Representation of distributive spatial lattices by congruence lattices of groupoids

Alexander Popovich

Szeged, June 2012

a is compact if a ≤ ∨ X, for any X ⊆ L, implies that a ≤ ∨ X' for some finite X' ⊆ X.

→ < Ξ →</p>

- a is compact if a ≤ ∨ X, for any X ⊆ L, implies that a ≤ ∨ X' for some finite X' ⊆ X.
- *L* is *algebraic* if every it's element is a join of compact elements.

▶ < ∃ ▶</p>

- a is compact if a ≤ ∨ X, for any X ⊆ L, implies that a ≤ ∨ X' for some finite X' ⊆ X.
- *L* is *algebraic* if every it's element is a join of compact elements.
- a is completely join-irreducible if a = ∨ X, for any X ⊆ L, implies that a ∈ X.

→ < Ξ → <</p>

- a is compact if a ≤ ∨ X, for any X ⊆ L, implies that a ≤ ∨ X' for some finite X' ⊆ X.
- *L* is *algebraic* if every it's element is a join of compact elements.
- a is completely join-irreducible if a = ∨ X, for any X ⊆ L, implies that a ∈ X.
- *L* is *spatial* if every it's element is a join of completely join-irreducible elements.

・ 同 ト ・ ヨ ト ・ ヨ ト

- a is compact if a ≤ ∨ X, for any X ⊆ L, implies that a ≤ ∨ X' for some finite X' ⊆ X.
- *L* is *algebraic* if every it's element is a join of compact elements.
- a is completely join-irreducible if a = ∨ X, for any X ⊆ L, implies that a ∈ X.
- *L* is *spatial* if every it's element is a join of completely join-irreducible elements.
- Every distributive spatial lattice is algebraic.

• G. Grätzer, E.T. Schmidt (1963) Every algebraic lattice can be represented as the congruence lattice of some algebra.

- G. Grätzer, E.T. Schmidt (1963) Every algebraic lattice can be represented as the congruence lattice of some algebra.
- R. Freese, W.A. Lampe, W. Taylor (1979) There exist a modular lattice which is not represented as the congruence lattice of any algebra with finite type.

- G. Grätzer, E.T. Schmidt (1963) Every algebraic lattice can be represented as the congruence lattice of some algebra.
- R. Freese, W.A. Lampe, W. Taylor (1979) There exist a modular lattice which is not represented as the congruence lattice of any algebra with finite type.
- W.A. Lampe (1982) Every algebraic lattice with compact unit is isomorphic to the congruence lattice of some groupoid.

Representation of distributive algebraic lattices

• **Open problem**. Is every distributive algebraic lattice isomorphic to the congruence lattice of some groupoid (or, moreover, semigroup)?

Representation of distributive algebraic lattices

- **Open problem**. Is every distributive algebraic lattice isomorphic to the congruence lattice of some groupoid (or, moreover, semigroup)?
- E.T. Schmidt (1981) Every distributive algebraic lattice whose compact elements form a lattice is isomorphic to the congruence lattice of some lattice with 0.

Representation of distributive algebraic lattices

- **Open problem**. Is every distributive algebraic lattice isomorphic to the congruence lattice of some groupoid (or, moreover, semigroup)?
- E.T. Schmidt (1981) Every distributive algebraic lattice whose compact elements form a lattice is isomorphic to the congruence lattice of some lattice with 0.

伺 ト イヨト イヨト

• An ideal of a semigroup S is a set $I \subseteq S$, such that $IS \subseteq I$ and $SI \subseteq I$.

一回 ト イヨト イヨト

э

- An ideal of a semigroup S is a set $I \subseteq S$, such that $IS \subseteq I$ and $SI \subseteq I$.
- A principal ideal is an ideal generated by one element.

日本 ・ 日本 ・ 日本

э

- An ideal of a semigroup S is a set $I \subseteq S$, such that $IS \subseteq I$ and $SI \subseteq I$.
- A principal ideal is an ideal generated by one element.
- Joins and meets of ideals are set-theretic.

• • = • • = •

- An ideal of a semigroup S is a set $I \subseteq S$, such that $IS \subseteq I$ and $SI \subseteq I$.
- A principal ideal is an ideal generated by one element.
- Joins and meets of ideals are set-theretic.
- All principal ideals are completely join-irredusible.

