Algebraic closure of some generalized convex sets

A. B. ROMANOWSKA Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warsaw, Poland

AFFINE SPACES AND CONVEX SETS 1. Real affine spaces

Given a vector space (or a module) A over a subfield (or a subring) R of \mathbb{R} :

An affine space A over R (or affine R-space) is the algebra

$$\left(A, \sum_{i=1}^{n} x_i r_i \right| \sum_{i=1}^{n} r_i = 1\right).$$

This algebra is equivalent to

 $(A, P, \underline{R}),$

where

$$\underline{R} = \{\underline{f} \mid f \in R\}$$

and

$$xy\underline{f} := x(1-f) + yf =: \underline{f}(x,y),$$

and P is the Mal'cev operation

$$xyzP := x - y + z =: P(x, y, z).$$

2

The class \underline{R} of all affine R-spaces is a variety.

Abstractly, \underline{R} is defined as the class of idempotent entropic Mal'cev algebras (A, P, \underline{R}) with a ternary Mal'cev operation P and binary operations \underline{r} for each $r \in R$, satisfying the identities:

$$xy\underline{0} = x = yx\underline{1},$$

$$xy\underline{p} \ xy\underline{q} \ \underline{r} = xy \ \underline{pqr},$$

$$xy\underline{p} \ xy\underline{q} \ xy\underline{r} \ P = xy \ \underline{pqr}P$$

for all $p, q, r \in R$.

The variety $\underline{\underline{R}}$ also satisfies the **entropic** identities

$$xy\underline{p} \ zt\underline{p} \ q = xz\underline{q} \ yt\underline{q} \ \underline{p}$$

for all $p, q \in R$ and the **cancellation laws**

$$(xy\underline{p} = xz\underline{p}) \to y = z$$

for all invertible $p \in R$.

2. Convex sets and barycentric algebras

Let F be a subfield of \mathbb{R} , $I^o(F) :=]0, 1[\subset F \text{ and} I(F) := [0, 1] \subset F$.

Convex subsets of affine *F*-spaces (or *F*-convex sets) are $\underline{I}^o(F)$ -subreducts $(A, \underline{I}^o(F))$ of affine *F*-spaces.

The class Cv(F) of *F*-convex sets generates the variety $\mathcal{B}(F)$ of *F*-barycentric algebras.

Theorem The class Cv(F) and the quasivariety C(F) of cancellative *F*-barycentric algebras coincide. Cv(F) is a minimal subquasivariety of the variety $\mathcal{B}(F)$.

3. Intervals of the *F*-line

The algebra (F, \underline{F}) is called an F-line, and intervals of the F-line are closed bounded intervals considered as $\underline{I}^o(F)$ -algebras.

Proposition The following conditions are equivalent for any non-trivial subalgebra $(A, \underline{I}^o(F))$ of $(F, \underline{I}^o(F))$:

- (a) $(A, \underline{I}^{o}(F))$ is a closed interval of $(F, \underline{I}^{o}(F))$;
- (b) $(A, \underline{I}^{o}(F))$ is isomorphic to $(I(F), \underline{I}^{o}(F))$;
- (c) $(A, \underline{I}^{o}(F))$ is generated by two (distinct) elements;
- (d) $(A, \underline{I}^o(F))$ is a free algebra on two free generators in the quasivariety $\mathcal{C}(F)$ and in the variety $\mathcal{B}(F)$.

4. *R*-convex sets

Now assume that R is a principal ideal subdomain of \mathbb{R} such that $\mathbb{Z} \subset R \subseteq \mathbb{R}$. The algebra (R, P, \underline{R}) is called an R-line.

Note that not all intervals of the line (R, P, \underline{R}) are isomorphic to the unit interval $(I(R), \underline{I}^o(R))$, and not all are generated by its endpoints.

However $(I(R), \underline{I}^o(R))$ is generated by the endpoints and is free on two generators, in the quasivariety and the variety it generates.

