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Any normal subgroup N is modular in L(G), by Dedekind’s identity.
Essentially since NH = HN = (N, H) for any other subgroup H.
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Example: A, is solvable, but not supersolvable

Thm (Shareshian-me): Max len (mod chain) = len (chief series)
Supersolvable group: every chief factor is cyclic of prime order.
Solvable group: every chief factor is abelian (vector space).
Example: The alternating group on 4 elements is solvable, but not
supersolvable.
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History:

Suzuki (1951) observed that solvability of G can be recognized
from the subgroup lattice L(G).
(contrasting w/ abelian or nilpotent properties, which cannot.)
His result was non-constructive, and did not give a method.

Roland Schmidt (1968) gave a pleasing lattice-theoretic
characterization:

Theorem: Finite group G is solvable
<= L(G) hasachainof 1=MyC My C---C M, =G of
modular elements w/ each interval [M;, M ;1] a modular lattice.

also proved G supersolvable <= {M;} is max| chain in L(G).

Our result has a considerably different character from Schmidt's. 1o/ 12
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Theorem (Shareshian-me): G is solvable <=
min length of maximal chain = maximal length of modular chain

History (continued):

Shareshian (2001) gave a poset-topology characterization.
| gave (2008) a proof using a Jordan-Hdlder-type construction.
(an EL-labeling. These may be mentioned in Foldes' talk.)

Much earlier, lwasawa (1941) showed:
Finite group G is supersolvable <= L(G) is graded.
Equivalently, iff every maxl chain has same length as chief series.

We regard our result as being an lwasawa-type characterization of
solvable groups.
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David Tower has some similar results for Lie subalgebra lattices.

Question for experts in this room: What other interesting
families of lattices have lots of modular elements? (but not too
many — not a maximal chain!)

Question (Stonehewer + coauthors): Is the subposet of
modular elements in L(G) graded?

(This is a quite hard question even in p-groups!)
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Example: L(Ss)

length chief series.

Thm 1: max length modular chain

Thm 2: G is solvable <—

min length of maximal chain = maximal length of modular chain

L(S4), the symmetric group on 4 elements:

3}
—
~
3}
—




