_{>0}A$ also carries a join semilattice structure under the set-theoretical union \cup . B. Jónsson and A. Tarski proved that complex operations distribute over the union \cup .

For any algebra $(A, \Omega) \in \mathcal{O}$, the **extended power algebra** $(\mathcal{P}_{>0}A, \Omega, \cup)$ is a semilattice ordered \mathcal{O} -algebra.

The algebra $(\mathcal{P}_{\geq 0}^{<\omega}A, \Omega, \cup)$ of all finite non-empty subsets of A is a subalgebra of $(\mathcal{P}_{>0}A, \Omega, \cup)$.

伺下 イヨト イヨト

Let $(F_{\mathcal{V}}(X), \Omega)$ be the free algebra over a set X in the variety $\mathcal{V} \subseteq \mathcal{O}$ and let $\mathcal{S}_{\mathcal{V}}$ denote the variety of all semilattice ordered \mathcal{V} -algebras.

Let $(F_{\mathcal{V}}(X), \Omega)$ be the free algebra over a set X in the variety $\mathcal{V} \subseteq \mathcal{V}$ and let $\mathcal{S}_{\mathcal{V}}$ denote the variety of all semilattice ordered \mathcal{V} -algebras.

Theorem (Universality Property for Semilattice Ordered Algebras)

Let $(A, \Omega, +) \in S_{\mathcal{V}}$. Each mapping $h: X \to A$ can be extended to a unique homomorphism $\overline{\overline{h}}: (\mathcal{P}_{>0}^{<\omega} F_{\mathcal{V}}(X), \Omega, \cup) \to (A, \Omega, +)$, such that $\overline{\overline{h}}/_{X} = h$.

• In general $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup)$ doesn't have to belong to the variety $\mathcal{S}_{\mathcal{V}}$.

э

伺 ト イヨト イヨト

- In general (P^{<ω}_{>0} F_V(X), Ω, ∪) doesn't have to belong to the variety S_V.
- The semilattice ordered algebra (𝒫^{<ω}_{>0} F(X), Ω, ∪) is generated by the set {{x} | x ∈ X}.

伺 ト く ヨ ト く ヨ ト

In general (P^{<ω}_{>0} F_V(X), Ω, ∪) doesn't have to belong to the variety S_V.

The semilattice ordered algebra (𝒫^{<ω}_{>0} F(X), Ω, ∪) is generated by the set {{x} | x ∈ X}.

Corollary

The semilattice ordered algebra $(\mathcal{P}_{\geq 0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup)$ is free over a set X in the variety $\mathbb{S}_{\mathcal{V}}$ if and only if $(\mathcal{P}_{\geq 0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup) \in \mathbb{S}_{\mathcal{V}}$.

伺 ト く ヨ ト く ヨ ト

In general (P^{<ω}_{>0} F_V(X), Ω, ∪) doesn't have to belong to the variety S_V.

• The semilattice ordered algebra $(\mathcal{P}^{<\omega}_{>0}F_{\mathcal{V}}(X),\Omega,\cup)$ is generated by the set $\{\{x\} \mid x \in X\}$.

Corollary

The semilattice ordered algebra $(\mathcal{P}_{\geq 0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup)$ is free over a set X in the variety $\mathbb{S}_{\mathcal{V}}$ if and only if $(\mathcal{P}_{\geq 0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup) \in \mathbb{S}_{\mathcal{V}}$.

Theorem

The semilattice ordered algebra $(\mathcal{P}_{>0}^{<\omega}F_{\mho}(X),\Omega,\cup)$ is free over a set X in the variety S_{\mho} .

伺 ト イヨト イヨト

We call a term t of the language of a variety \mathcal{V} **linear**, if every variable occurs in t at most once. An identity t = u is called **linear**, if both terms t and u are linear.

We call a term t of the language of a variety \mathcal{V} linear, if every variable occurs in t at most once. An identity t = u is called linear, if both terms t and u are linear.

For a variety \mathcal{V} let \mathcal{V}^* be its **linearization**, the variety defined by all linear identities satisfied in \mathcal{V} . Obviously, \mathcal{V}^* contains \mathcal{V} as a subvariety.

We call a term t of the language of a variety \mathcal{V} linear, if every variable occurs in t at most once. An identity t = u is called linear, if both terms t and u are linear.

For a variety \mathcal{V} let \mathcal{V}^* be its **linearization**, the variety defined by all linear identities satisfied in \mathcal{V} . Obviously, \mathcal{V}^* contains \mathcal{V} as a subvariety.

G. Grätzer and H. Lakser proved that for any subvariety $\mathcal{V} \subseteq \mathcal{O}$, the algebra $(\mathcal{P}_{>0}^{<\omega} F_{\mathcal{V}}(X), \Omega)$ satisfies the identities being a result of identification of variables from the linear identities true in \mathcal{V} . This implies that for each subvariety $\mathcal{V} \subseteq \mathcal{O}$, the algebra $(\mathcal{P}_{>0}^{<\omega} F_{\mathcal{V}}(X), \Omega)$ belongs to \mathcal{V}^* , but it does not belong to any its proper subvariety.

Theorem

The semilattice ordered algebra $(\mathcal{P}_{\geq 0}^{\leq \omega} F_{\mathcal{V}^*}(X), \Omega, \cup)$ is free over a set X in the variety $S_{\mathcal{V}^*}$.

э

(4月) (4日) (4日)

Theorem

The semilattice ordered algebra $(\mathcal{P}_{\geq 0}^{\leq \omega} F_{\mathcal{V}^*}(X), \Omega, \cup)$ is free over a set X in the variety $S_{\mathcal{V}^*}$.

Theorem

The semilattice ordered algebra $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup)$ is free over a set X in the variety $\mathcal{S}_{\mathcal{V}}$ if and only if $\mathcal{V} = \mathcal{V}^*$.

Theorem

The semilattice ordered algebra $(\mathcal{P}_{>0}^{\leq \omega}F_{\mathcal{V}^*}(X),\Omega,\cup)$ is free over a set X in the variety $S_{\mathcal{V}^*}$.

Theorem

The semilattice ordered algebra $(\mathcal{P}_{>0}^{<\omega}F_{\mathcal{V}}(X),\Omega,\cup)$ is free over a set X in the variety $S_{\mathcal{V}}$ if and only if $\mathcal{V} = \mathcal{V}^*$.

Corollary

For any subvariety $\mathcal{V} \subseteq \mathcal{O}$, we have

 $\mathbb{S}_{\mathcal{V}^*} = \mathrm{HSP}((\mathcal{P}^{<\omega}_{>0}F_{\mathcal{V}^*}(X),\Omega,\cup)),$

for a non-finite set X.