→ < Ξ → <</p>

- An ideal of a semigroup S is a set $I \subseteq S$, such that $IS \subseteq I$ and $SI \subseteq I$.
- A principal ideal is an ideal generated by one element.
- Joins and meets of ideals are set-theretic.
- All principal ideals are completely join-irredusible.
- Every ideal of a semigroup S is the join of it's principal ideals, so the ideal lattice $\operatorname{Id} S$ is distributive and spatial.

- An ideal of a semigroup S is a set $I \subseteq S$, such that $IS \subseteq I$ and $SI \subseteq I$.
- A principal ideal is an ideal generated by one element.
- Joins and meets of ideals are set-theretic.
- All principal ideals are completely join-irredusible.
- Every ideal of a semigroup S is the join of it's principal ideals, so the ideal lattice $\operatorname{Id} S$ is distributive and spatial.
- C.J. Ash (1980) Every disributive spatial lattice is isomorphic to the ideal lattice of some semigroup.

• • = • • = •

Theorem. Every distributive spatial lattice is isomorphic to the congruence lattice of some groupoid G, such that G satisfies the identities xy = yx and $x^2 = 0$ and Id $G \cong \text{Con } G$.

Let G be a groupoid with 0 and P is a (∨, 0)-semilattice. A map ρ: G → P is an *ideal function* if
1. ρ(0) = 0
2. ρ(xy) ≤ ρ(x) and ρ(xy) ≤ ρ(y)

→ < Ξ → <</p>

- Let G be a groupoid with 0 and P is a (∨, 0)-semilattice. A map ρ: G → P is an *ideal function* if
 1. ρ(0) = 0
 2. ρ(xy) ≤ ρ(x) and ρ(xy) ≤ ρ(y)
 Let I be an ideal in P.
- Then a set $\rho^{-1}(I) = \{x \in G : \rho(x) \in I\}$ is an ideal of G. So, $\rho^{-1} : \operatorname{Id} P \to \operatorname{Id} G$

b) A (B) b)

Proposition. Let G be a groupoid with 0, $P \lor$ -semilattice with 0 and $\rho: G \to P$ an ideal function. Let $a, b \in G$ satisfy $\rho(a) \ge \rho(b)$. Then there exists a groupoid \tilde{G} with 0 and an ideal function $\tilde{\rho}: \tilde{G} \to P$ such that 1) G is a subgroupoid of \tilde{G} ; 2) $\tilde{\rho}|_G = \rho$; 3) there exists an element $u \in \tilde{G}$ such that au = b and xu = 0 for $x \in \tilde{G} \setminus \{a\}$; 4) if G satisfies xy = yx and $x^2 = 0$, then so \tilde{G} . **Corollary.** Let G be a groupoid with 0, $P \lor$ -semilattice with 0 and $\rho: G \to P$ an ideal function.

Then there exists a groupoid \tilde{G} with 0 and an ideal function $\tilde{\rho}: \tilde{G} \to P$ such that

1) G is a subgroupoid of
$$\tilde{G}$$
;

2)
$$\tilde{\rho}|_{G} = \rho$$
;

3) for every a, b with $\rho(a) \ge \rho(b)$ there exists an element $u \in \tilde{G}$ such that au = b and xu = 0 for $x \in \tilde{G} \setminus \{a\}$; 4) if G satisfies xv = vx and $x^2 = 0$, then so \tilde{G} . • Let *L* be a distributive spatial lattice. Ji *L* is the set of join-irredusible elements.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

- Let *L* be a distributive spatial lattice. Ji *L* is the set of join-irredusible elements.
- A subset A ⊆ Ji L is called a down-set if x ∈ A and y ≤ x imply that y ∈ A. Down Ji L is the set of all down-sets of Ji L

→ < Ξ → <</p>

- Let *L* be a distributive spatial lattice. Ji *L* is the set of join-irredusible elements.
- A subset A ⊆ Ji L is called a down-set if x ∈ A and y ≤ x imply that y ∈ A. Down Ji L is the set of all down-sets of Ji L
- There exist an isomorphism $\phi: L \to \text{Down Ji } L$

A B A A B A

- Let *L* be a distributive spatial lattice. Ji *L* is the set of join-irredusible elements.
- A subset A ⊆ Ji L is called a down-set if x ∈ A and y ≤ x imply that y ∈ A. Down Ji L is the set of all down-sets of Ji L
- There exist an isomorphism $\phi: L \to \text{Down Ji } L$
- Set $G = \text{Ji } L \cup \{0\}$ and form a groupoid with zero multiplication (xy = 0). Set $\rho : G \to \text{Comp } L$ by the rule $\rho(x) = \phi(x)$ for $x \in G$ and $\rho(0) = 0$.

