# A new operation on finite partially ordered sets inherited from the random poset

András Pongrácz

CEU Budapest, Hungary

Szeged, June 2012.

# Joint with Csaba Szabó





András Pongrácz

A new operation on finite partially ordered sets inherited fr

#### **Binary relation**

András Pongrácz A new operation on finite partially ordered sets inherited fr

#### **Binary relation**

🚺 aEb

András Pongrácz A new operation on finite partially ordered sets inherited fr

| Binary relation |  |   |
|-----------------|--|---|
| 💶 aEb           |  | 1 |
| 🥝 aNb           |  | I |
|                 |  | I |

| Binary relation |  |
|-----------------|--|
| 💶 aEb           |  |
| ❷ aNb           |  |
| O (or a = b)    |  |

### Complementation

 $E\leftrightarrow N$ 

#### Complementation

 $E\leftrightarrow N$ 

# switch (J. J. Seidel)

András Pongrácz A new operation on finite partially ordered sets inherited fr

# Complementation

 $E \leftrightarrow N$ 

# switch (J. J. Seidel)

 $\mathbf{0} \ \mathbf{v} \in V$ 

András Pongrácz A new operation on finite partially ordered sets inherited fr

# ${\small Complementation}$

 $E \leftrightarrow N$ 

#### switch (J. J. Seidel)



**2** edges containing  $v \leftrightarrow$  non-edges containing v

# ${\small Complementation}$

 $E \leftrightarrow N$ 

### switch (J. J. Seidel)

- $\bullet v \in V$
- 2 edges containing  $v \leftrightarrow$  non-edges containing v
- identical otherwise

Why are they special?

Every partial isomorphism between finite substructures is the restriction of an automorphism.

Every partial isomorphism between finite substructures is the restriction of an automorphism.

#### Example

 $\Gamma = (V; E)$  : random graph

# Let G be a closed group containing $Aut(\Gamma)$ . Then G is one of the following.

Aut(Γ)

- Aut(Γ)
- $\langle Aut(\Gamma), \rangle$

- Aut(Γ)
- $\langle Aut(\Gamma), \rangle$
- $\langle Aut(\Gamma), sw \rangle$

- Aut(Γ)
- $\langle Aut(\Gamma), \rangle$
- $\langle Aut(\Gamma), sw \rangle$
- $\langle Aut(\Gamma), -, sw \rangle$

- Aut(Γ)
- $\langle Aut(\Gamma), \rangle$
- $\langle Aut(\Gamma), sw \rangle$
- $\langle Aut(\Gamma), -, sw \rangle$
- Sym(Γ)

#### Fast algorithms

Switching to a

- triangle-free graph. (R. B. Hayward, 1996; and J. Hage, T. Harju, E. Welzl, 2002)
- planar graph. (A. Ehrenfeucht, J. Hage, T. Harju, G. Rozenberg, 2000; J. Kratochvil, 2003)
- Eulerian graph. (J. Hage, T. Harju, E. Welzl, 2002)
- bipartite graph. (J. Hage, T. Harju, E. Welzl, 2002)
- O claw-free graph. (E. Jelinkova, J. Kratochvil, 2008)

#### Slow algorithm

Switching to a regular graph. (Kratochvil, 2003)

# Cameron's theorem

#### Total orders

 $(\mathbb{Q}, <)$ 

# Theorem (1976)

- $Aut(\mathbb{Q}, <)$
- $\langle \mathsf{Aut}(\mathbb{Q},<), \updownarrow \rangle$
- $\langle \mathsf{Aut}(\mathbb{Q},<),\mathsf{cycl}\rangle$
- $\langle \mathsf{Aut}(\mathbb{Q},<), \updownarrow, \mathsf{cycl} \rangle$
- Sym(ℚ)

| Binary relation |  |
|-----------------|--|
| ❶ a < b         |  |
| ❷ a > b         |  |
| 🧿 a⊥b           |  |
| • (or $a = b$ ) |  |

A bijective map  $f : A \rightarrow B$  is a poset rotation if there exists a partition  $A = X \cup Y \cup Z$  such that

- **Q** X is downward closed, Z is upward closed, and X < Z,
- **2**  $f|_X$ ,  $f|_Y$  and  $f|_Z$  are isomorphisms,

$$if x \perp y$$
 then  $f(x) > f(y)$ ,

• if 
$$x < y$$
 then  $f(x) \perp f(y)$ 

**o** if 
$$y \perp z$$
 then  $f(y) > f(z)$ 

• if 
$$y < z$$
 then  $f(y) \perp f(z)$ ,

• 
$$f(X) > f(Z)$$
.

