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Multialgebra

An n-ary multioperation f on a set A is a mapping

f : An → P∗(A).

(P∗(A) denotes the set of the nonempty subsets of A).

Let F be a type of (multi)algebras.

A multialgebra A = (A,F ) of type F consists of a set A and a
family of multioperations F obtained by associating a
multioperation f A (or, simply, f ) on A to each symbol f from F .
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The tools

I The universal algebra of the nonempty subsets of a multialgebra
(Pickett): each multialgebra A determines a universal algebra
P∗(A) on P∗(A) defining

f P
∗(A)(A1, . . . ,An) =

⋃
{f A(a1, . . . , an) | ai ∈ Ai , i = 1, . . . , n}

I the clone Clo(P∗(A)) of the term functions of P∗(A)

I Identities: if q, r are n-ary terms of type F ,

q = r on A⇔ qP
∗(A)(a1, . . . , an) = rP

∗(A)(a1, . . . , an),

∀a1, . . . , an ∈ A,

q ∩ r 6= ∅ on A⇔ qP
∗(A)(a1, . . . , an)∩ rP

∗(A)(a1, . . . , an) 6= ∅,
∀a1, . . . , an ∈ A.
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Submultialgebras

Let A = (A,F ) be a multialgebra.
A subset B ⊆ A is a submultialgebra of A if for any n ∈ N, any
f ∈ Fn and any b1, . . . , bn ∈ B

f A(b1, . . . , bn) ⊆ B.

Theorem (Pickett)

A subset B ⊆ A is a submultialgebra of A if and only if P∗(B) is a
subalgebra of P∗(A).

⇒ If B is a submultialgebra of A, t is an n-ary term of type F and
b1, . . . , bn ∈ B then

tP
∗(A)(b1, . . . , bn) ⊆ B.

⇒ (Madarasz) If X ⊆ A then a ∈ [X ] if and only if there exist
n ∈ N, an n-ary term t and x1, . . . , xn ∈ X such that

a ∈ tP
∗(A)(x1, . . . , xn).
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Homomorphisms

Let A = (A,F ) and B = (B,F ) be multialgebras of type F and
h : A→ B.

I h is a multialgebra homomorphism from A into B if for any
n ∈ N, any f ∈ Fn and any a1, . . . , an ∈ A,

h(f A(a1, . . . , an)) ⊆ f B(h(a1), . . . , h(an)).

I h is an ideal homomorphism if for any n ∈ N, any f ∈ Fn and
any a1, . . . , an ∈ A,

h(f A(a1, . . . , an)) = f B(h(a1), . . . , h(an)).

I the multialgebra isomorphisms are the bijective ideal
homomorphisms.
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Factor multialgebras

I Let A = (A,F ) be a multialgebra of type F and let ρ be an
equivalence relation on A. Defining for each n ∈ N and each
f ∈ Fn,

f (a1/ρ, . . . , an/ρ) = {b/ρ | b ∈ f (b1, . . . , bn), aiρbi , i = 1, . . . , n}

one obtains a multialgebra A/ρ on A/ρ called the factor
multialgebra of A modulo ρ.

I If A is a universal algebra the multioperations from A/ρ are
defined by the equalities

f (a1/ρ, . . . , an/ρ) = {b/ρ | b = f (b1, . . . , bn), aiρbi , i = 1, . . . , n}.

Representation Theorem (Grätzer)
Any multialgebra is a factor of a universal algebra modulo an
appropriate equivalence relation.
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Factor multialgebras

I If A is a multialgebra and t is an n-ary term of type F then

{b/ρ|b ∈ tP
∗(A)(b1, ..., bn), aiρbi , i = 1, n} ⊆ tP

∗(A/ρ)(a1/ρ, ..., an/ρ).

⇒ any (weak or strong) identity of A is ‘weakly’ satisfied on A/ρ

I Even if A is a universal algebra, the above inclusion is not, in
general, an equality, therefore the identities of A become, in
general, only weak identities of A/ρ.
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Example
If (Z5,+) is the cyclic group of order 5 and we take the equivalence

ρ = {0, 1} × {0, 1} ∪ {2} × {2} ∪ {3, 4} × {3, 4},

(Z5/ρ,+) is a multialgebra with a binary multioperation + given by

+ {0, 1} {2} {3, 4}
{0, 1} {0, 1}, {2} {2}, {3, 4} {0, 1}, {3, 4}
{2} {2}, {3, 4} {3, 4} {0, 1}
{3, 4} {0, 1}, {3, 4} {0, 1} {0, 1}, {2}, {3, 4}

{c/ρ | c = (b0 + b1) + b2, b0 = b1 = 2, b2 ∈ {3, 4}} = {2/ρ, 3/ρ}

(2/ρ+ 2/ρ) + 3/ρ = 3/ρ+ 3/ρ = {0/ρ, 2/ρ, 3/ρ},

and the associativity is only weakly satisfied on (Z5/ρ,+) since

2/ρ+ (2/ρ+ 3/ρ) = 2/ρ+ 0/ρ = {2/ρ, 3/ρ}.
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Yet ...

