Proving inconsistency: Towards a better Maltsev CSP algorithm

Ross Willard

Univ. Waterloo

Universal Algebra and Lattice Theory Szeged, Hungary June 24, 2012

< ∃ > <

< ロト < 同ト < ヨト < ヨ

• It should be <u>efficient</u> (e.g., polynomial-time).

< ロ > < 同 > < 三 > < 三

- It should be <u>efficient</u> (e.g., polynomial-time).
- It should be <u>correct</u>, i.e., always give correct answers.

- 4 @ ▶ 4 @ ▶ 4 @ ▶

- It should be <u>efficient</u> (e.g., polynomial-time).
- It should be <u>correct</u>, i.e., always give correct answers.
- It should be informative:
 - Provide a transparent "proof" of the correctness of the answer.

- It should be <u>efficient</u> (e.g., polynomial-time).
- It should be <u>correct</u>, i.e., always give correct answers.
- It should be informative:
 - Provide a transparent "proof" of the correctness of the answer.

In this lecture I will

- discuss the two main polynomial-time CSP algorithms,
- argue that one fails to meet the above criteria,
- offer a framework for a possible alternative.

Motivating example

Fix a finite field F.

Decision Problem: 3-LIN(F)

Inputs:

- a finite list $X = \{x_1, \ldots, x_n\}$ of variables
- a finite list $\Sigma = \{\varepsilon_1, \dots, \varepsilon_m\}$ of linear equations in X over F

- each equation involving at most 3 variables

Question: Does Σ have a solution (in F)?

• • = • • = •

Algorithm: Gaussian elimination

Given a set Σ of 3-variable linear equations in *n* variables over *F*:

Algorithm: Gaussian elimination

Given a set Σ of 3-variable linear equations in *n* variables over *F*:

• Methodically deduce new linear equations (satisfied by any solution).

Algorithm: Gaussian elimination

Given a set Σ of 3-variable linear equations in *n* variables over *F*:

- Methodically deduce new linear equations (satisfied by any solution).
- If the inconsistent equation 0 = 1 is deduced, then
 - Σ is inconsistent, and
 - the deductions producing 0 = 1 give a "short proof" of inconsistency.

Algorithm: Gaussian elimination

Given a set Σ of 3-variable linear equations in *n* variables over *F*:

- Methodically deduce new linear equations (satisfied by any solution).
- If the inconsistent equation 0 = 1 is deduced, then
 - Σ is inconsistent, and
 - the deductions producing 0 = 1 give a "short proof" of inconsistency.
- Else,
 - Σ is consistent, and
 - "backtracking" produces an explicit solution of Σ, which is itself a (very) "short proof" of consistency.

• • = • • = •

Algorithm: Gaussian elimination

Given a set Σ of 3-variable linear equations in *n* variables over *F*:

- Methodically deduce new linear equations (satisfied by any solution).
- If the inconsistent equation 0 = 1 is deduced, then
 - Σ is inconsistent, and
 - the deductions producing 0 = 1 give a "short proof" of inconsistency.
- Else,
 - Σ is consistent, and
 - "backtracking" produces an explicit solution of Σ, which is itself a (very) "short proof" of consistency.
- Running time: essentially $O(|\Sigma|n^2)$ arithmetic operations in F.

This is a good algorithm.

< 回 ト < 三 ト < 三 ト

Transition to CSP

Recall: an input to 3-LIN(F) is a pair (X, Σ) where

X = {x₁,..., x_n} is a finite list of variables.
Σ = {ε₁,..., ε_m} is a finite list of 3-variable equations over F.

Define

$$\mathbf{F} = (F, \{x - y + z\} \cup \{\lambda x + (1 - \lambda)y : \lambda \in F\}),$$

the idempotent reduct of the vector space $_FF$.

Transition to CSP

Recall: an input to 3-LIN(F) is a pair (X, Σ) where

X = {x₁,..., x_n} is a finite list of variables.
Σ = {ε₁,..., ε_m} is a finite list of 3-variable equations over F.

Define

$$\mathbf{F} = (F, \{x - y + z\} \cup \{\lambda x + (1 - \lambda)y : \lambda \in F\}),$$

the idempotent reduct of the vector space $_FF$.

Observation: if S is the set of solutions to a 3-variable linear equation ε over F, then S is a subuniverse of \mathbf{F}^3 .

Hence: each equation $ax_i + bx_j + cx_k = d$ can be expressed by the statement " $(x_i, x_j, x_k) \in S$ " for some $S \leq \mathbf{F}^3$.

イロト 不得 トイヨト イヨト 二日

Transition to CSP

Recall: an input to 3-LIN(F) is a pair (X, Σ) where

X = {x₁,..., x_n} is a finite list of variables.
Σ = {ε₁,..., ε_m} is a finite list of 3-variable equations over F.

Define

$$\mathbf{F} = (F, \{x - y + z\} \cup \{\lambda x + (1 - \lambda)y : \lambda \in F\}),$$

the idempotent reduct of the vector space $_FF$.

Observation: if S is the set of solutions to a 3-variable linear equation ε over F, then S is a subuniverse of \mathbf{F}^3 .

Hence: each equation $ax_i + bx_j + cx_k = d$ can be expressed by the statement " $(x_i, x_j, x_k) \in S$ " for some $S \leq \mathbf{F}^3$.

The (fixed template) constraint satisfaction problem generalizes 3-LIN(F) by permitting **F** to be replaced by any idempotent algebra, equations by membership in named subpowers, and 3 by any fixed $d \ge 2$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Constraint Satisfaction Problem (CSP) definition

Formally, fix:

$$\mathbf{A} = (A, \mathcal{F})$$
 – a finite *idempotent* algebra $d \ge 2$

 $CSP(\mathbf{A}, d)$ is the following decision problem:

Inputs:

a finite list $X = \{x_1, \ldots, x_n\}$ of variables [ranging over A] a finite list $\Sigma = \{C_1, \ldots, C_m\}$ of *constraints* on the variables:

Each constraint is a pair C = (J, R) where

•
$$J \subseteq X$$
 with $1 \le |J| \le d$;
• $R \le \mathbf{A}^J$.

