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Question: What makes an algorithm (for a yes/no problem) “good”?

@ It should be efficient (e.g., polynomial-time).
@ It should be correct, i.e., always give correct answers.

@ |t should be informative:
» Provide a transparent “proof” of the correctness of the answer.

In this lecture | will
@ discuss the two main polynomial-time CSP algorithms,
@ argue that one fails to meet the above criteria,

o offer a framework for a possible alternative.
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Motivating example

Fix a finite field F.

Decision Problem: 3-LIN(F)

Inputs:
a finite list X = {x1,..., x,} of variables
a finite list ¥ = {e1,...,em} of linear equations in X over F

— each equation involving at most 3 variables

Question: Does ¥ have a solution (in F)?
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Motivating example (continued)

Algorithm: Gaussian elimination

Given a set X of 3-variable linear equations in n variables over F:
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Motivating example (continued)

Algorithm: Gaussian elimination

Given a set X of 3-variable linear equations in n variables over F:

@ Methodically deduce new linear equations (satisfied by any solution).

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 4 /30



Motivating example (continued)

Algorithm: Gaussian elimination
Given a set X of 3-variable linear equations in n variables over F:
@ Methodically deduce new linear equations (satisfied by any solution).

@ If the inconsistent equation 0 = 1 is deduced, then

» Y is inconsistent, and
» the deductions producing 0 = 1 give a “short proof” of inconsistency.
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Motivating example (continued)

Algorithm: Gaussian elimination

Given a set X of 3-variable linear equations in n variables over F:

@ Methodically deduce new linear equations (satisfied by any solution).
@ If the inconsistent equation 0 = 1 is deduced, then

» Y is inconsistent, and
» the deductions producing 0 = 1 give a “short proof” of inconsistency.

o Else,

» Y is consistent, and
» “backtracking” produces an explicit solution of X, which is itself a
(very) “short proof” of consistency.
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Motivating example (continued)

Algorithm: Gaussian elimination

Given a set X of 3-variable linear equations in n variables over F:

@ Methodically deduce new linear equations (satisfied by any solution).
@ If the inconsistent equation 0 = 1 is deduced, then

» Y is inconsistent, and
» the deductions producing 0 = 1 give a “short proof” of inconsistency.

o Else,

» Y is consistent, and
» “backtracking” produces an explicit solution of X, which is itself a
(very) “short proof” of consistency.

o Running time: essentially O(|X|n?) arithmetic operations in F.

This is a good algorithm.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 4 /30



Transition to CSP
Recall: an input to 3-LIN(F) is a pair (X, X) where

@ X ={x1,...,xn} is a finite list of variables.
o ¥ ={e1,...,em} is a finite list of 3-variable equations over F.
Define

F=(F {x—y+z}U{M+(1-A)y: XeF}),

the idempotent reduct of the vector space F.
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Transition to CSP
Recall: an input to 3-LIN(F) is a pair (X, X) where

@ X ={x1,...,xn} is a finite list of variables.
o ¥ ={e1,...,em} is a finite list of 3-variable equations over F.
Define

F=(F, {x—y+z}U{M+ (1 —=Ay : A€ F}),
the idempotent reduct of the vector space F.

Observation: if S is the set of solutions to a 3-variable linear equation ¢
over F, then S is a subuniverse of F3.

Hence: each equation ax; + bx; + cx, = d can be expressed by the
statement “(x;, x;, xx) € S” for some S < F3.
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Transition to CSP
Recall: an input to 3-LIN(F) is a pair (X, X) where

@ X ={x1,...,xn} is a finite list of variables.
o ¥ ={e1,...,em} is a finite list of 3-variable equations over F.
Define

F=(F, {x—y+z}U{M+ (1 —=Ay : A€ F}),
the idempotent reduct of the vector space F.

Observation: if S is the set of solutions to a 3-variable linear equation ¢
over F, then S is a subuniverse of F3.

