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Question: What makes an algorithm (for a yes/no problem) “good”?

It should be efficient (e.g., polynomial-time).

It should be correct, i.e., always give correct answers.

It should be informative:
I Provide a transparent “proof” of the correctness of the answer.

In this lecture I will

discuss the two main polynomial-time CSP algorithms,

argue that one fails to meet the above criteria,

offer a framework for a possible alternative.
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Motivating example

Fix a finite field F .

Decision Problem: 3-LIN(F )

Inputs:
a finite list X = {x1, . . . , xn} of variables
a finite list Σ = {ε1, . . . , εm} of linear equations in X over F

– each equation involving at most 3 variables

Question: Does Σ have a solution (in F )?
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Motivating example (continued)

Algorithm: Gaussian elimination

Given a set Σ of 3-variable linear equations in n variables over F :

Methodically deduce new linear equations (satisfied by any solution).

If the inconsistent equation 0 = 1 is deduced, then
I Σ is inconsistent, and
I the deductions producing 0 = 1 give a “short proof” of inconsistency.

Else,
I Σ is consistent, and
I “backtracking” produces an explicit solution of Σ, which is itself a

(very) “short proof” of consistency.

Running time: essentially O(|Σ|n2) arithmetic operations in F .

This is a good algorithm.
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Transition to CSP

Recall: an input to 3-LIN(F ) is a pair (X ,Σ) where

X = {x1, . . . , xn} is a finite list of variables.

Σ = {ε1, . . . , εm} is a finite list of 3-variable equations over F .

Define
F = (F , {x − y + z} ∪ {λx + (1− λ)y : λ ∈ F}),

the idempotent reduct of the vector space FF .

Observation: if S is the set of solutions to a 3-variable linear equation ε
over F , then S is a subuniverse of F3.

Hence: each equation axi + bxj + cxk = d can be expressed by the
statement “(xi , xj , xk) ∈ S” for some S ≤ F3.

The (fixed template) constraint satisfaction problem generalizes
3-LIN(F ) by permitting F to be replaced by any idempotent algebra,
equations by membership in named subpowers, and 3 by any fixed d ≥ 2.
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Constraint Satisfaction Problem (CSP) definition

Formally, fix:

A = (A,F) – a finite idempotent algebra
d ≥ 2

CSP(A, d) is the following decision problem:

Inputs:
a finite list X = {x1, . . . , xn} of variables [ranging over A]
a finite list Σ = {C1, . . . ,Cm} of constraints on the variables:

Each constraint is a pair C = (J,R) where

• J ⊆ X with 1 ≤ |J| ≤ d ;
• R ≤ AJ .

Question: Does Σ have a solution?

(I.e., a map α : X → A such that α�Jt ∈ Rt for all 1 ≤ t ≤ m)
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CSP Algebraic Dichotomy Conjecture

Conjecture (Bulatov, Jeavons, Krokhin)

Let A be a finite idempotent algebra and d ≥ 2.

If V (A) satisfies a nontrivial Maltsev condition, then CSP(A, d) is in P.

Of course, every CSP(A, d) is in NP:

Any solution (when Σ is satisfiable) is a “short proof” of satisfiability.

What is wanted (when V (A) satisfies a nontrivial Maltsev condition):

“Short proofs” witnessing unsatisfiability (when Σ is unsatisfiable);
they will put CSP(A, d) in co-NP.

Polynomial-time algorithm which decides CSP(A, d) AND provides a
solution or a short proof of unsatisfiability.
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The two main CSP algorithms

1 Local consistency (bounded width) algorithm

I Rather simple

I Works whenever V (A) is congruence SD(∧) [Barto & Kozik]

2 Few subpowers algorithm

I Rather more complicated

I Works whenever V (A) is congruence modular [Barto? + IMMVW]

I The case when A has a Maltsev operation is representative.
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Algorithm #1: Local consistency

Recall that constraints in an input to CSP(A, d) have the form (J,R):

J is a “small” subset of the set X of variables (|J| ≤ d).

R (≤ AJ) restricts the values a solution may take on J.

The local consistency algorithm can be viewed as built upon a formal
system for reasoning about such constraints.

Intuition:

For some fixed j < k , the system will permit deducing a ≤ j-ary constraint
from a collection of other ≤ j-ary constraints, as long as:

the deduction is correct (of course!), and

the number of variables altogether is at most k .
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Example: if (A, d) = (F, 3) and (j , k) = (3, 6), then the system permits
deductions of the following kind:

From x + y − u = 0 i.e., ({x , y , u}, graph(+))
y + z − v = 0 ({y , z , v}, graph(+))
u + z − w = 0 ({u, z ,w}, graph(+))

deduce x + v − w = 0 ({x , v ,w}, graph(+))

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 10 / 30



Formally, the rules are (for some fixed j < k):

1 Intersect

(J,R) (J, S)

∴ (J,R ∩ S)

2 FictVark – add fictitious variables, up to k in total

(J,R)

∴ (K , (prK→J)−1(R))

for any J ⊆ K ⊆ X , provided |K | ≤ k.