Question: Does Σ have a solution?

(I.e., a map $\alpha: X \to A$ such that $\alpha {\upharpoonright}_{J_t} \in R_t$ for all $1 \le t \le m$)

CSP Algebraic Dichotomy Conjecture

Conjecture (Bulatov, Jeavons, Krokhin)

Let **A** be a finite idempotent algebra and $d \ge 2$. If $V(\mathbf{A})$ satisfies a nontrivial Maltsev condition, then $CSP(\mathbf{A}, d)$ is in P.

Of course, every $CSP(\mathbf{A}, d)$ is in NP:

Any solution (when Σ is satisfiable) is a "short proof" of satisfiability.

What is wanted (when $V(\mathbf{A})$ satisfies a nontrivial Maltsev condition):

CSP Algebraic Dichotomy Conjecture

Conjecture (Bulatov, Jeavons, Krokhin)

Let **A** be a finite idempotent algebra and $d \ge 2$. If $V(\mathbf{A})$ satisfies a nontrivial Maltsev condition, then $CSP(\mathbf{A}, d)$ is in P.

Of course, every $CSP(\mathbf{A}, d)$ is in NP:

Any solution (when Σ is satisfiable) is a "short proof" of satisfiability.

What is wanted (when $V(\mathbf{A})$ satisfies a nontrivial Maltsev condition):

 "Short proofs" witnessing <u>un</u>satisfiability (when Σ is unsatisfiable); they will put CSP(A, d) in co-NP.

• • = • • = •

CSP Algebraic Dichotomy Conjecture

Conjecture (Bulatov, Jeavons, Krokhin)

Let **A** be a finite idempotent algebra and $d \ge 2$. If $V(\mathbf{A})$ satisfies a nontrivial Maltsev condition, then $CSP(\mathbf{A}, d)$ is in P.

Of course, every $CSP(\mathbf{A}, d)$ is in NP:

Any solution (when Σ is satisfiable) is a "short proof" of satisfiability.

What is wanted (when $V(\mathbf{A})$ satisfies a nontrivial Maltsev condition):

- "Short proofs" witnessing <u>un</u>satisfiability (when Σ is unsatisfiable); they will put CSP(A, d) in co-NP.
- Polynomial-time algorithm which decides CSP(**A**, *d*) AND provides a solution or a short proof of unsatisfiability.

The two main CSP algorithms

Local consistency (bounded width) algorithm

- Rather simple
- Works whenever $V(\mathbf{A})$ is congruence SD(\wedge) [Barto & Kozik]

Few subpowers algorithm

- Rather more complicated
- ▶ Works whenever V(A) is congruence modular [Barto? + IMMVW]
- The case when **A** has a Maltsev operation is representative.

Algorithm #1: Local consistency

Recall that constraints in an input to $CSP(\mathbf{A}, d)$ have the form (J, R):

- J is a "small" subset of the set X of variables $(|J| \le d)$.
- $R \ (\leq \mathbf{A}^J)$ restricts the values a solution may take on J.

The local consistency algorithm can be viewed as built upon a **formal system** for **reasoning** about such constraints.

• • = • • = •

Algorithm #1: Local consistency

Recall that constraints in an input to $CSP(\mathbf{A}, d)$ have the form (J, R):

- J is a "small" subset of the set X of variables $(|J| \le d)$.
- $R \ (\leq \mathbf{A}^J)$ restricts the values a solution may take on J.

The local consistency algorithm can be viewed as built upon a **formal system** for **reasoning** about such constraints.

Intuition:

For some fixed j < k, the system will permit deducing a $\leq j$ -ary constraint from a collection of other $\leq j$ -ary constraints, as long as:

- the deduction is correct (of course!), and
- the number of variables altogether is at most k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Example: if $(\mathbf{A}, d) = (\mathbf{F}, 3)$ and (j, k) = (3, 6), then the system permits deductions of the following kind:

From
$$x + y - u = 0$$
 i.e., $(\{x, y, u\}, graph(+))$
 $y + z - v = 0$
 $u + z - w = 0$
deduce $x + v - w = 0$
 $(\{y, z, v\}, graph(+))$
 $(\{u, z, w\}, graph(+))$

Formally, the rules are (for some fixed j < k):

Intersect

$$\frac{(J,R) \quad (J,S)}{\therefore \quad (J,R\cap S)}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Formally, the rules are (for some fixed j < k):

Intersect

$$(J,R) (J,S)$$

$$\therefore (J,R\cap S)$$

Solution FictVar_k – add fictitious variables, up to k in total

$$\frac{(J,R)}{(K,(\mathrm{pr}_{K\to J})^{-1}(R))}$$

for any $J \subseteq K \subseteq X$, provided $|K| \leq k$.

Formally, the rules are (for some fixed j < k):

Intersect

$$(J,R) \quad (J,S)$$
$$\therefore \quad (J,R\cap S)$$

Solution FictVar_k – add fictitious variables, up to k in total

$$(J, R)$$

$$\therefore \quad (K, (\mathrm{pr}_{K \to J})^{-1}(R))$$

for any $J \subseteq K \subseteq X$, provided $|K| \leq k$.

9 Project_{*i*} – projection to $\leq j$ variables

$$\frac{(K,R)}{\therefore \quad (J,\mathrm{pr}_{K\to J}(R))}$$

for any $J \subseteq K$, provided $|J| \leq j$.

These rules give a formal notion of proof.

Definition

Given an input (X, Σ) to $CSP(\mathbf{A}, d)$, a (j, k)-proof from (X, Σ) is a finite sequence (C_1, \ldots, C_p) of constraints over X such that for all $1 \le i \le p$,

- $C_i \in \Sigma$, or
- **2** C_i is the result of applying **Intersect** to two constraints from $\{C_1, \ldots, C_{i-1}\}$, or

• C_i is the result of applying **FictVar**_k or **Project**_j to a constraint from $\{C_1, \ldots, C_{i-1}\}$.

I say that (C_1, \ldots, C_p) is a (j, k)-proof of C_p from (X, Σ) .

Note: every solution to Σ also satisfies all C_i in a (j, k)-proof from (X, Σ) .