Hence: each equation ax; + bx; + cx, = d can be expressed by the
statement “(x;, x;, xx) € S” for some S < F3.

The (fixed template) constraint satisfaction problem generalizes
3-LIN(F) by permitting F to be replaced by any idempotent algebra,
equations by membership in named subpowers, and 3 by any fixed d > 2.
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Constraint Satisfaction Problem (CSP) definition

Formally, fix:

A = (A, F) - afinite idempotent algebra
d>2

CSP(A, d) is the following decision problem:

Inputs:
a finite list X = {x1,..., xn} of variables [ranging over A]
a finite list ¥ = {Cy,..., Cy} of constraints on the variables:

Each constraint is a pair C = (J, R) where

e JC X withl<|J|<d,;
e R< A

Question: Does X have a solution?
(lLe., amap a: X — Asuch that o, € R; forall 1 <t < m)
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CSP Algebraic Dichotomy Conjecture

Conjecture (Bulatov, Jeavons, Krokhin)
Let A be a finite idempotent algebra and d > 2.
If V(A) satisfies a nontrivial Maltsev condition, then CSP(A, d) is in P.

Of course, every CSP(A, d) is in NP:

Any solution (when X is satisfiable) is a “short proof” of satisfiability.

What is wanted (when V/(A) satisfies a nontrivial Maltsev condition):
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CSP Algebraic Dichotomy Conjecture

Conjecture (Bulatov, Jeavons, Krokhin)
Let A be a finite idempotent algebra and d > 2.
If V(A) satisfies a nontrivial Maltsev condition, then CSP(A, d) is in P.

Of course, every CSP(A, d) is in NP:

Any solution (when X is satisfiable) is a “short proof” of satisfiability.

What is wanted (when V/(A) satisfies a nontrivial Maltsev condition):

@ “Short proofs” witnessing unsatisfiability (when X is unsatisfiable);
they will put CSP(A, d) in co-NP.

@ Polynomial-time algorithm which decides CSP(A, d) AND provides a
solution or a short proof of unsatisfiability.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 7 /30



The two main CSP algorithms

@ Local consistency (bounded width) algorithm

» Rather simple
» Works whenever V(A) is congruence SD(A) [Barto & Kozik]

@ Few subpowers algorithm

» Rather more complicated
» Works whenever V(A) is congruence modular [Barto? + IMMVW]

» The case when A has a Maltsev operation is representative.
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Algorithm #1: Local consistency

Recall that constraints in an input to CSP(A, d) have the form (J, R):
e Jis a “small” subset of the set X of variables (|J| < d).

@ R (< A7) restricts the values a solution may take on J.

The local consistency algorithm can be viewed as built upon a formal
system for reasoning about such constraints.
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Algorithm #1: Local consistency

Recall that constraints in an input to CSP(A, d) have the form (J, R):
e Jis a “small” subset of the set X of variables (|J| < d).

@ R (< A7) restricts the values a solution may take on J.

The local consistency algorithm can be viewed as built upon a formal
system for reasoning about such constraints.

Intuition:

For some fixed j < k, the system will permit deducing a < j-ary constraint
from a collection of other < j-ary constraints, as long as:
@ the deduction is correct (of course!), and

@ the number of variables altogether is at most k.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 9 /30



Example: if (A, d) = (F,3) and (j, k) = (3,6), then the system permits

deductions of the following kind:

From x+y—u = 0 ie, ({x,y,u}, graph(+))
y+z—v = 0 ({y,z, V}ugraph(_'_))
u+t+z—w = 0 ({U,Z, W}?graph(+))

deduce x+v—-—w = 0 ({x, v, w},graph(+))
Ross Willard (Waterloo) Proving inconsistency Szeged 2012
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Formally, the rules are (for some fixed j < k):

Q@ Intersect
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Formally, the rules are (for some fixed j < k):

Q@ Intersect
(4,R)  (4.9)
(J,RNS)

@ FictVar, — add fictitious variables, up to k in total
(4, R)
(K, (prk—,) ' (R))
for any J C K C X, provided |K| < k.
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Formally, the rules are (for some fixed j < k):

Q@ Intersect
(4,R)  (4.9)
(J,RNS)

@ FictVar, — add fictitious variables, up to k in total
(4, R)
(K, (prk—,) ' (R))
for any J C K C X, provided |K| < k.