# 3-orbits



András Pongrácz A new operation on finite partially ordered sets inherited fr

# 3-orbits



András Pongrácz A new operation on finite partially ordered sets inherited fr

#### Theroem (P. P. Pach, M. Pinsker, G. Pluhár, A. P., Cs. Szabó)

 ${\cal P}$  has 5 reducts up to first-order interdefinability:



#### Techniques applied in the proof are

#### Techniques applied in the proof are

**(**) a method developed by M. Bodirsky and M. Pinsker

#### Techniques applied in the proof are

- a method developed by M. Bodirsky and M. Pinsker
- **2** structural Ramsey theory (work of Nešetřil, Fouché, Sokic and others)

#### Theorem

Let  $f : A \to B$  be a bijection between finite posets that preserves  $R_1, R_2, R_3$ . Then f is a rotation.

#### Theorem

Let  $f : A \to B$  be a bijection between finite posets that preserves  $R_1, R_2, R_3$ . Then f is a rotation.

#### Lemma

Let  $N \subseteq A$  be the linear sum of (at most) two antichains. Then there is a unique way to alter the relation on A so that  $R_1, R_2, R_3$  are preserved and N becomes the set of maximal elements.

#### Theorem

Let  $f : A \to B$  be a bijection between finite posets that preserves  $R_1, R_2, R_3$ . Then f is a rotation.

#### Lemma

Let  $N \subseteq A$  be the linear sum of (at most) two antichains. Then there is a unique way to alter the relation on A so that  $R_1, R_2, R_3$  are preserved and N becomes the set of maximal elements.

#### Lemma

Let  $N \subseteq A$  be the linear sum of (at most) two antichains. Then there exists a rotation f on A such that f(N) is the set of maximal elements in f(A).

Two *n*-element posets A and B are rotation equivalent if there exists a rotation  $f : A \rightarrow B$ .

Two *n*-element posets A and B are rotation equivalent if there exists a rotation  $f : A \rightarrow B$ .

#### Proposition

In every rotation equivalence class there are at most  $2^n$  posets.

Two *n*-element posets A and B are rotation equivalent if there exists a rotation  $f : A \rightarrow B$ .

#### Proposition

In every rotation equivalence class there are at most  $2^n$  posets.

#### Remark

 $\frac{2^n}{n^2}$  can be obtained.

• What is the size of the smallest/biggest equivalence class?

- What is the size of the smallest/biggest equivalence class?
- How many equivalence classes are there?

- What is the size of the smallest/biggest equivalence class?
- How many equivalence classes are there?
- Is there a "nice" representative for every equivalence class?

- What is the size of the smallest/biggest equivalence class?
- How many equivalence classes are there?
- Is there a "nice" representative for every equivalence class?

#### Computational complexity

- What is the size of the smallest/biggest equivalence class?
- How many equivalence classes are there?
- Is there a "nice" representative for every equivalence class?

#### Computational complexity

• Is it in P to decide whether two posets are rotation equivalent?

- What is the size of the smallest/biggest equivalence class?
- How many equivalence classes are there?
- Is there a "nice" representative for every equivalence class?

#### Computational complexity

- Is it in P to decide whether two posets are rotation equivalent?
- Is there a fast algorithm that decides whether a given finite poset is rotation equivalent with a poset having a "nice" property?

- What is the size of the smallest/biggest equivalence class?
- How many equivalence classes are there?
- Is there a "nice" representative for every equivalence class?

#### Computational complexity

- Is it in P to decide whether two posets are rotation equivalent?
- Is there a fast algorithm that decides whether a given finite poset is rotation equivalent with a poset having a "nice" property?
- Given an *n*-element set X with three ternary relations S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub>. Is it in P to decide whether there exists a partial order ≤ on X such that R<sub>i</sub> = S<sub>i</sub>?