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Notation

Let's write $(X, \Sigma) \vdash_{j,k} \emptyset$ if there exists a (j, k)-proof from (X, Σ) whose last constraint is *empty* (i.e., has the form (J, \emptyset)).

Remark: if $(X, \Sigma) \vdash_{j,k} \emptyset$, then:

- Σ is unsatisfiable.
- There exists a witnessing (j, k)-proof of length at most 2^{|A|^k} · |X|^k. (This is a good "short proof" of unsatisfiability.)

Definition

(**A**, *d*) has width (j,k) if, for every instance (X, Σ) of $CSP(\mathbf{A}, d)$, Σ unsatisfiable $\Leftrightarrow (X, \Sigma) \vdash_{i,k} \emptyset$.

In other words, (\mathbf{A}, d) has width (j, k) if the formal system of (j, k)-proofs provides short proofs for all unsatisfiable instances to $CSP(\mathbf{A}, d)$.

Definition

(\mathbf{A}, d) has width (\mathbf{j}, \mathbf{k}) if, for every instance (X, Σ) of $CSP(\mathbf{A}, d)$,

 Σ unsatisfiable \Leftrightarrow $(X, \Sigma) \vdash_{j,k} \emptyset$.

In other words, (\mathbf{A}, d) has width (j, k) if the formal system of (j, k)-proofs provides short proofs for all unsatisfiable instances to $CSP(\mathbf{A}, d)$.

Definition

 (\mathbf{A}, d) has **bounded width** if it has width (j, k) for some j < k.

Folklore: For each j < k there is an algorithm (the "(j, k)-consistency algorithm") which, given (\mathbf{A}, d) having width (j, k) and given an input (X, Σ) to $\text{CSP}(\mathbf{A}, d)$,

Folklore: For each j < k there is an algorithm (the "(j, k)-consistency algorithm") which, given (\mathbf{A}, d) having width (j, k) and given an input (X, Σ) to $\text{CSP}(\mathbf{A}, d)$,

• decides whether (X, Σ) has a solution.

(人間) トイヨト イヨト

Folklore: For each j < k there is an algorithm (the "(j, k)-consistency algorithm") which, given (\mathbf{A}, d) having width (j, k) and given an input (X, Σ) to $\text{CSP}(\mathbf{A}, d)$,

- decides whether (X, Σ) has a solution.
- If satisfiable, produces a solution.

Folklore: For each j < k there is an algorithm (the "(j, k)-consistency algorithm") which, given (\mathbf{A}, d) having width (j, k) and given an input (X, Σ) to $\text{CSP}(\mathbf{A}, d)$,

- decides whether (X, Σ) has a solution.
- If satisfiable, produces a solution.
- If unsatisfiable, produces a (j, k)-proof witnessing $(X, \Sigma) \vdash_{j,k} \emptyset$.

Folklore: For each j < k there is an algorithm (the "(j, k)-consistency algorithm") which, given (\mathbf{A}, d) having width (j, k) and given an input (X, Σ) to $\text{CSP}(\mathbf{A}, d)$,

- decides whether (X, Σ) has a solution.
- If satisfiable, produces a solution.
- If unsatisfiable, produces a (j, k)-proof witnessing $(X, \Sigma) \vdash_{j,k} \emptyset$.
- Runs in polynomial time.

This is a good algorithm.

The extent of the local consistency algorithm:

Theorem (Larose & Zádori (\Rightarrow); Barto & Kozik (\Leftarrow))

Let **A** be a finite idempotent algebra, $d \ge 2$, and assume the clone of **A** is determined by its d-ary invariant relations. Then

 (\mathbf{A}, d) has bounded width $\Leftrightarrow V(\mathbf{A})$ is congruence $SD(\wedge)$.

Unfortunately, if **F** is the idempotent algebra corresponding to 3-LIN(F), then (**F**, 3) does *not* have bounded width.

Conclusion: although Gaussian elimination is a form of "constraint" reasoning, it does not fall within the framework of local consistency proofs.

イロト 不得下 イヨト イヨト 二日
Algorithm #2: Few subpowers

Recall that each input to $CSP(\mathbf{A}, d)$ has the form (X, Σ) where

 $\Sigma = \{C_1, C_2, \dots, C_m\} \quad \text{with} \quad C_t = (J_t, R_t).$

イロト イポト イヨト イヨト 二日

Algorithm #2: Few subpowers

Recall that each input to $CSP(\mathbf{A}, d)$ has the form (X, Σ) where

$$\Sigma = \{C_1, C_2, \dots, C_m\} \quad \text{with} \quad C_t = (J_t, R_t).$$

For $i \leq m$, define B_i to be the set of solutions to the <u>first *i* constraints</u>:

$$\mathbf{A}^X = \mathbf{B}_0 \ge \mathbf{B}_1 \ge \mathbf{B}_2 \ge \cdots \ge \mathbf{B}_m = \{ \text{solutions to } (X, \Sigma) \}.$$

Algorithm #2: Few subpowers

Recall that each input to $CSP(\mathbf{A}, d)$ has the form (X, Σ) where

$$\Sigma = \{C_1, C_2, \dots, C_m\}$$
 with $C_t = (J_t, R_t)$.

For $i \leq m$, define B_i to be the set of solutions to the <u>first *i* constraints</u>:

$$\mathbf{A}^X = \mathbf{B}_0 \geq \mathbf{B}_1 \geq \mathbf{B}_2 \geq \cdots \geq \mathbf{B}_m = \{ ext{solutions to } (X, \Sigma) \}.$$

The few subpowers algorithm (BD + IMMVW):

- is not based on reasoning with equations/constraints.
- instead, it successively computes small generating sets for each **B**_t.
 - (X, Σ) has a solution \Leftrightarrow the last generating set is nonempty.

(I.e., when $V(\mathbf{A})$ is congruence permutable.)

Bulatov & Dalmau, A simple algorithm for Mal'tsev constraints, 2006.

Based on the notion of *compact representations* of subsets of powers.

Definition

Suppose A is a set and $B \subseteq A^n$.

(I.e., when $V(\mathbf{A})$ is congruence permutable.)