© Project; — projection to < j variables

(K,R)
(Jspric4(R))
for any J C K, provided |J| < j.
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These rules give a formal notion of proof.

Definition

Given an input (X, X) to CSP(A,d), a (j, k)-proof from (X, X) is a finite

sequence (G, ..., Cp) of constraints over X such that for all 1 < < p,
Q@ Ceyx, or

@ (; is the result of applying Intersect to two constraints from
{Cl, ey C,'_l}, or

© G is the result of applying FictVary or Project; to a constraint from
{G,..., G}

| say that (Cy, ..., Cp) is a (J, k)-proof of C, from (X, X).

Note: every solution to X also satisfies all C; in a (j, k)-proof from (X, X).
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Notation
Let's write (X, X) Fj «x @ if there exists a (j, k)-proof from (X, X) whose
last constraint is empty (i.e., has the form (J, @)).

Remark: if (X,X) Fj« @, then:

@ Y is unsatisfiable.

@ There exists a witnessing (j, k)-proof of length at most 2lAlI«. |X |k
(This is a good “short proof’ of unsatisfiability.)
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Definition
(A, d) has width (j,k) if, for every instance (X, X) of CSP(A, d),
Y unsatisfiable & (X,X) Fj« @.

In other words, (A, d) has width (j, k) if the formal system of (j, k)-proofs
provides short proofs for all unsatisfiable instances to CSP(A, d).
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Definition
(A, d) has width (j,k) if, for every instance (X, X) of CSP(A, d),
Y unsatisfiable & (X,X) Fj« @.

In other words, (A, d) has width (j, k) if the formal system of (j, k)-proofs
provides short proofs for all unsatisfiable instances to CSP(A, d).

Definition
(A, d) has bounded width if it has width (j, k) for some j < k. J
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Local consistency algorithm

Folklore: For each j < k there is an algorithm (the “(j, k)-consistency
algorithm™) which, given (A, d) having width (j, k) and given an input
(X,X) to CSP(A, d),
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(X,X) to CSP(A, d),

@ decides whether (X, X) has a solution.

@ If satisfiable, produces a solution.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012

15 / 30



Local consistency algorithm

Folklore: For each j < k there is an algorithm (the “(j, k)-consistency
algorithm™) which, given (A, d) having width (j, k) and given an input
(X,X) to CSP(A, d),

@ decides whether (X, X) has a solution.
o If satisfiable, produces a solution.

o If unsatisfiable, produces a (j, k)-proof witnessing (X, %) I x @.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 15 / 30



Local consistency algorithm

Folklore: For each j < k there is an algorithm (the “(j, k)-consistency
algorithm™) which, given (A, d) having width (j, k) and given an input
(X,X) to CSP(A, d),

@ decides whether (X, X) has a solution.
o If satisfiable, produces a solution.

o If unsatisfiable, produces a (j, k)-proof witnessing (X, %) I x @.

@ Runs in polynomial time.

This is a good algorithm.
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The extent of the local consistency algorithm:

Theorem (Larose & Zadori (=); Barto & Kozik (<))

Let A be a finite idempotent algebra, d > 2, and assume the clone of A is
determined by its d-ary invariant relations. Then

(A, d) has bounded width < V/(A) is congruence SD(A).

Unfortunately, if F is the idempotent algebra corresponding to 3-LIN(F),
then (F, 3) does not have bounded width.

