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Subgroup lattices

Joint work with John Shareshian.

Take G to be any group. (All groups are finite.)
Then L(G ) = {all subgroups of G} is a poset ordered by inclusion,

and in fact a lattice, with H ∧ K = H ∩ K and H ∨ K = 〈H,K 〉.
(the subgroup lattice of G .)

Simple examples

Many lattice theory definitions were motivated from group theory:

Distributive lattices ←− cyclic groups (one motivation)
Modular lattices ←− abelian groups L(G )

Modular elements ←− normal subgroups in L(G )

Supersolvable lattices ←− supersolvable groups L(G )
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Modular elements

Recall that a lattice L is modular if it has no pentagon sublattices.

Similarly, an element m ∈ L is modular if only sits in pentagonal
lattices in certain ways:

Not like this Not like this This is ok

x

y
m

m

w
x

OK

m

(There are equations; but life, and this talk, are too short.)

Any normal subgroup N is modular in L(G ), by Dedekind’s identity.
Essentially since NH = HN = 〈N,H〉 for any other subgroup H.

Not every modular subgroup is normal.
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A bigger example

Modular element: not on short side or bottom of long side of any
pentagon sublattice.

Example: The alternating group on 4 elements.

(1 3)(2 4)(1 2)(3 4)

〈(1 2 3)〉

A4

Z2
2

(1 4)(2 3)
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Chains of modular elements

Modular element: not on short side or bottom of long side of any
pentagon sublattice.

What is the relationship between (chains of) modular elements and
normal subgroups in L(G )?

Theorem (Schmidt, 1969): If G is simple (no proper normal
subgroups), then L(G ) has no proper modular subgroups.
Theorem (Schmidt, 1969): Classification of maximal modular
subgroups in L(G ). (They are normal subgps + factors “like” S3).

Question: Does any group admit a chain of modular elements
longer than its chief series (longest chain of normal subgroups)?

Answer (Shareshian and me 2012): No.

Proof idea: classify minimal modular subgroups, compare with
normal subgroups, quotient out, and induct.
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Relationship with group theory

Thm (Shareshian-me): Max len (mod chain) = len (chief series)

A chief series of a group is a maximal chain of normal subgroups
1 = N0 ⊂ N1 ⊂ · · · ⊂ Nr = G , each Ni / G .

The Jordan-Hölder Theorem says the set of chief factors
{Ni/Ni−1} are an invariant of the group.

A finite group is solvable if all chief factors Ni/Ni−1 are abelian.
(Equivalently, vector spaces.)

An even nicer class:

A finite group is supersolvable if all chief factors Ni/Ni−1 are cyclic
of prime order.

Ex: any abelian gp is supersolvable. Any p-gp is supersolvable.

Ex:

S3 is supersolvable, A4 is solvable but not supersolvable.
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A finite group is supersolvable if all chief factors Ni/Ni−1 are cyclic
of prime order.

Ex: any abelian gp is supersolvable. Any p-gp is supersolvable.

Ex:

S3 is supersolvable, A4 is solvable but not supersolvable.
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Example: A4 is solvable, but not supersolvable

Thm (Shareshian-me): Max len (mod chain) = len (chief series)
Supersolvable group: every chief factor is cyclic of prime order.
Solvable group: every chief factor is abelian (vector space).
Example: The alternating group on 4 elements is solvable, but not
supersolvable.

(1 3)(2 4)(1 2)(3 4)

〈(1 2 3)〉

A4

Z2
2

(1 4)(2 3)
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A trivial special case of the maximum length modular chain theorem

Thm (Shareshian-me): Max len (mod chain) = len (chief series)
Supersolvable group: every chief factor is cyclic of prime order.
Solvable group: every chief factor is abelian (vector space).

In supersolvable groups, our theorem is trivial:

every chief factor is cyclic of prime order
=⇒ the chief series is a max length chain of subgroups.

(In fact, every maximal chain has the same length.)
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An easy special case of the maximum length modular chain theorem

Thm (Shareshian-me): Max len (mod chain) = len (chief series)
Supersolvable group: every chief factor is cyclic of prime order.
Solvable group: every chief factor is abelian (vector space).

In solvable groups, our theorem admits a pleasant combinatorial
proof:

Lemma 1 (Birkhoff 1967?; Stanley 1972): If m is a chain of
modular elements in L, and c is any chain in L, then the sublattice
generated by m and c is distributive.

Since distributive lattices are graded, it follows that any modular
chain is at most as long as any maximal chain.

Lemma 2 (Kohler 1968): If G is solvable, then L(G ) has a
maximal chain of the same length of the chief series.
Our theorem (for solvable groups) follows.
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Kohler’s result has a converse

Lemma (Kohler): Min length maximal chain in solvable group
= length chief series

In fact, using O’Nan-Scott-type results (classifying maximal
subgroups of a finite group), we can prove:

Theorem (Shareshian and me, 2012): If G is a finite group,
then TFAE:

1. G is solvable
2. L(G ) has a maxl chain of the same length as the chief series.
3. L(G ) has a maxl chain of the same length as a modular chain.

Part (3) gives a purely lattice-theoretic characterization of solvable
groups.

How does this compare with other such characterizations?
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Lattice-theoretic characterizations of solvable groups

Theorem (Shareshian-me): G is solvable ⇐⇒
min length of maximal chain = maximal length of modular chain

History:

Suzuki (1951) observed that solvability of G can be recognized
from the subgroup lattice L(G ).

(contrasting w/ abelian or nilpotent properties, which cannot.)
His result was non-constructive, and did not give a method.

Roland Schmidt (1968) gave a pleasing lattice-theoretic
characterization:

Theorem: Finite group G is solvable
⇐⇒ L(G ) has a chain of 1 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = G of
modular elements w/ each interval [Mi ,Mi+1] a modular lattice.

also proved G supersolvable ⇐⇒ {Mi} is maxl chain in L(G ).

Our result has a considerably different character from Schmidt’s.
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Lattice-theoretic characterizations of (super-)solvable groups

Theorem (Shareshian-me): G is solvable ⇐⇒
min length of maximal chain = maximal length of modular chain

History (continued):

Shareshian (2001) gave a poset-topology characterization.
I gave (2008) a proof using a Jordan-Hölder-type construction.
(an EL-labeling. These may be mentioned in Foldes’ talk.)

Much earlier, Iwasawa (1941) showed:

Finite group G is supersolvable ⇐⇒ L(G ) is graded.

Equivalently, iff every maxl chain has same length as chief series.

We regard our result as being an Iwasawa-type characterization of
solvable groups.
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Questions and relations

Thm 1: max length modular chain = length chief series.
Thm 2: G is solvable ⇐⇒

min length of maximal chain = maximal length of modular chain

Question: What other classes of lattices admit distinctions similar
to Theorem 2? Is there a “good” definition of solvable lattice?

David Tower has some similar results for Lie subalgebra lattices.
Question for experts in this room: What other interesting
families of lattices have lots of modular elements? (but not too
many – not a maximal chain!)

Question (Stonehewer + coauthors): Is the subposet of
modular elements in L(G ) graded?

(This is a quite hard question even in p-groups!)
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Example: L(S4)

Thm 1: max length modular chain = length chief series.
Thm 2: G is solvable ⇐⇒

min length of maximal chain = maximal length of modular chain

L(S4), the symmetric group on 4 elements:

G   = N3

1   = N0

2 3 45 6 7 8 9 10

11 12 13 14

N1

16 17 18

19 20 21

22 23 24 25

26 27 28

N2
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