伺 と く ヨ と く ヨ と

Then there exists a groupoid \tilde{G} with zero 0, satisfying xy = yx and $x^2 = 0$, and an ideal function $\tilde{\rho} : \tilde{G} \to \text{Comp } L$ such that G is a subgroupoid of \tilde{G} , $\tilde{\rho}|G = \rho$ and 1) for every $x \in \tilde{G}$ there exists $u_x \in \tilde{G}$ such that $xu_x = x$ and $yu_x = 0$ for $y \in \tilde{G} \setminus \{x\}$; 2) for every $x, y \in \tilde{G}$ if $\tilde{\rho}(x) \ge \tilde{\rho}(y)$, then there exists $v \in \tilde{G}$ such that xv = y.

• Let
$$\Theta \in \operatorname{Con} \tilde{G}$$
 and $(a, b) \in \Theta$.

▲御≯ ▲ 副≯

э

э

- Let $\Theta \in \operatorname{Con} \tilde{G}$ and $(a, b) \in \Theta$.
- Then $(a, 0) = (au_a, bu_a) \in \Theta$ and $(b, 0) = (au_b, bu_b) \in \Theta$. So $\Theta = I \times I$ for some ideal I.

▶ < ∃ ▶

- Let $\Theta \in \operatorname{Con} \tilde{G}$ and $(a, b) \in \Theta$.
- Then $(a, 0) = (au_a, bu_a) \in \Theta$ and $(b, 0) = (au_b, bu_b) \in \Theta$. So $\Theta = I \times I$ for some ideal I.
- We got $\operatorname{Con} \tilde{G} \cong \operatorname{Id} \tilde{G}$.

4 E b

- Let $\Theta \in \operatorname{Con} \tilde{G}$ and $(a, b) \in \Theta$.
- Then $(a, 0) = (au_a, bu_a) \in \Theta$ and $(b, 0) = (au_b, bu_b) \in \Theta$. So $\Theta = I \times I$ for some ideal I.
- We got $\operatorname{Con} \tilde{G} \cong \operatorname{Id} \tilde{G}$.
- Let $\operatorname{Id}^1 \tilde{G}$ be the set of principal ideals of \tilde{G} . Set $\psi : \operatorname{Ji} L \to \operatorname{Id}^1 \tilde{G}$ by the rule $\psi(p) = \{x \in \tilde{G} | \rho(x) \leq p\}.$

- Let $\Theta \in \operatorname{Con} \tilde{G}$ and $(a, b) \in \Theta$.
- Then $(a, 0) = (au_a, bu_a) \in \Theta$ and $(b, 0) = (au_b, bu_b) \in \Theta$. So $\Theta = I \times I$ for some ideal I.
- We got $\operatorname{Con} \tilde{G} \cong \operatorname{Id} \tilde{G}$.
- Let $\operatorname{Id}^1 \tilde{G}$ be the set of principal ideals of \tilde{G} . Set $\psi : \operatorname{Ji} L \to \operatorname{Id}^1 \tilde{G}$ by the rule $\psi(p) = \{x \in \tilde{G} | \rho(x) \leq p\}.$
- ψ is an isomorphism.

- Let $\Theta \in \operatorname{Con} \tilde{G}$ and $(a, b) \in \Theta$.
- Then $(a,0) = (au_a, bu_a) \in \Theta$ and $(b,0) = (au_b, bu_b) \in \Theta$. So $\Theta = I \times I$ for some ideal I.
- We got $\operatorname{Con} \tilde{G} \cong \operatorname{Id} \tilde{G}$.
- Let $\operatorname{Id}^1 \tilde{G}$ be the set of principal ideals of \tilde{G} . Set $\psi : \operatorname{Ji} L \to \operatorname{Id}^1 \tilde{G}$ by the rule $\psi(p) = \{x \in \tilde{G} | \rho(x) \leq p\}.$
- ψ is an isomorphism.
- Then $L \cong \text{Down Ji } L \cong \text{Down Id}^1 \ \tilde{G} \cong \text{Id} \ \tilde{G}$.

Thank you for attention.

A.

э