Conclusion: although Gaussian elimination is a form of “constraint”
reasoning, it does not fall within the framework of local consistency proofs.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 16 / 30



Algorithm #2: Few subpowers

Recall that each input to CSP(A, d) has the form (X, X) where

p— {C]_, C2, ey Cm} with Cf = (Jf7 Rt)
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Algorithm #2: Few subpowers

Recall that each input to CSP(A, d) has the form (X, X) where

p— {C]_, C2, ey Cm} with Cf = (Jf7 Rt)

For i < m, define B; to be the set of solutions to the first / constraints:

AX =By >B; > B, >--- > B, = {solutions to (X,X)}.
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Algorithm #2: Few subpowers

Recall that each input to CSP(A, d) has the form (X, X) where

> = {C]_, C2, ey Cm} with Ct = (Jt7 Rt)

For i < m, define B; to be the set of solutions to the first / constraints:

AX =By >B; > B, >--- > B, = {solutions to (X,X)}.

The few subpowers algorithm (BD + IMMVW):

@ is not based on reasoning with equations/constraints.
@ instead, it successively computes small generating sets for each B;.

» (X, X) has a solution < the last generating set is nonempty.
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Special case: when A is Maltsev

(l.e., when V/(A) is congruence permutable.)

‘ Bulatov & Dalmau, A simple algorithm for Mal'tsev constraints, 2006.

Based on the notion of compact representations of subsets of powers.
Definition
Suppose A is a set and B C A".
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Special case: when A is Maltsev

(l.e., when V(A) is congruence permutable.)

‘ Bulatov & Dalmau, A simple algorithm for Mal'tsev constraints, 2006.

Based on the notion of compact representations of subsets of powers.
Definition
Suppose A is a set and B C A".

Fork(B) = {(i,b,c) € [n] x Ax A : Ju,v € B with u; = v; for all
1<j<i and (uj,v;) = (b,c)}.

A subset T C B is called a compact representation of B if
Fork(T) = Fork(B) and T is minimal with respect to this property.

Exercise: if T is a compact rep. for B C A", then |T| < n|AJ°.
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Key Fact (Bulatov, Dalmau)

If A has a Maltsev term, B < A", and T is a compact representation of B,
then T generates B.

Proof idea.

4
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Key Fact (Bulatov, Dalmau)

If A has a Maltsev term, B < A", and T is a compact representation of B,
then T generates B.

v

Proof idea.

Suppose pry_;_1((T)B) =pry,__;—1(B).

We will show pry  ;((T)s) = pry,__i(B).

Pick a = (a1,...,4i-1,3;,...) € B.

So 3a’ = (a1,...,ai—1,b,...) € (T)g. (Thus also @’ € B.)
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Key Fact (Bulatov, Dalmau)

If A has a Maltsev term, B < A", and T is a compact representation of B,
then T generates B.

v

Proof idea.

Suppose prl,...,i—1(<T>B) = pf1,...,i—1(B)-

We will show pry  ;((T)s) = pry,__i(B).

Pick a = (a1,...,4i-1,3;,...) € B.

So 3a’ = (a1,...,ai—1,b,...) € (T)g. (Thus also @’ € B.)
Thus (i, a;, b) € Fork(B)

v
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Key Fact (Bulatov, Dalmau)

If A has a Maltsev term, B < A", and T is a compact representation of B,
then T generates B.

v

Proof idea.

Suppose pry ;i 1({T)8) =pry__;i-1(B).

We will show pry _;({T)8) = pry__i(B).

Pick a = (a1,...,4i-1,3;,...) € B.

So 3a’ = (a1,...,ai—1,b,...) € (T)g. (Thus also @’ € B.)
Thus (i, aj, b) € Fork(B)= Fork(T).

Pick u,v € T witnessing this.
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Key Fact (Bulatov, Dalmau)

If A has a Maltsev term, B < A", and T is a compact representation of B,
then T generates B.

v

Proof idea.

Suppose Pfl,...,i—1(<T>B) = prl,...,i—l(B)-

We will show pry _;({T)8) = pry__i(B).

Pick a = (a1,...,4i-1,3;,...) € B.