Let $I^{o}(R) :=]0, 1[\subset R.$

Algebraic *R*-convex subsets of affine *R*-spaces are $I^o(R)$ -subreducts $(A, \underline{I}^o(R))$ of faithful affine *R*-spaces. **Geometric** *R*-convex sets of affine *R*-spaces R^n are the intersections of \mathbb{R} -convex subsets of \mathbb{R}^n with the subspace R^n .

If R is a field, both concepts coincide. If not, then the algebraic and geometric definitions of R-convex sets do not coincide.

Proposition The class Cv(R) of $\underline{I}^o(R)$ subreducts of faithful affine *R*-spaces is a (minimal) quasivariety containing the class of geometric *R*-convex sets.

Cv(R) does not coincide with the quasivariety of cancellative members of the variety generated by $\underline{I}^o(R)$ -subreducts of affine R-spaces.

MODES

An algebra (A, Ω) is a **mode** if it is

• idempotent:

 $x...x\omega = x,$

for each *n*-ary $\omega \in \Omega$, and

• entropic:

$$(x_{11}...x_{1n}\omega)...(x_{m1}...x_{mn}\omega)\varphi$$
$$= (x_{11}...x_{m1}\varphi)...(x_{1n}...x_{mn}\varphi)\omega.$$
for all $\omega, \varphi \in \Omega$.

Affine *R*-spaces, *R*-convex sets and their subreducts are modes.

ALGEBRAIC CLOSURES OF GEOMETRIC *R*-CONVEX SETS

From now on, R is a principal ideal subdomain of \mathbb{R} such that $\mathbb{Z} \subset R \subseteq \mathbb{R}$, and $I^o(R)$ contains an invertible element s.

All *R*-convex sets $(C, \underline{I}^o(R))$ are assumed to be geometric subsets of an affine *R*-space *A* isomorphic to (R^k, P, \underline{R}) for some k = 1, 2, ...

For $(a, b) \in C \times C$, $\langle a, b \rangle$ denotes the <u>I</u>^o(R)-subalgebra generated by a and b, and $\langle a, b \rangle^o := \langle a, b \rangle \setminus \{a, b\}.$

1. Algebraic *s*-closures

The pair (a, b) is called *s*-eligible, if for each $x \in \langle a, b \rangle^o$ there is a $y \in C$ with b = xys. $E_s(C)$ denotes the set of *s*-eligible pairs of $(C, \underline{I}^o(R))$.

Lemma The set $E_s(C)$ forms a subalgebra of $(A \times A, \underline{I}^o(R))$.

Lemma Let $(a, b) \in C \times C$. Then (a, b) is an s-eligible pair of $(C, \underline{I}^o(R))$ if and only if $xb1/s \in C$ for each $x \in \langle a, b \rangle^o$.

An *R*-convex subset $(C, \underline{I}^o(R))$ of an affine *R*-space *A* is called **algebraically** *s*-closed if for each *s*-eligible pair $(a, b) \in C \times C$, there is a $c \in C$ such that $b = ac\underline{s}$.

Proposition An *R*-convex subset $(C, \underline{I}^o(R))$ of an affine *R*-space *A* is algebraically *s*-closed if and only if $ab\underline{1/s} \in C$ for each *s*-eligible pair $(a,b) \in C \times C$.

Let

$$\overline{C}_s := \{ab\underline{1/s} \mid (a,b) \in E_s(C)\}.$$

The set \overline{C}_s is called the **algebraic** *s*-closure of $(C, \underline{I}^o(R))$.

Lemma The *s*-closure \overline{C}_s of an *R*-convex subset $(C, \underline{I}^o(R))$ of an affine *R*-space *A* is a subalgebra of $(A, \underline{I}^o(R))$.

Lemma Let s and t be any two invertible elements of $I^{o}(R)$. Then \overline{C}_{s} and \overline{C}_{t} coincide.