3 Projectj – projection to ≤ j variables

(K ,R)

∴ (J,prK→J(R))

for any J ⊆ K , provided |J| ≤ j .
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These rules give a formal notion of proof.

Definition

Given an input (X ,Σ) to CSP(A, d), a (j , k)-proof from (X ,Σ) is a finite
sequence (C1, . . . ,Cp) of constraints over X such that for all 1 ≤ i ≤ p,

1 Ci ∈ Σ, or

2 Ci is the result of applying Intersect to two constraints from
{C1, . . . ,Ci−1}, or

3 Ci is the result of applying FictVark or Projectj to a constraint from
{C1, . . . ,Ci−1}.

I say that (C1, . . . ,Cp) is a (j , k)-proof of Cp from (X ,Σ).

Note: every solution to Σ also satisfies all Ci in a (j , k)-proof from (X ,Σ).
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Notation

Let’s write (X ,Σ) `j ,k ∅ if there exists a (j , k)-proof from (X ,Σ) whose
last constraint is empty (i.e., has the form (J,∅)).

Remark: if (X ,Σ) `j ,k ∅, then:

Σ is unsatisfiable.

There exists a witnessing (j , k)-proof of length at most 2|A|
k · |X |k .

(This is a good “short proof” of unsatisfiability.)
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Definition

(A, d) has width (j,k) if, for every instance (X ,Σ) of CSP(A, d),

Σ unsatisfiable ⇔ (X ,Σ) `j ,k ∅.

In other words, (A, d) has width (j , k) if the formal system of (j , k)-proofs
provides short proofs for all unsatisfiable instances to CSP(A, d).

Definition

(A, d) has bounded width if it has width (j , k) for some j < k .
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Local consistency algorithm

Folklore: For each j < k there is an algorithm (the “(j , k)-consistency
algorithm”) which, given (A, d) having width (j , k) and given an input
(X ,Σ) to CSP(A, d),

decides whether (X ,Σ) has a solution.

If satisfiable, produces a solution.

If unsatisfiable, produces a (j , k)-proof witnessing (X ,Σ) `j ,k ∅.

Runs in polynomial time.

This is a good algorithm.
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The extent of the local consistency algorithm:

Theorem (Larose & Zádori (⇒); Barto & Kozik (⇐))

Let A be a finite idempotent algebra, d ≥ 2, and assume the clone of A is
determined by its d-ary invariant relations. Then

(A, d) has bounded width ⇔ V (A) is congruence SD(∧).

Unfortunately, if F is the idempotent algebra corresponding to 3-LIN(F ),
then (F, 3) does not have bounded width.

Conclusion: although Gaussian elimination is a form of “constraint”
reasoning, it does not fall within the framework of local consistency proofs.
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Algorithm #2: Few subpowers

Recall that each input to CSP(A, d) has the form (X ,Σ) where

Σ = {C1,C2, . . . ,Cm} with Ct = (Jt ,Rt).

For i ≤ m, define Bi to be the set of solutions to the first i constraints:

AX = B0 ≥ B1 ≥ B2 ≥ · · · ≥ Bm = {solutions to (X ,Σ)}.

The few subpowers algorithm (BD + IMMVW):

is not based on reasoning with equations/constraints.

instead, it successively computes small generating sets for each Bt .

I (X ,Σ) has a solution ⇔ the last generating set is nonempty.
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Special case: when A is Maltsev

(I.e., when V (A) is congruence permutable.)

Bulatov & Dalmau, A simple algorithm for Mal’tsev constraints, 2006.

Based on the notion of compact representations of subsets of powers.

Definition

Suppose A is a set and B ⊆ An.

Fork(B) = {(i , b, c) ∈ [n]× A× A : ∃u, v ∈ B with uj = vj for all

1 ≤ j < i , and (ui , vi ) = (b, c)}.

A subset T ⊆ B is called a compact representation of B if
Fork(T ) = Fork(B) and T is minimal with respect to this property.

Exercise: if T is a compact rep. for B ⊆ An, then |T | ≤ n|A|2.
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Key Fact (Bulatov, Dalmau)

If A has a Maltsev term, B ≤ An, and T is a compact representation of B,
then T generates B.

Proof idea.