So 3a’ = (a1,...,ai—1,b,...) € (T)g. (Thus also @’ € B.)
Thus (i, aj, b) € Fork(B)= Fork(T).

Pick u,v € T witnessing this.

We have

u = (ul,...,u,-_l,a,-,...) eT
v = (ul,...,u,-_l,b,...) eT
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Key Fact (Bulatov, Dalmau)

If A has a Maltsev term, B < A", and T is a compact representation of B,
then T generates B.

v

Proof idea.

Suppose prl,...,i—1(<T>B) = Pr1,...,i—1(B)-

We will show pry _;({T)8) = pry__i(B).

Pick a = (a1,...,4i-1,3;,...) € B.

So 3a’ = (a1,...,ai—1,b,...) € (T)g. (Thus also @’ € B.)
Thus (i, aj, b) € Fork(B)= Fork(T).

Pick u,v € T witnessing this.

We have

u — (ul,...,u,-_l,a,-,...) eT
v = (ul,...,u,-_l,b,...) eT
a = (31,...,3,'_1,13,...) € <T>B.
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Key Fact (Bulatov, Dalmau)

If A has a Maltsev term, B < A", and T is a compact representation of B,

then T generates B.

v

Proof idea.

Suppose prl,...,i—1(<T>B) = Pf1,...,i—1(B)-

We will show pry _;({T)8) = pry__i(B).

Pick a = (a1,...,4i-1,3;,...) € B.

So 3a’ = (a1,...,ai—1,b,...) € (T)g. (Thus also @’ € B.)
Thus (i, a;, b) € Fork(B)= Fork(T).

Pick u,v € T witnessing this.

We have

u — (ul,...,u,-_l,a;,...) eT
v = (ul,...,u,-_l,b,...) eT
a = (31,...,3,'_1,b,...) € <T>B.

Applying the Maltsev term, we get (a1,...,aj-1,4a;,...) € (T)B.
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The BD Algorithm: Let (X,X) with X = (C,..., Cy) be an input to
CSP(A, d) with A Maltsev. Linearly order X = {1, ..., x,}, identify AX
with A", and recall the descending chain of subpowers given by Cy,..., Cy:

A" =By >B; > B, >--- > B,, = {solutions to (X, X)}. (1)
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The BD Algorithm: Let (X,X) with X = (C,..., Cy) be an input to
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Ross Willard (Waterloo) Proving inconsistency Szeged 2012 20 / 30



The BD Algorithm: Let (X,X) with X = (C,..., Cy) be an input to
CSP(A, d) with A Maltsev. Linearly order X = {xi,...,x,}, identify AX

with A", and recall the descending chain of subpowers given by Cy,..., Cy:
A" =By >B; > B, >--- > B,, = {solutions to (X, X)}. (1)
Recall: we want to compute compact representations for By, B, ..., Bny.

[Relaxation: By < A"; require a compact representation for By as input.]

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 20 / 30



The BD Algorithm: Let (X,X) with X = (C,..., Cy) be an input to
CSP(A, d) with A Maltsev. Linearly order X = {xi,...,x,}, identify AX
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with A", and recall the descending chain of subpowers given by Cy,..., Cy:

A" >By>B; >B, > > B, = {solutions to (X, X)} N By. (1)

Recall: we want to compute compact representations for By, B, ..., Bny.
[Relaxation: By < A"; require a compact representation for By as input.]

Special Case: Show that comp. rep’s can be found in the case m < n and
Ja1,...,am € Asuch that C; = “x; = a;”", i.e., (xt,{a:}), V1<t<m.
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given a compact representation for B;_1 and the constraint C;.
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A" >By>B; >B, > > B, = {solutions to (X, X)} N By. (1)
Recall: we want to compute compact representations for By, B, ..., Bny.

[Relaxation: By < A"; require a compact representation for By as input.]

Special Case: Show that comp. rep’s can be found in the case m < n and
Ja1,...,am € Asuch that C; = “x; = a;”", i.e., (xt,{a:}), V1<t<m.