Bulatov & Dalmau, A simple algorithm for Mal'tsev constraints, 2006.

Based on the notion of *compact representations* of subsets of powers.

Definition

Suppose A is a set and $B \subseteq A^n$.

Fork(B) = {
$$(i, b, c) \in [n] \times A \times A : \exists \mathbf{u}, \mathbf{v} \in B \text{ with } u_j = v_j \text{ for all}$$

 $1 \leq j < i, \text{ and } (u_i, v_i) = (b, c)$ }.

(I.e., when $V(\mathbf{A})$ is congruence permutable.)

Bulatov & Dalmau, A simple algorithm for Mal'tsev constraints, 2006.

Based on the notion of *compact representations* of subsets of powers.

Definition

Suppose A is a set and $B \subseteq A^n$.

Fork(B) = {
$$(i, b, c) \in [n] \times A \times A : \exists \mathbf{u}, \mathbf{v} \in B \text{ with } u_j = v_j \text{ for all}$$

 $1 \leq j < i, \text{ and } (u_i, v_i) = (b, c)$ }.

A subset $T \subseteq B$ is called a **compact representation of** B if Fork(T) = Fork(B) and T is minimal with respect to this property.

- 4 同 6 4 日 6 4 日 6

(I.e., when $V(\mathbf{A})$ is congruence permutable.)

Bulatov & Dalmau, A simple algorithm for Mal'tsev constraints, 2006.

Based on the notion of *compact representations* of subsets of powers.

Definition

Suppose A is a set and $B \subseteq A^n$.

Fork(B) = {
$$(i, b, c) \in [n] \times A \times A : \exists \mathbf{u}, \mathbf{v} \in B \text{ with } u_j = v_j \text{ for all}$$

 $1 \leq j < i, \text{ and } (u_i, v_i) = (b, c)$ }.

A subset $T \subseteq B$ is called a **compact representation of** B if Fork(T) = Fork(B) and T is minimal with respect to this property.

Exercise: if T is a compact rep. for $B \subseteq A^n$, then $|T| \le n|A|^2$.

(日) (周) (三) (三)

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

Suppose
$$\operatorname{pr}_{1,\dots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\dots,i-1}(B)$$
.
We will show $\operatorname{pr}_{1,\dots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\dots,i}(B)$.

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

Suppose
$$\operatorname{pr}_{1,\ldots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i-1}(B)$$
.
We will show $\operatorname{pr}_{1,\ldots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i}(B)$.
Pick $\mathbf{a} = (a_1, \ldots, a_{i-1}, a_i, \ldots) \in B$.

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

Suppose
$$\operatorname{pr}_{1,\ldots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i-1}(B)$$
.
We will show $\operatorname{pr}_{1,\ldots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i}(B)$.
Pick $\mathbf{a} = (a_1,\ldots,a_{i-1},a_i,\ldots) \in B$.
So $\exists \mathbf{a}' = (a_1,\ldots,a_{i-1},b,\ldots) \in \langle T \rangle_{\mathbf{B}}$. (Thus also $\mathbf{a}' \in B$.)

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

Suppose
$$\operatorname{pr}_{1,\ldots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i-1}(B)$$
.
We will show $\operatorname{pr}_{1,\ldots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i}(B)$.
Pick $\mathbf{a} = (a_1, \ldots, a_{i-1}, a_i, \ldots) \in B$.
So $\exists \mathbf{a}' = (a_1, \ldots, a_{i-1}, b, \ldots) \in \langle T \rangle_{\mathbf{B}}$. (Thus also $\mathbf{a}' \in B$.)
Thus $(i, a_i, b) \in \operatorname{Fork}(B)$

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

Suppose
$$\operatorname{pr}_{1,\ldots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i-1}(B)$$
.
We will show $\operatorname{pr}_{1,\ldots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i}(B)$.
Pick $\mathbf{a} = (a_1, \ldots, a_{i-1}, a_i, \ldots) \in B$.
So $\exists \mathbf{a}' = (a_1, \ldots, a_{i-1}, b, \ldots) \in \langle T \rangle_{\mathbf{B}}$. (Thus also $\mathbf{a}' \in B$.)
Thus $(i, a_i, b) \in \operatorname{Fork}(B) = \operatorname{Fork}(T)$.

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

Suppose
$$\operatorname{pr}_{1,\ldots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i-1}(B)$$
.
We will show $\operatorname{pr}_{1,\ldots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i}(B)$.
Pick $\mathbf{a} = (a_1, \ldots, a_{i-1}, a_i, \ldots) \in B$.
So $\exists \mathbf{a}' = (a_1, \ldots, a_{i-1}, b, \ldots) \in \langle T \rangle_{\mathbf{B}}$. (Thus also $\mathbf{a}' \in B$.)
Thus $(i, a_i, b) \in \operatorname{Fork}(B) = \operatorname{Fork}(T)$.
Pick $\mathbf{u}, \mathbf{v} \in T$ witnessing this.

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

Suppose
$$\operatorname{pr}_{1,\ldots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i-1}(B)$$
.
We will show $\operatorname{pr}_{1,\ldots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i}(B)$.
Pick $\mathbf{a} = (a_1, \ldots, a_{i-1}, a_i, \ldots) \in B$.
So $\exists \mathbf{a}' = (a_1, \ldots, a_{i-1}, b, \ldots) \in \langle T \rangle_{\mathbf{B}}$. (Thus also $\mathbf{a}' \in B$.)
Thus $(i, a_i, b) \in \operatorname{Fork}(B) = \operatorname{Fork}(T)$.
Pick $\mathbf{u}, \mathbf{v} \in T$ witnessing this.
We have

$$u = (u_1, ..., u_{i-1}, a_i, ...) \in T$$

$$v = (u_1, ..., u_{i-1}, b, ...) \in T$$

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

Suppose
$$\operatorname{pr}_{1,\ldots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i-1}(B)$$
.
We will show $\operatorname{pr}_{1,\ldots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i}(B)$.
Pick $\mathbf{a} = (a_1, \ldots, a_{i-1}, a_i, \ldots) \in B$.
So $\exists \mathbf{a}' = (a_1, \ldots, a_{i-1}, b, \ldots) \in \langle T \rangle_{\mathbf{B}}$. (Thus also $\mathbf{a}' \in B$.)
Thus $(i, a_i, b) \in \operatorname{Fork}(B) = \operatorname{Fork}(T)$.
Pick $\mathbf{u}, \mathbf{v} \in T$ witnessing this.
We have

$$\mathbf{u} = (u_1, \dots, u_{i-1}, a_i, \dots) \in T$$
$$\mathbf{v} = (u_1, \dots, u_{i-1}, b, \dots) \in T$$
$$\mathbf{a}' = (a_1, \dots, a_{i-1}, b, \dots) \in \langle T \rangle_{\mathbf{B}}.$$

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates **B**.