I there are identities, like those which characterize the
commutativity of an n-ary operation of an algebra, which
always hold in a strong manner in the factor multialgebra

I there are equivalence relations on some algebras which
preserve certain sets of identities

I Example (Roth)

Let (G , ·) be a finite group and ρ the conjugacy relation on G .
Then (G/ρ, ·, 1/ρ) is a multialgebra with a binary multioperation
and a nullary operation, and both multialgebras (G , ·, 1) and
(G/ρ, ·, 1/ρ) satisfy the (strong) identities:

(x1 · x2) · x3 = x1 · (x2 · x3), x1 · 1 = 1 · x1 = x1.
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Ideal equivalences

Let A = (A,F ) be a multialgebra. An equivalence relation ρ on A
determines on P∗(A) the relations ρ and ρ defined by:

XρY ⇔ ∀x ∈ X , ∃y ∈ Y : xρy and ∀y ∈ Y , ∃x ∈ X : xρy ;

XρY ⇔ xρy , ∀x ∈ X , ∀y ∈ Y ⇔ X × Y ⊆ ρ.

The relation ρ is an ideal equivalence on A if for any n ∈ N, any
f ∈ Fn and any xi , yi ∈ A for which xiρyi (i ∈ {1, . . . , n}) we have

a ∈ f A(x1, . . . , xn)⇒ ∃b ∈ f A(y1, . . . , yn) : aρb.
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Ideal equivalences

Theorem (Pickett)

If ρ is an ideal equivalence on A then the canonical projection

πρ : A→ A/ρ, πρ(a) = a/ρ

is an ideal homomorphism. Conversely, if h : A→ B is an ideal
homomorphism from A into B, its kernel is an ideal equivalence on
A. Moreover, the mapping h(a) 7→ πker h(a) is an multialgebra
isomorphism between h(A) and A/ ker h.

⇒ the equivalence relations ρ for which the factor multialgebra
A/ρ is a universal algebra are particular ideal equivalence
relations

I (Breaz, Pelea) An equivalence relation ρ of the multialgebra A
is ideal if and only if ρ is a congruence relation on P∗(A).
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Corollary
Let A = (A,F ) be a multialgebra and let ρ be an equivalence relation on
A. The following conditions are equivalent:

(a) ρ is an ideal equivalence on A;

(b) for any n ∈ N, any f ∈ Fn, and any xi , yi ∈ A for which xiρyi
(i ∈ {1, . . . , n}) we have

f A(x1, . . . , xn)ρf A(y1, . . . , yn);

(c) for any n ∈ N, any f ∈ Fn, any a, b, x1, . . . , xn ∈ A such that aρb,
and any i ∈ {1, . . . , n}, we have

f A(x1, . . . , xi−1, a, xi+1, . . . , xn)ρf A(x1, . . . , xi−1, b, xi+1, . . . , xn)

(d) for any n-ary term t of type F , and any xi , yi ∈ A with xiρyi
(i ∈ {1, . . . , n}) we have

tP
∗(A)(x1, . . . , xn) ρ tP

∗(A)(y1, . . . , yn).
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Direct products of multialgebras

If (Ai | i ∈ I ) is a family of multialgebras of type F , the Cartesian
product

∏
i∈I Ai with the multioperations defined by

f
∏

i∈I Ai (a1, . . . , an) =
∏
i∈I

f Ai (a1(i), . . . , an(i))

is a multialgebra called the direct product of the multialgebras
(Ai | i ∈ I ).

I If t is an n-ary term of type F and a1, . . . , an ∈
∏

i∈I Ai then

tP
∗(

∏
i∈I Ai)(a1, . . . , an) =

∏
i∈I

tP
∗(Ai )(a1(i), . . . , an(i)).

I The direct product of a family of multialgebras which satisfy a
certain identity (weak or strong) satisfies the same identity.
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Direct limits of direct systems of multialgebras

Let A = ((Ai | i ∈ I ), (ϕij | i , j ∈ I , i ≤ j)) be a direct system of
multialgebras and let A∞ = {x̂ | x ∈ A} be the direct limit of the direct
system of their underlying sets (A is the disjoint union of the sets Ai ).
Let n ∈ N and f ∈ Fn. If x̂1, . . . , x̂n ∈ A∞ and for any j ∈ {1, ..., n} we
consider that xj ∈ Aij (ij ∈ I ) then

f A∞(â1, . . . , ân) = {â ∈ A∞ | ∃m ∈ I , i1 ≤ m, . . . , in ≤ m,

a ∈ f Am(ϕi1m(a1), . . . , ϕinm(an))}.
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I If t is an n-ary term of type F , a1, . . . , an ∈ A and i1, . . . , in ∈ I are
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Factor multialgebras which are universal algebras