Now in general, we want to compute a compact representation for B;,
given a compact representation for B;_1 and the constraint C;.

Key task: For each (i,a,b) € [n] x A x A, we need to decide whether
(i,a, b) € Fork(Bt) and, if “yes,” we must find a witnessing pair u,v € B;.

Finding a candidate u is not too hard. To find v, construct a new chain ()
of subpowers in the special case, starting from B;_1, using u1,...,Up_1.
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The few subpowers algorithm and its extent

@ A necessary feature of the BD algorithm is that 3 polynomial p(x)
such that every B < A" has a generating set of size at most p(n).
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The few subpowers algorithm and its extent

A necessary feature of the BD algorithm is that 3 polynomial p(x)
such that every B < A" has a generating set of size at most p(n).

o BIMMVW characterize such A; they are said to have few subpowers
and are characterized by having a cube term (or edge term).

@ An analogous notion of compact representation is given for such A.

@ The Bulatov-Dalmau algorithm generalizes to algebras having a cube
term (IMMVW); called the few subpowers algorithm.

e With Barto's recently announced result, we know that (assuming A is
determined by its d-ary relations),

A has a cube term < V/(A) is congruence modular.

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 21 /30



Confession

| have a love/hate relationship with the few subpowers algorithm.
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Confession
| have a love/hate relationship with the few subpowers algorithm.

Why | love it:
@ It works (when A has a cube term).
@ It runs in polynomial time.

@ It gave me two publications (W = Willard).
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Confession J

| have a love/hate relationship with the few subpowers algorithm.

Why | love it:
@ It works (when A has a cube term).
@ It runs in polynomial time.

@ It gave me two publications (W = Willard).

Why | hate it:
@ It cannot be executed in the absence of a cube term.

@ It does not exploit structure theory of congruence modular varieties.
@ It does not give “nice” short proofs of unsatisfiability.
» (Local consistency is so much better!)

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 22 /30



Confession J

| have a love/hate relationship with the few subpowers algorithm.

Why | love it:
@ It works (when A has a cube term).
@ It runs in polynomial time.

@ It gave me two publications (W = Willard).

Why | hate it:
@ It cannot be executed in the absence of a cube term.

@ It does not exploit structure theory of congruence modular varieties.
@ It does not give “nice” short proofs of unsatisfiability.
» (Local consistency is so much better!)

Problem: Are we stuck with it? Can we find a better algorithm?
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An idea for a new type of “short proof” of unsatisfiability

Motivating example: again 3-LIN(F)

The sad fact: Unsatisfiable instances of 3-LIN(F) cannot be proved to be
unsatisfiable by local consistency.

The happy fact: Unsatisfiable instances of 3-LIN(F) can be proved to be
unsatisfiable by local consistency. ..
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An idea for a new type of “short proof” of unsatisfiability

Motivating example: again 3-LIN(F)

The sad fact: Unsatisfiable instances of 3-LIN(F) cannot be proved to be
unsatisfiable by local consistency.

The happy fact: Unsatisfiable instances of 3-LIN(F) can be proved to be
unsatisfiable by local consistency. . . provided one is permitted the
introduction of new variables.
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Suppose an instance (X, X) of 3-LIN(F) is given.

Suppose some new variables vy, ..., u; are “introduced” (i.e., defined) by
< 3-variable equations, say

m = axs+1
u = bxz+ cxg
uz = rup+su+3
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Suppose an instance (X, X) of 3-LIN(F) is given.

Suppose some new variables vy, ..., u; are “introduced” (i.e., defined) by
< 3-variable equations, say

m = axs+1
u = bxz+ cxg
uz = rup+su+3

Let U be the set of new variables and let I be the set of defining equations.