Proof idea.

Suppose
$$\operatorname{pr}_{1,\ldots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i-1}(B)$$
.
We will show $\operatorname{pr}_{1,\ldots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\ldots,i}(B)$.
Pick $\mathbf{a} = (a_1, \ldots, a_{i-1}, a_i, \ldots) \in B$.
So $\exists \mathbf{a}' = (a_1, \ldots, a_{i-1}, b, \ldots) \in \langle T \rangle_{\mathbf{B}}$. (Thus also $\mathbf{a}' \in B$.)
Thus $(i, a_i, b) \in \operatorname{Fork}(B) = \operatorname{Fork}(T)$.
Pick $\mathbf{u}, \mathbf{v} \in T$ witnessing this.
We have

$$\mathbf{u} = (u_1, \dots, u_{i-1}, a_i, \dots) \in T$$
$$\mathbf{v} = (u_1, \dots, u_{i-1}, b, \dots) \in T$$
$$\mathbf{a}' = (a_1, \dots, a_{i-1}, b, \dots) \in \langle T \rangle_{\mathbf{B}}.$$

Applying the Maltsev term, we get $(a_1, \ldots, a_{i-1}, a_i, \ldots) \in \langle T \rangle_{\mathbf{B}}$.

Ross Willard (Waterloo)

 $\mathbf{A}^n = \mathbf{B}_0 \ge \mathbf{B}_1 \ge \mathbf{B}_2 \ge \cdots \ge \mathbf{B}_m = \{ \text{solutions to } (X, \Sigma) \}. \tag{\dagger}$

(日) (周) (三) (三)

$$\mathbf{A}^n = \mathbf{B}_0 \ge \mathbf{B}_1 \ge \mathbf{B}_2 \ge \cdots \ge \mathbf{B}_m = \{ \text{solutions to } (X, \Sigma) \}.$$
 (†)

Recall: we want to compute compact representations for B_1, B_2, \ldots, B_m .

$$\mathbf{A}^n = \mathbf{B}_0 \ge \mathbf{B}_1 \ge \mathbf{B}_2 \ge \cdots \ge \mathbf{B}_m = \{ \text{solutions to } (X, \Sigma) \}.$$
 (†)

Recall: we want to compute compact representations for B_1, B_2, \ldots, B_m . [Relaxation: $\mathbf{B}_0 \leq \mathbf{A}^n$; require a compact representation for B_0 as input.]

$$\mathbf{A}^n \ge \mathbf{B}_0 \ge \mathbf{B}_1 \ge \mathbf{B}_2 \ge \cdots \ge \mathbf{B}_m = \{ \text{solutions to } (X, \Sigma) \} \cap \mathbf{B}_0.$$
 (†)

Recall: we want to compute compact representations for B_1, B_2, \ldots, B_m . [Relaxation: $\mathbf{B}_0 \leq \mathbf{A}^n$; require a compact representation for B_0 as input.]

$$\mathbf{A}^n \ge \mathbf{B}_0 \ge \mathbf{B}_1 \ge \mathbf{B}_2 \ge \cdots \ge \mathbf{B}_m = \{ \text{solutions to } (X, \Sigma) \} \cap \mathbf{B}_0.$$
 (†)

Recall: we want to compute compact representations for $B_1, B_2, ..., B_m$. [Relaxation: $\mathbf{B}_0 \leq \mathbf{A}^n$; require a compact representation for B_0 as input.] **Special Case**: Show that comp. rep's can be found in the case m < n and $\exists a_1, ..., a_m \in A$ such that $C_t = "x_t = a_t"$, i.e., $(x_t, \{a_t\}), \forall 1 \leq t \leq m$.

イロト 不得下 イヨト イヨト 二日

 $\mathbf{A}^n \ge \mathbf{B}_0 \ge \mathbf{B}_1 \ge \mathbf{B}_2 \ge \cdots \ge \mathbf{B}_m = \{ \text{solutions to } (X, \Sigma) \} \cap \mathbf{B}_0.$ (†)

Recall: we want to compute compact representations for $B_1, B_2, ..., B_m$. [Relaxation: $\mathbf{B}_0 \leq \mathbf{A}^n$; require a compact representation for B_0 as input.] **Special Case**: Show that comp. rep's can be found in the case m < n and $\exists a_1, ..., a_m \in A$ such that $C_t = "x_t = a_t"$, i.e., $(x_t, \{a_t\}), \forall 1 \leq t \leq m$.

Now in general, we want to compute a compact representation for B_t , given a compact representation for B_{t-1} and the constraint C_t .

Key task: For each $(i, a, b) \in [n] \times A \times A$, we need to decide whether $(i, a, b) \in Fork(B_t)$ and, if "yes," we must find a witnessing pair $\mathbf{u}, \mathbf{v} \in B_t$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

 $\mathbf{A}^n \ge \mathbf{B}_0 \ge \mathbf{B}_1 \ge \mathbf{B}_2 \ge \cdots \ge \mathbf{B}_m = \{ \text{solutions to } (X, \Sigma) \} \cap \mathbf{B}_0.$ (†)

Recall: we want to compute compact representations for B_1, B_2, \ldots, B_m . [Relaxation: $\mathbf{B}_0 \leq \mathbf{A}^n$; require a compact representation for B_0 as input.] **Special Case**: Show that comp. rep's can be found in the case m < n and $\exists a_1, \ldots, a_m \in A$ such that $C_t = "x_t = a_t"$, i.e., $(x_t, \{a_t\}), \forall 1 \leq t \leq m$.