Suppose pr1,...,i−1(〈T 〉B) = pr1,...,i−1(B).
We will show pr1,...,i (〈T 〉B) = pr1,...,i (B).
Pick a = (a1, . . . , ai−1, ai , . . .) ∈ B.
So ∃a′ = (a1, . . . , ai−1, b, . . .) ∈ 〈T 〉B. (Thus also a′ ∈ B.)
Thus (i , ai , b) ∈ Fork(B)= Fork(T ).
Pick u, v ∈ T witnessing this.
We have

u = (u1, . . . , ui−1, ai , . . .) ∈ T

v = (u1, . . . , ui−1, b, . . .) ∈ T

a′ = (a1, . . . , ai−1, b, . . .) ∈ 〈T 〉B.

Applying the Maltsev term, we get (a1, . . . , ai−1, ai , . . .) ∈ 〈T 〉B.
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The BD Algorithm: Let (X ,Σ) with Σ = (C1, . . . ,Cm) be an input to
CSP(A, d) with A Maltsev. Linearly order X = {x1, . . . , xn}, identify AX

with An, and recall the descending chain of subpowers given by C1, . . . ,Cm:

An =

≥

B0 ≥ B1 ≥ B2 ≥ · · · ≥ Bm = {solutions to (X ,Σ)}.

∩ B0.

(†)

Recall: we want to compute compact representations for B1,B2, . . . ,Bm.

[Relaxation: B0 ≤ An; require a compact representation for B0 as input.]

Special Case: Show that comp. rep’s can be found in the case m < n and
∃ a1, . . . , am ∈ A such that Ct = “xt = at”, i.e., (xt , {at}), ∀ 1 ≤ t ≤ m.

Now in general, we want to compute a compact representation for Bt ,
given a compact representation for Bt−1 and the constraint Ct .

Key task: For each (i , a, b) ∈ [n]× A× A, we need to decide whether
(i , a, b) ∈ Fork(Bt) and, if “yes,” we must find a witnessing pair u, v ∈ Bt .

Finding a candidate u is not too hard. To find v, construct a new chain (†)
of subpowers in the special case, starting from Bt−1, using u1, . . . , un−1.
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The few subpowers algorithm and its extent

A necessary feature of the BD algorithm is that ∃ polynomial p(x)
such that every B ≤ An has a generating set of size at most p(n).

BIMMVW characterize such A; they are said to have few subpowers
and are characterized by having a cube term (or edge term).

An analogous notion of compact representation is given for such A.

The Bulatov-Dalmau algorithm generalizes to algebras having a cube
term (IMMVW); called the few subpowers algorithm.

With Barto’s recently announced result, we know that (assuming A is
determined by its d-ary relations),

A has a cube term ⇔ V (A) is congruence modular.
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Confession

I have a love/hate relationship with the few subpowers algorithm.

Why I love it:

It works (when A has a cube term).

It runs in polynomial time.

It gave me two publications (W = Willard).

Why I hate it:

It cannot be executed in the absence of a cube term.

It does not exploit structure theory of congruence modular varieties.

It does not give “nice” short proofs of unsatisfiability.
I (Local consistency is so much better!)

Problem: Are we stuck with it? Can we find a better algorithm?
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An idea for a new type of “short proof” of unsatisfiability

Motivating example: again 3-LIN(F )

The sad fact: Unsatisfiable instances of 3-LIN(F ) cannot be proved to be
unsatisfiable by local consistency.

The happy fact: Unsatisfiable instances of 3-LIN(F ) can be proved to be
unsatisfiable by local consistency. . .

provided one is permitted the
introduction of new variables.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 23 / 30



An idea for a new type of “short proof” of unsatisfiability

Motivating example: again 3-LIN(F )

The sad fact: Unsatisfiable instances of 3-LIN(F ) cannot be proved to be
unsatisfiable by local consistency.

The happy fact: Unsatisfiable instances of 3-LIN(F ) can be proved to be
unsatisfiable by local consistency. . . provided one is permitted the
introduction of new variables.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 23 / 30



Suppose an instance (X ,Σ) of 3-LIN(F ) is given.

Suppose some new variables u1, . . . , uL are “introduced” (i.e., defined) by
≤ 3-variable equations, say

u1 := ax5 + 1

u2 := bx3 + cx6

u3 := ru1 + su2 + 3
...

Let U be the set of new variables and let Γ be the set of defining equations.

Clearly (X ,Σ) is satisfiable if and only if (X ∪ U, Σ ∪ Γ) is satisfiable.
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Theorem

Suppose (X ,Σ) is an instance of 3-LIN(F ), with |X | = n and |Σ| = m. If
Σ is unsatisfiable, then there exists

L ≤ mn(m + n),

a set U = {ut : 1 ≤ t ≤ L} of L new variables,

a set Γ = {γt : 1 ≤ t ≤ L} of L linear equations where each γt
defines ut as a function of ≤ 2 variables from X ∪ {u1, . . . , ut−1},

such that (X ∪ U, Σ ∪ Γ) `3,6 ∅.