Clearly (X, X) is satisfiable if and only if (X U U, X UT) is satisfiable.
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Theorem
Suppose (X, X) is an instance of 3-LIN(F), with |X| = n and |X| = m. If
> is unsatisfiable, then there exists

o L < mn(m+ n),

@ aset U= {u; : 1<t <L} of L new variables,

@ asetl ={v : 1 <t <L} of L linear equations where each ~;
defines u; as a function of < 2 variables from X U {u1,...,us—1},

such that (XU U, X UT) k36 @.
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Theorem
Suppose (X, X) is an instance of 3-LIN(F), with |X| = n and |X| = m. If
> is unsatisfiable, then there exists

o L < mn(m+ n),

@ aset U={u; : 1 <t <L} of L new variables,

@ asetl ={v : 1 <t <L} of L linear equations where each ~;

defines u; as a function of < 2 variables from X U {u1,...,us—1},

such that (XU U, X UT) k36 @.

Proof hint: Simulate Gaussian elimination.

Linearly order X = {x1,%2...,xn}; run GE. For each “complete” equation
aixi + - -+ + apx, = b occurring in the GE computation, introduce n new
variables representing the partial sums of the left-hand side:

up = aixy, Ux:=up+axxe, ..., Up=Up_1+ anxn. (Gives U,T.)

Show that for each such equation, (XU U, X UT) F36 “u, = b." O

v
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Formalize and Generalize:

Fix j < k and A. Also fix fp, {1 satisfying £y < j and {o + {1 < k.
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Formalize and Generalize:

Fix j < k and A. Also fix £y, {1 satisfying ¢p < j and {o + {1 < k.

To the rules Intersect, Project; and FictVar, for (j, k)-proofs, add:

© Varlntroy, ¢,
(L07 R)

(LO ) L]_,S)

provided

vanNables previously Tl N
introduced =
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Formalize and Generalize:

Fix j < k and A. Also fix £y, ¢1 satisfying ¢y < j and ¢g + ¢1 < k.

To the rules Intersect, Project; and FictVar, for (j, k)-proofs, add:
© Varlntroy, ¢,

(L07 R)
(Lo @] L1, 5)

provided
» The variables in L; are new. (This rule introduces them.)

> RCpryur,-1,(5)
> |L,| < E’- for i = 071

vaNables previously Tl N
introduced =
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Formalize and Generalize:
Fix j < k and A. Also fix £y, {1 satisfying ¢p < j and {o + {1 < k.
To the rules Intersect, Project; and FictVar, for (j, k)-proofs, add:

© Varlntroy, ¢,

(L07 R)
(Lo @] L1, 5)

provided

» The variables in L; are new. (This rule introduces them.)
> R g prLoUL1—>L0(S)'
> |L,|§£, fOI’I':O71.
» S < ALOULl'

vaNables previously Tl N
introduced =
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Using these four rules, we get a notion of “(j, k; {g, ¢1; A)-proof.”

Notation
If (X,X) is an instance of CSP(A, d), let's write

(A, X,Y) |r}‘,’k;zoygl 7}

if there exists a (Jj, k; o, ¢1; A)-proof from (X, X) whose last constraint is
empty, and which introduces at most N new variables.
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Using these four rules, we get a notion of “(j, k; {g, ¢1; A)-proof.”

Notation
If (X,X) is an instance of CSP(A, d), let's write

(A, X,Y) wj’.‘,’k;zmgl 7}

if there exists a (Jj, k; o, ¢1; A)-proof from (X, X) whose last constraint is
empty, and which introduces at most N new variables.

Definition
(A, d) has VI-width (j, k; ¢o, ¢1) if 3 polynomial p(x) such that for every
instance (X, X) of CSP(A, d) with |X| = n,

(X,X) is unsatisfiable < (A, X,%) - .
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Definition
(A, d) has bounded VI-width if it has VI-width (j, k, ¢o, ¢1) for some
.j7 k7 607 61-

Fact: if (A, d) has bounded VI-width, then
e CSP(A,d) isin NP N co-NP.

e Unsatisfiable instances of CSP(A, d) have nice “short proofs” of
unsatisfiability.
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Definition

(A, d) has bounded VI-width if it has VI-width (j, k, ¢o, ¢1) for some
.j7 k7 607 61 .