Now in general, we want to compute a compact representation for B_t , given a compact representation for B_{t-1} and the constraint C_t .

Key task: For each $(i, a, b) \in [n] \times A \times A$, we need to decide whether $(i, a, b) \in Fork(B_t)$ and, if "yes," we must find a witnessing pair $\mathbf{u}, \mathbf{v} \in B_t$.

Finding a candidate **u** is not too hard. To find **v**, construct a new chain (†) of subpowers in the special case, starting from \mathbf{B}_{t-1} , using u_1, \ldots, u_{n-1} .

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A necessary feature of the BD algorithm is that ∃ polynomial p(x) such that every B ≤ Aⁿ has a generating set of size at most p(n).

- A necessary feature of the BD algorithm is that ∃ polynomial p(x) such that every B ≤ Aⁿ has a generating set of size at most p(n).
- BIMMVW characterize such **A**; they are said to *have few subpowers* and are characterized by having a *cube* term (or *edge* term).

- A necessary feature of the BD algorithm is that ∃ polynomial p(x) such that every B ≤ Aⁿ has a generating set of size at most p(n).
- BIMMVW characterize such **A**; they are said to *have few subpowers* and are characterized by having a *cube* term (or *edge* term).
- An analogous notion of *compact representation* is given for such **A**.

- A necessary feature of the BD algorithm is that ∃ polynomial p(x) such that every B ≤ Aⁿ has a generating set of size at most p(n).
- BIMMVW characterize such **A**; they are said to *have few subpowers* and are characterized by having a *cube* term (or *edge* term).
- An analogous notion of *compact representation* is given for such **A**.
- The Bulatov-Dalmau algorithm generalizes to algebras having a cube term (IMMVW); called the *few subpowers algorithm*.

- A necessary feature of the BD algorithm is that ∃ polynomial p(x) such that every B ≤ Aⁿ has a generating set of size at most p(n).
- BIMMVW characterize such **A**; they are said to *have few subpowers* and are characterized by having a *cube* term (or *edge* term).
- An analogous notion of *compact representation* is given for such **A**.
- The Bulatov-Dalmau algorithm generalizes to algebras having a cube term (IMMVW); called the *few subpowers algorithm*.
- With Barto's recently announced result, we know that (assuming **A** is determined by its *d*-ary relations),

A has a cube term \Leftrightarrow $V(\mathbf{A})$ is congruence modular.

(日) (周) (三) (三)

I have a love/hate relationship with the few subpowers algorithm.

(日) (同) (三) (三)

I have a love/hate relationship with the few subpowers algorithm.

Why I love it:

- It works (when **A** has a cube term).
- It runs in polynomial time.
- It gave me two publications (W = Willard).

★ ∃ ▶ ★

I have a love/hate relationship with the few subpowers algorithm.

Why I love it:

- It works (when **A** has a cube term).
- It runs in polynomial time.
- It gave me two publications (W = Willard).

Why I hate it:

- It cannot be executed in the absence of a cube term.
- It does not exploit structure theory of congruence modular varieties.
- It does not give "nice" short proofs of unsatisfiability.
 - (Local consistency is <u>so</u> much better!)

I have a love/hate relationship with the few subpowers algorithm.

Why I love it:

- It works (when **A** has a cube term).
- It runs in polynomial time.
- It gave me two publications (W = Willard).

Why I hate it:

- It cannot be executed in the absence of a cube term.
- It does not exploit structure theory of congruence modular varieties.
- It does not give "nice" short proofs of unsatisfiability.
 - (Local consistency is <u>so</u> much better!)

Problem: Are we stuck with it? Can we find a better algorithm?

An idea for a new type of "short proof" of unsatisfiability

Motivating example: again 3-LIN(F)

The sad fact: Unsatisfiable instances of 3-LIN(F) cannot be proved to be unsatisfiable by local consistency.

The happy fact: Unsatisfiable instances of 3-LIN(F) can be proved to be unsatisfiable by local consistency...

An idea for a new type of "short proof" of unsatisfiability

Motivating example: again 3-LIN(F)

The sad fact: Unsatisfiable instances of 3-LIN(F) cannot be proved to be unsatisfiable by local consistency.

The happy fact: Unsatisfiable instances of 3-LIN(F) can be proved to be unsatisfiable by local consistency... provided one is permitted the introduction of new variables.

Suppose an instance (X, Σ) of 3-LIN(F) is given.

Suppose some new variables u_1, \ldots, u_L are "introduced" (i.e., defined) by \leq 3-variable equations, say

$$u_1 := ax_5 + 1$$

$$u_2 := bx_3 + cx_6$$

$$u_3 := ru_1 + su_2 + 3$$

•

(日) (周) (三) (三)
Suppose an instance (X, Σ) of 3-LIN(F) is given.

Suppose some new variables u_1, \ldots, u_L are "introduced" (i.e., defined) by \leq 3-variable equations, say

 $u_1 := ax_5 + 1$ $u_2 := bx_3 + cx_6$ $u_3 := ru_1 + su_2 + 3$

Let U be the set of new variables and let Γ be the set of defining equations.

Clearly (X, Σ) is satisfiable if and only if $(X \cup U, \Sigma \cup \Gamma)$ is satisfiable.

Theorem

Suppose (X, Σ) is an instance of 3-LIN(F), with |X| = n and $|\Sigma| = m$. If Σ is unsatisfiable, then there exists

- $L \leq mn(m+n)$,
- a set $U = \{u_t : 1 \le t \le L\}$ of L new variables,

a set Γ = {γ_t : 1 ≤ t ≤ L} of L linear equations where each γ_t defines u_t as a function of ≤ 2 variables from X ∪ {u₁,..., u_{t-1}}, such that (X ∪ U, Σ ∪ Γ) ⊢_{3,6} Ø.