2. Algebraic closures

The *s*-closure \overline{C}_s of *C* will be called the **algebraic closure** or simply the **closure** of *C*, and will be denoted by \overline{C} .

Proposition Let C be a k-dimensional geometric convex subset of the affine R-space R^k . Then its closure \overline{C} is also a geometric k-dimensional convex subset of R^k , and it co-incides with the convex hull $\operatorname{conv}_R(\overline{C})$ of \overline{C} .

Proposition The following hold for the closures \overline{B} and \overline{C} of *R*-convex subsets $(C, \underline{I}^o(R))$ and $(B, \underline{I}^o(R))$ of an affine *R*-space R^k .

(a) $C \leq \overline{C}$;

(b) If $(B, \underline{I}^o(R)) \leq (C, \underline{I}^o(R))$, then $(\overline{B}, \underline{I}^o(R)) \leq (\overline{C}, \underline{I}^o(R))$;

(c) $\overline{\overline{C}} = \overline{C}$.

ALGEBRAIC AND OTHER CLOSURES

Consider an affine *R*-space (A, P, \underline{R}) . Define the following relation \sim_s on the set $A \times A$:

 $(a_1, b_1) \sim_s (a_2, b_2)$ iff $a_1 b_2 \underline{s} = a_1 a_2 \underline{s} b_1 \underline{s}$.

Lemma (a) The relation \sim_s is a congruence relation of the affine *R*-space $(A \times A, P, \underline{R})$. (b) The mapping

$$\varphi: A \to (A \times A)^{\sim_s}$$
; $a \mapsto (a, a)^{\sim_s}$

is an embedding of affine *R*-spaces.

(c) The relation \sim_s is a congruence relation of $\underline{I}^o(R)$ -subreducts of $(A \times A, P, \underline{R})$, in particular of each *R*-convex set $(C \times C, \underline{I}^o(R))$.

Lemma Let $(A, \underline{I}^o(R))$ be the $\underline{I}^o(R)$ -reduct of an affine *R*-space (A, P, \underline{R}) . Then

$$(E_s(A), \underline{I}^o(R))^{\sim_s} \cong (A, \underline{I}^o(R))$$

1. Algebraic closures and aiming congruences

The congruence \sim_s of $(C \times C, \underline{I}^o(R))$ is called the **aiming congruence**.

Proposition Let $(C, \underline{I}^o(R))$ be an *R*-convex subset of an affine *R*-space (A, P, \underline{R}) . Then

$$(\overline{C}_s, \underline{I}^o(R)) \cong (E_s(C), \underline{I}^o(R))^{\sim_s}.$$

Corollary The following conditions are equivalent for a k-dimensional geometric R-convex subset C of the affine R-space R^k , where k = 1, 2, ..., and an invertible element $s \in I^o(R)$:

(a) $(C, \underline{I}^{o}(R))$ is algebraically closed, (b) $(C, \underline{I}^{o}(R)) \cong (\overline{C}, \underline{I}^{o}(R)),$ (c) $(C, \underline{I}^{o}(R)) \cong (E_{s}(C), \underline{I}^{o}(R))^{\sim_{s}}.$

2. Algebraic and topological closures

We consider the usual Euclidean topology on \mathbb{R}^k , and \mathbb{R}^k as a topological subspace of \mathbb{R}^k . Its closed (open) sets are simply closed (open) subsets of \mathbb{R}^k intersected with \mathbb{R}^k .

For a geometric convex subset C of \mathbb{R}^k , let C_R^{tc} be its topological closure in \mathbb{R}^k , and $C_{\mathbb{R}}^{tc}$ its topological closure in \mathbb{R}^k .

Theorem Let $(C, \underline{I}^o(R))$ be a *k*-dimensional geometric convex subset of an affine *R*-space (R^k, P, \underline{R}) . Then the algebraic closure \overline{C} of *C* and the topological closure C_R^{tc} of *C* in R^k coincide:

$$\overline{C} = C_R^{tc}.$$