Fact: if (A, d) has bounded VI-width, then
e CSP(A,d) is in NP N co-NP.
e Unsatisfiable instances of CSP(A, d) have nice “short proofs” of
unsatisfiability.
Definition
(A, d) has strongly bounded VI-width if for some j, k, {g, ¢1:
e (A,d) has VlI-width (j, k; €0, ¢1), and

@ there exists a polynomial-time algorithm solving CSP(A, d) and
which, for unsatisfiable instances, returns a (J, k; £o, {1, A)-proof of an
empty constraint. (Such an algorithm is good.)

v

Thus: if (A, d) has strongly bounded VI-width then CSP(A, d) is in P.
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Main Question:
@ Which (A, d) have bounded VI-width? Strongly bounded VI-width?

Ross Willard (Waterloo) Proving inconsistency Szeged 2012 29 / 30



Main Question:
@ Which (A, d) have bounded VI-width? Strongly bounded VI-width?

What | know:

e If V(A) is congruence SD(A), then (A, d) has strongly bounded
VI-width for all d > 2 (by Barto, Kozik).
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o (Generalizing GE): If A is a finite affine space, then (A, d) has
strongly bounded VI-width for all d > 2.
o If A =(S3,xy 1z) then (A,3) has strongly bounded VI-width.

More Questions:
@ Is it true that if G is a finite group and A = (G, xy~'z), then (A, d)
has strongly bounded VI-width for all d > 27
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Main Question:
@ Which (A, d) have bounded VI-width? Strongly bounded VI-width?

What | know:
e If V(A) is congruence SD(A), then (A, d) has strongly bounded
VI-width for all d > 2 (by Barto, Kozik).
o (Generalizing GE): If A is a finite affine space, then (A, d) has
strongly bounded VI-width for all d > 2.
o If A =(S3,xy 1z) then (A,3) has strongly bounded VI-width.

More Questions:
@ Is it true that if G is a finite group and A = (G, xy~'z), then (A, d)
has strongly bounded VI-width for all d > 27
© Same question for any finite idempotent Maltsev algebra A.
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Speculations

@ Is there a polynomial-time “strong bounded VI-width” algorithm for
CSP(A, d), when A is Maltsev, which is “essentially” local
consistency + Gaussian elimination?
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Speculations

@ s there a polynomial-time “strong bounded VI-width" algorithm for
CSP(A, d), when A is Maltsev, which is “essentially” local
consistency + Gaussian elimination?

@ If A is the naked 2-element set, then CSP(A,3) = 3-SAT. It can be
shown that every unsatisfiable instance of CSP(A,3) can
(3,6,2,1,A)-prove an empty constraint.

(Hint: simulate resolution.)
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@ If A is the naked 2-element set, then CSP(A,3) = 3-SAT. It can be
shown that every unsatisfiable instance of CSP(A,3) can
(3,6,2,1,A)-prove an empty constraint.

(Hint: simulate resolution.)

Is it true that for every finite idempotent A there exist j, k, £, £1 such
that every unsatisfiable instance of CSP(A,3) has a
(J, k; Lo, ¢1; A)-proof of unsatisfiability? (Conjecture: NO)
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Speculations

@ s there a polynomial-time “strong bounded VI-width" algorithm for
CSP(A, d), when A is Maltsev, which is “essentially” local
consistency + Gaussian elimination?

@ If A is the naked 2-element set, then CSP(A,3) = 3-SAT. It can be
shown that every unsatisfiable instance of CSP(A,3) can
(3,6,2,1,A)-prove an empty constraint.

(Hint: simulate resolution.)

Is it true that for every finite idempotent A there exist j, k, £, £1 such
that every unsatisfiable instance of CSP(A,3) has a
(J, k; Lo, ¢1; A)-proof of unsatisfiability? (Conjecture: NO)

Thank youl!
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