- 4 同 6 4 日 6 4 日 6

Theorem

Suppose (X, Σ) is an instance of 3-LIN(F), with |X| = n and $|\Sigma| = m$. If Σ is unsatisfiable, then there exists

- $L \leq mn(m+n)$,
- a set $U = \{u_t : 1 \le t \le L\}$ of L new variables,

a set Γ = {γ_t : 1 ≤ t ≤ L} of L linear equations where each γ_t defines u_t as a function of ≤ 2 variables from X ∪ {u₁,..., u_{t-1}}, such that (X ∪ U, Σ ∪ Γ) ⊢_{3,6} Ø.

Proof hint: Simulate Gaussian elimination.

Linearly order $X = \{x_1, x_2, ..., x_n\}$; run GE. For each "complete" equation $a_1x_1 + \cdots + a_nx_n = b$ occurring in the GE computation, introduce *n* new variables representing the partial sums of the left-hand side:

$$u_1 := a_1 x_1, \quad u_2 := u_1 + a_2 x_2, \quad \dots, \quad u_n = u_{n-1} + a_n x_n.$$
 (Gives U, Γ .)

Show that for each such equation, $(X \cup U, \Sigma \cup \Gamma) \vdash_{3,6}$ " $u_n = b$."

Fix j < k and **A**. Also fix ℓ_0, ℓ_1 satisfying $\ell_0 \leq j$ and $\ell_0 + \ell_1 \leq k$.

Image: A match a ma

Fix j < k and **A**. Also fix ℓ_0, ℓ_1 satisfying $\ell_0 \leq j$ and $\ell_0 + \ell_1 \leq k$.

To the rules Intersect, $Project_i$ and $FictVar_k$ for (j, k)-proofs, add:

O VarIntro $_{\ell_0,\ell_1}$

$$(L_0, R)$$

$$\therefore \quad (L_0 \cup L_1, S)$$

provided

Ross Willard (Waterloo)

Fix j < k and **A**. Also fix ℓ_0, ℓ_1 satisfying $\ell_0 \leq j$ and $\ell_0 + \ell_1 \leq k$.

To the rules Intersect, $Project_i$ and $FictVar_k$ for (j, k)-proofs, add:

O VarIntro $_{\ell_0,\ell_1}$

$$(L_0, R)$$

$$\therefore \quad (L_0 \cup L_1, S)$$

provided

▶ The variables in *L*₁ are **new**. (This rule **introduces** them.)

Ross Willard (Waterloo)

Fix j < k and **A**. Also fix ℓ_0, ℓ_1 satisfying $\ell_0 \leq j$ and $\ell_0 + \ell_1 \leq k$.

To the rules Intersect, $Project_i$ and $FictVar_k$ for (j, k)-proofs, add:

O VarIntro $_{\ell_0,\ell_1}$

$$(L_0, R)$$

$$\therefore \quad (L_0 \cup L_1, S)$$

provided

- ▶ The variables in L₁ are **new**. (This rule **introduces** them.)
- $R \subseteq \operatorname{pr}_{L_0 \cup L_1 \to L_0}(S).$

Ross Willard (Waterloo)

Szeged 2012 26 / 30

Fix j < k and **A**. Also fix ℓ_0, ℓ_1 satisfying $\ell_0 \leq j$ and $\ell_0 + \ell_1 \leq k$.

To the rules Intersect, $Project_i$ and $FictVar_k$ for (j, k)-proofs, add:

• VarIntro $_{\ell_0,\ell_1}$

$$(L_0, R)$$

$$\therefore \quad (L_0 \cup L_1, S)$$

provided

- ▶ The variables in L₁ are **new**. (This rule **introduces** them.)
- $R \subseteq \operatorname{pr}_{L_0 \cup L_1 \to L_0}(S).$
- $|L_i| \le \ell_i$ for i = 0, 1.

Ross Willard (Waterloo)

Fix j < k and **A**. Also fix ℓ_0, ℓ_1 satisfying $\ell_0 \leq j$ and $\ell_0 + \ell_1 \leq k$.

To the rules Intersect, $Project_i$ and $FictVar_k$ for (j, k)-proofs, add:

O VarIntro $_{\ell_0,\ell_1}$

$$(L_0, R)$$

$$\therefore \quad (L_0 \cup L_1, S)$$

provided

- ▶ The variables in L₁ are **new**. (This rule **introduces** them.)
- $R \subseteq \operatorname{pr}_{L_0 \cup L_1 \to L_0}(S).$
- $|L_i| \le \ell_i$ for i = 0, 1.
- ► $S \leq \mathbf{A}^{L_0 \cup L_1}$.

Ross Willard (Waterloo)

Using these four rules, we get a notion of " $(j, k; \ell_0, \ell_1; \mathbf{A})$ -proof."

Notation

If (X, Σ) is an instance of $CSP(\mathbf{A}, d)$, let's write

$$(\mathbf{A}, X, \Sigma) \Vdash_{j,k;\ell_0,\ell_1}^N \varnothing$$

if there exists a $(j, k; \ell_0, \ell_1; \mathbf{A})$ -proof from (X, Σ) whose last constraint is empty, and which introduces at most N new variables.

• • = • • = •

Using these four rules, we get a notion of " $(j, k; \ell_0, \ell_1; \mathbf{A})$ -proof."

Notation

If (X, Σ) is an instance of $CSP(\mathbf{A}, d)$, let's write

$$(\mathbf{A}, X, \Sigma) \Vdash_{j,k;\ell_0,\ell_1}^N \varnothing$$

if there exists a $(j, k; \ell_0, \ell_1; \mathbf{A})$ -proof from (X, Σ) whose last constraint is empty, and which introduces at most N new variables.

Definition

(**A**, *d*) has **VI-width** $(j, k; \ell_0, \ell_1)$ if \exists polynomial p(x) such that for every instance (X, Σ) of $CSP(\mathbf{A}, d)$ with |X| = n,

$$(X, \Sigma)$$
 is unsatisfiable \Leftrightarrow $(\mathbf{A}, X, \Sigma) \Vdash_{j,k;\ell_0,\ell_1}^{p(n)} \varnothing$.

(日) (周) (三) (三)

Definition

(**A**, *d*) has **bounded VI-width** if it has VI-width (j, k, ℓ_0, ℓ_1) for some j, k, ℓ_0, ℓ_1 .