Proof hint: Simulate Gaussian elimination.

Linearly order X = {x1, x2 . . . , xn}; run GE. For each “complete” equation
a1x1 + · · ·+ anxn = b occurring in the GE computation, introduce n new
variables representing the partial sums of the left-hand side:

u1 := a1x1, u2 := u1 + a2x2, . . . , un = un−1 + anxn. (Gives U, Γ.)

Show that for each such equation, (X ∪ U, Σ ∪ Γ) `3,6 “un = b.”
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Formalize and Generalize:

Fix j < k and A. Also fix `0, `1 satisfying `0 ≤ j and `0 + `1 ≤ k .

To the rules Intersect, Projectj and FictVark for (j , k)-proofs, add:

4 VarIntro`0,`1

(L0,R)

∴ (L0 ∪ L1,S)

provided

I The variables in L1 are new. (This rule introduces them.)

I R ⊆ prL0∪L1→L0
(S).

I |Li | ≤ `i for i = 0, 1.

I S ≤ AL0∪L1 .

X

variables previously
introduced

L1
L0
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Using these four rules, we get a notion of “(j , k; `0, `1; A)-proof.”

Notation

If (X ,Σ) is an instance of CSP(A, d), let’s write

(A,X ,Σ) 
N
j ,k;`0,`1 ∅

if there exists a (j , k; `0, `1; A)-proof from (X ,Σ) whose last constraint is
empty, and which introduces at most N new variables.

Definition

(A, d) has VI-width (j , k ; `0, `1) if ∃ polynomial p(x) such that for every
instance (X ,Σ) of CSP(A, d) with |X | = n,

(X ,Σ) is unsatisfiable ⇔ (A,X ,Σ) 
p(n)
j ,k;`0,`1

∅.
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Definition

(A, d) has bounded VI-width if it has VI-width (j , k , `0, `1) for some
j , k , `0, `1.

Fact: if (A, d) has bounded VI-width, then

CSP(A, d) is in NP ∩ co-NP.

Unsatisfiable instances of CSP(A, d) have nice “short proofs” of
unsatisfiability.

Definition

(A, d) has strongly bounded VI-width if for some j , k , `0, `1:

(A, d) has VI-width (j , k ; `0, `1), and

there exists a polynomial-time algorithm solving CSP(A, d) and
which, for unsatisfiable instances, returns a (j , k ; `0, `1,A)-proof of an
empty constraint. (Such an algorithm is good.)

Thus: if (A, d) has strongly bounded VI-width then CSP(A, d) is in P.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 28 / 30



Definition

(A, d) has bounded VI-width if it has VI-width (j , k , `0, `1) for some
j , k , `0, `1.

Fact: if (A, d) has bounded VI-width, then

CSP(A, d) is in NP ∩ co-NP.

Unsatisfiable instances of CSP(A, d) have nice “short proofs” of
unsatisfiability.

Definition

(A, d) has strongly bounded VI-width if for some j , k , `0, `1:

(A, d) has VI-width (j , k ; `0, `1), and

there exists a polynomial-time algorithm solving CSP(A, d) and
which, for unsatisfiable instances, returns a (j , k ; `0, `1,A)-proof of an
empty constraint. (Such an algorithm is good.)

Thus: if (A, d) has strongly bounded VI-width then CSP(A, d) is in P.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 28 / 30



Main Question:

1 Which (A, d) have bounded VI-width? Strongly bounded VI-width?

What I know:

If V (A) is congruence SD(∧), then (A, d) has strongly bounded
VI-width for all d ≥ 2 (by Barto, Kozik).

(Generalizing GE): If A is a finite affine space, then (A, d) has
strongly bounded VI-width for all d ≥ 2.

If A = (S3, xy−1z) then (A, 3) has strongly bounded VI-width.

More Questions:

2 Is it true that if G is a finite group and A = (G , xy−1z), then (A, d)
has strongly bounded VI-width for all d ≥ 2?

3 Same question for any finite idempotent Maltsev algebra A.
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Speculations

4 Is there a polynomial-time “strong bounded VI-width” algorithm for
CSP(A, d), when A is Maltsev, which is “essentially” local
consistency + Gaussian elimination?

5 If A is the naked 2-element set, then CSP(A, 3) ≡ 3-SAT. It can be
shown that every unsatisfiable instance of CSP(A, 3) can
(3, 6, 2, 1,A)-prove an empty constraint.

(Hint: simulate resolution.)

Is it true that for every finite idempotent A there exist j , k, `0, `1 such
that every unsatisfiable instance of CSP(A, 3) has a
(j , k; `0, `1; A)-proof of unsatisfiability? (Conjecture: NO)

Thank you!
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