Congruence FD-maximal varieties

Miroslav Ploščica

Slovak Academy of Sciences, Košice

June 19, 2012

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Problem. For a given class \mathcal{K} of algebras describe Con \mathcal{K} =all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

Or, at least,

describe the finite members of Con \mathcal{K} .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

In the sequel: \mathcal{V} ... a finitely generated CD variety; SI(\mathcal{V})... the family of subdirectly irreducible members; M(L)... completely \wedge -irreducible elements of a lattice L.

Lemma

Let $L \in Con\mathcal{V}$. Then for every $x \in M(L)$, the lattice $\uparrow x$ is isomorphic to Con T for some $T \in SI(\mathcal{V})$.

On the finite level (for finite L), the necessary condition is sometimes also sufficient. In such a case we say that V is *congruence FD-maximal*. Formally, V is congruence FD-maximal, if for every finite distributive lattice L the following two conditions are equivalent:

- (i) $L \in \operatorname{Con} \mathcal{V};$
- (ii) for every $x \in M(L)$, the lattice $\uparrow x$ is isomorphic to $\operatorname{Con} T$ for some $T \in SI(\mathcal{V})$.

- * 同 * * ヨ * * ヨ * -

Let A be finite, generating a CD variety. We say that A is congruence FD-maximal, if for every finite distributive lattice L the following two conditions are equivalent:

(i)
$$L \cong \operatorname{Con} B$$
 for some $B \in P_s H(A)$;

(ii) for every $x \in M(L)$, the lattice $\uparrow x$ is isomorphic to $\operatorname{Con} T$ for some $T \in H(A)$.

Conjecture: the following condition are equivalent:

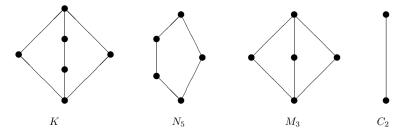
(i) \mathcal{V} is congruence FD-maximal;

(ii) for every $T \in SI(\mathcal{V})$ there exists $A_T \in SI(\mathcal{V})$ such that

- A_T is congruence maximal;
- $\operatorname{Con} A_T \cong \operatorname{Con} T$;
- if $\operatorname{Con}(A_T/\tau) \cong \operatorname{Con}(A_S/\sigma)$ for some $S, T \in SI(\mathcal{V})$ and $\tau \in \operatorname{Con} A_T$, $\sigma \in \operatorname{Con} A_S$, then $(A_T/\tau) \cong (A_S/\sigma)$.

Example

Let $\mathcal{V} = HSP(K)$, where K is the lattice



Subdirectly irreducible members are C_2 , M_3 , N_5 and K. Now, M_3 is a quotient of K, C_2 is a quotient of N_5 , and $\operatorname{Con} C_2 \cong \operatorname{Con} M_3$, while C_2 and M_3 are not isomorphic.

< 同 > < 三 > <

Theorem

If A is finite, generates a CD variety, and Con A is a chain, then A is congruence FD-maximal.

Theorem

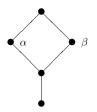
Let \mathcal{V} be a finitely generated congruence-distributive variety with the property that $\operatorname{Con} C$ is a finite chain for every $C \in \operatorname{SI}(\mathcal{V})$. Then \mathcal{V} is congruence FD-maximal

Examples: distributive lattices, Stone algebras ...

< ロ > (同 > (回 > (回 >))

The simplest of the difficult cases

Let Con A be isomorphic to the following lattice V:



▲ 同 ▶ ▲ 国 ▶ ▲ 国

Non-congruence-maximal example

If the two nontrivial subdirectly irreducible quotients of A are not isomorphic, then A is not congruence FD-maximal. (The free distributive lattice with 3 generators does not belong to ${\rm Con} P_s H(A).$ In this case, M(L) is

Let E be a subset of $B \times B$ for some set B. Let X be a set and let \mathcal{F} be a set of functions $X \to B$. We say that \mathcal{F} is E-compatible if $\{f(x), g(x)) \mid x \in X\} = E$ or $\{(g(x), f(x)) \mid x \in X\} = E$ for every $f, g \in \mathcal{F}, f \neq g$.