Fact: if (\mathbf{A}, d) has bounded VI-width, then

- $CSP(\mathbf{A}, d)$ is in NP \cap co-NP.
- Unsatisfiable instances of CSP(A, d) have nice "short proofs" of unsatisfiability.

Definition

(**A**, *d*) has **bounded VI-width** if it has VI-width (j, k, ℓ_0, ℓ_1) for some j, k, ℓ_0, ℓ_1 .

Fact: if (\mathbf{A}, d) has bounded VI-width, then

- $CSP(\mathbf{A}, d)$ is in NP \cap co-NP.
- Unsatisfiable instances of CSP(A, d) have nice "short proofs" of unsatisfiability.

Definition

 (\mathbf{A}, d) has strongly bounded VI-width if for some j, k, ℓ_0, ℓ_1 :

- (A, d) has VI-width $(j, k; \ell_0, \ell_1)$, and
- there exists a polynomial-time algorithm solving CSP(A, d) and which, for unsatisfiable instances, returns a (j, k; l₀, l₁, A)-proof of an empty constraint. (Such an algorithm is good.)

Thus: if (\mathbf{A}, d) has strongly bounded VI-width then $CSP(\mathbf{A}, d)$ is in P.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

() Which (**A**, *d*) have bounded VI-width? Strongly bounded VI-width?

< ロ > < 同 > < 三 > < 三

() Which (\mathbf{A}, d) have bounded VI-width? Strongly bounded VI-width?

What I know:

 If V(A) is congruence SD(∧), then (A, d) has strongly bounded VI-width for all d ≥ 2 (by Barto, Kozik).

A (10) A (10)

() Which (\mathbf{A}, d) have bounded VI-width? Strongly bounded VI-width?

What I know:

- If V(A) is congruence SD(∧), then (A, d) has strongly bounded VI-width for all d ≥ 2 (by Barto, Kozik).
- (Generalizing GE): If **A** is a finite affine space, then (\mathbf{A}, d) has strongly bounded VI-width for all $d \ge 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

() Which (\mathbf{A}, d) have bounded VI-width? Strongly bounded VI-width?

What I know:

- If V(A) is congruence SD(∧), then (A, d) has strongly bounded VI-width for all d ≥ 2 (by Barto, Kozik).
- (Generalizing GE): If **A** is a finite affine space, then (\mathbf{A}, d) has strongly bounded VI-width for all $d \ge 2$.
- If $\mathbf{A} = (S_3, xy^{-1}z)$ then $(\mathbf{A}, 3)$ has strongly bounded VI-width.

() Which (\mathbf{A}, d) have bounded VI-width? Strongly bounded VI-width?

What I know:

- If V(A) is congruence SD(∧), then (A, d) has strongly bounded VI-width for all d ≥ 2 (by Barto, Kozik).
- (Generalizing GE): If **A** is a finite affine space, then (\mathbf{A}, d) has strongly bounded VI-width for all $d \ge 2$.
- If $\mathbf{A} = (S_3, xy^{-1}z)$ then $(\mathbf{A}, 3)$ has strongly bounded VI-width.

More Questions:

Is it true that if G is a finite group and A = (G, xy⁻¹z), then (A, d) has strongly bounded VI-width for all d ≥ 2?

() Which (\mathbf{A}, d) have bounded VI-width? Strongly bounded VI-width?

What I know:

- If V(A) is congruence SD(∧), then (A, d) has strongly bounded VI-width for all d ≥ 2 (by Barto, Kozik).
- (Generalizing GE): If A is a finite affine space, then (A, d) has strongly bounded VI-width for all d ≥ 2.
- If $\mathbf{A} = (S_3, xy^{-1}z)$ then $(\mathbf{A}, 3)$ has strongly bounded VI-width.

More Questions:

- Is it true that if G is a finite group and A = (G, xy⁻¹z), then (A, d) has strongly bounded VI-width for all d ≥ 2?
- Same question for any finite idempotent Maltsev algebra A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Is there a polynomial-time "strong bounded VI-width" algorithm for CSP(A, d), when A is Maltsev, which is "essentially" local consistency + Gaussian elimination?

(本間) (本語) (本語)

- Is there a polynomial-time "strong bounded VI-width" algorithm for CSP(A, d), when A is Maltsev, which is "essentially" local consistency + Gaussian elimination?
- If A is the naked 2-element set, then CSP(A, 3) ≡ 3-SAT. It can be shown that every unsatisfiable instance of CSP(A, 3) can (3, 6, 2, 1, A)-prove an empty constraint.

(Hint: simulate resolution.)

• • = • • = •

- Is there a polynomial-time "strong bounded VI-width" algorithm for CSP(A, d), when A is Maltsev, which is "essentially" local consistency + Gaussian elimination?
- If A is the naked 2-element set, then CSP(A, 3) = 3-SAT. It can be shown that every unsatisfiable instance of CSP(A, 3) can (3,6,2,1, A)-prove an empty constraint.

(Hint: simulate resolution.)

Is it true that for every finite idempotent **A** there exist j, k, ℓ_0, ℓ_1 such that every unsatisfiable instance of $CSP(\mathbf{A}, 3)$ has a $(j, k; \ell_0, \ell_1; \mathbf{A})$ -proof of unsatisfiability? (Conjecture: NO)

(日) (周) (三) (三)

- Is there a polynomial-time "strong bounded VI-width" algorithm for CSP(A, d), when A is Maltsev, which is "essentially" local consistency + Gaussian elimination?
- If A is the naked 2-element set, then CSP(A, 3) = 3-SAT. It can be shown that every unsatisfiable instance of CSP(A, 3) can (3,6,2,1, A)-prove an empty constraint.

(Hint: simulate resolution.)

Is it true that for every finite idempotent **A** there exist j, k, ℓ_0, ℓ_1 such that every unsatisfiable instance of $CSP(\mathbf{A}, 3)$ has a $(j, k; \ell_0, \ell_1; \mathbf{A})$ -proof of unsatisfiability? (Conjecture: NO)

Thank you!

(日) (周) (三) (三)