Proposition (Pelea, Purdea)
The following conditions are equivalent:

a) A/ρ is a universal algebra;

b) for any n ∈ N, any f ∈ Fn, any a, b, x1, . . . , xn ∈ A such that aρb,
and any i ∈ {1, . . . , n}, we have

f A(x1, . . . , xi−1, a, xi+1, . . . , xn)ρf A(x1, . . . , xi−1, b, xi+1, . . . , xn)

c) for any n ∈ N, any f ∈ Fn, and any xi , yi ∈ A for which xiρyi
(i ∈ {1, . . . , n}) we have

f A(x1, . . . , xn)ρf A(y1, . . . , yn);

d) for any n-ary term t of type F , and any xi , yi ∈ A with xiρyi
(i ∈ {1, . . . , n})

tP
∗(A)(x1, . . . , xn) ρ tP

∗(A)(y1, . . . , yn).

We denote by Eua(A) the set of the relations characterized above.
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The fundamental relation of a multialgebra

I Eua(A) is an algebraic closure system on A× A.

⇒ the smallest element α∗A of Eua(A) is called the fundamental
relation of A and A = A/α∗A is called the fundamental algebra of A.

I If ρ ∈ Eua(A) then every identity which holds in A also holds in the
algebra A/ρ. In particular, any (weak or strong) identity which
holds on A is also satisfied in A.

I (Pelea) α∗A is the transitive closure of the relation α defined by

xαAy ⇔ x , y ∈ tP
∗(A)(a1, . . . , an)

for some n-ary term t of type F and some a1, . . . , an ∈ A.

I (Pelea, Purdea) If B is a universal algebra of type F , ρ is an
equivalence relation on B, θ(ρ) is the congruence of B generated by
ρ, t is an n-ary term of type F , and x , y , z1, . . . , zn ∈ B then

x/ρ, y/ρ ∈ tP
∗(B/ρ)(z1/ρ, . . . , zn/ρ) ⇒ xθ(ρ)y .

⇒ (Pelea, Purdea) B/ρ ∼= B/θ(ρ).
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The fundamental relation of a hypergroup

A multialgebra (H, ·) with one binary associative
multioperation satisfying the condition

aH = Ha = H, ∀a ∈ H

is called hypergroup.

I The fundamental relation of the hypergroup (H, ·) is

βH =
⋃

n∈N∗
βHn ,

where

xβHn y ⇔ ∃a1, . . . , an ∈ H : x , y ∈ a1 · · · an.

I The fundamental algebra of a hypergroup is a group.
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Example

Let (G , ·) be a group, H ≤ G , G/H = {xH | x ∈ G} and

(xH)(yH) = {zH | z = x ′y ′, x ′ ∈ xH, y ′ ∈ yH}.

The hypergroupoid (G/H, ·) is a hypergroup (Marty).

If G/H is the fundamental group of the hypergroup G/H and H is
the smallest normal subgroup of G which contains H then

G/H ∼= G/H.
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The fundamental algebra of the direct limit

I (Pelea) Let A, B be multialgebras, A, B their fundamental algebras
and ϕA, ϕB the canonical projections. For any homomorphism
f : A→ B there exists only one universal algebra homomorphism
f : A→ B such that the following diagram is commutative:

A
f //

ϕA

��

B

ϕB

��
A

f // B

⇒ (Pelea) The factorization modulo the fundamental relation defines a
functor G from the category of Malg(F) of the multialgebras of
type F into the category Alg(F) of the universal algebras of the
same type which is a left adjoint for the inclusion functor
U : Alg(F) −→ Malg(F).

⇒ (Pelea) The fundamental algebra of the direct limit of a direct
system of multialgebras is (isomorphic to) the direct limit of their
fundamental algebras.
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The fundamental algebra of the direct product

I The functor G : Malg(F) −→ Alg(F) does not preserve the
products.

I Example

Take the hypergroupoids (H1, ◦) and (H2, ◦) given by the
following tables:

H1 a b c

a a a a

b a a a

c a a a

H2 x y z

x x y , z y , z

y y , z y , z y , z

z y , z y , z y , z

H1 × H2 has 8 elements, while H1 × H2 has only 6 elements.

I Yet ...
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The fundamental algebra of the direct product

I in some particular cases we identified some (complicated)
necessary and sufficient conditions for this

⇒ a sufficient condition which can be easily applied to some
multialgebras, e.g. hypergroups

I (Pelea) The functor G : HG → Grp preserves the finite
products.

I (Pelea) The fundamental group of the direct product of the
hypergroups ((Hi , ·) | i ∈ I ) is (isomorphic to) the direct
product of the fundamental groups ((Hi , ·) | i ∈ I ) if and only
if there exists n ∈ N∗ such that βHi = βHi

n for all i ’s, with the
exception of a finite number.
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