Lemma

Suppose that $E \subseteq B \times B$ contains a pair (a, b) with $a \neq b$. Then the following condition are equivalent.

(i) There exist arbitrarily large finite *E*-compatible sets of functions.

(ii) For every $(a,b) \in A$ there are $x, y, z \in B$ such that $(x,x), (y,y), (z,z), (x,y), (x,z), (y,z), (x,a), (x,b), (a,y), (y,b), (a,z), (b,z) \in A.$

イロト イポト イヨト イヨト

Theorem

A is congruence-maximal if and only if the quotients A/α and A/β are isomorphic to the same algebra B and there exist surjective homomorphisms $h_0, h_1: A \to B$ such that

(i)
$$\operatorname{Ker}(h_0) = \alpha$$
, $\operatorname{Ker}(h_1) = \beta$;

(ii) there are arbitrarily large *E*-compatible sets of functions for $E = \{(h_0(x), h_1(x)) \mid x \in A\} \subseteq B \times B.$

- 4 同 6 4 日 6 4 日 6

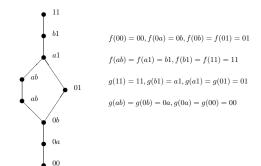
For $A = N_5$ we have $B = \{0, 1\}$, $E = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$ so almost every family of functions is *E*-compatible and N_5 is congruence FD-maximal.

イロト イポト イヨト イヨト

э

Negative example

Consider the following lattice A with two additional unary operations.



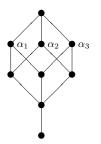
< 同 > < 三 > < 三 >

We have $B = \{0, 1, a, b\}$, $E = \{(0, 0), (0, a), (0, b), (a, b), (0, 1), (a, 1), (b, 1), (1, 1)\}$ (the labels on the elements of A), and the pair (a, b) violates our condition. Thus, A is not congruence-maximal.

イロト イポト イヨト イヨト

A generalization

Let $\operatorname{Con} A$ be an ordinal sum $\mathbf{1} \oplus P_n$, where P_n is the *n*-dimensional cube, with coatoms denoted by $\alpha_1, \ldots, \alpha_n$. For n = 3:



・ 同 ト ・ ヨ ト ・ ヨ ト

Let E be a subset of B^m for some set B and m>1. For a permutation π on $\{1,\ldots,m\}$ denote

$$E^{\pi} = \{ (\pi(x_1), \dots, \pi(x_m)) \mid (x_1, \dots, x_m) \in E \}.$$

Let X be a set and let $\mathcal{F} = \{f_1, \ldots, f_n\}$ be a set of functions $X \to B$. We say that \mathcal{F} is *E-compatible* if for every $i_1 < i_2 < \cdots < i_m \leq n$ there exists a permutation π such that $\{(f_{i_1}(x), \ldots, f_{i_m}(x)) \mid x \in X\} = E^{\pi}$.

Lemma

Suppose that $E \subseteq B \times B$ contains a nondiagonal *m*-tuple. Then the following condition are equivalent.

- (i) There exist arbitrarily large finite *E*-compatible sets of functions.
- (ii) There exists π such that for every $(x_1, x_3, \dots, x_{2m-1}) \in E^{\pi}$ there exist $x_0, x_2, \dots, x_{2m} \in B$ such that

$$(x_{i_1},\ldots,x_{i_m})\in E^{\pi}$$

whenever $i_1 \leq i_2 \leq \cdots \leq i_m$ and odd indexes do not repeat.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

A is congruence-maximal if and only if the quotients A/α_i (i = 1,...,n) are all isomorphic to the same algebra B and there exist surjective homomorphisms h₁,..., h_m: A → B such that
(i) Ker(h_i) = α_i for every i;
(ii) there are arbitrarily large E-compatible sets of functions for E = {(h₁(x),...,h_m(x)) | x ∈ A} ⊂ B^m.

イロト イポト イヨト イヨト