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Béla and a former student



Outline

Computational Problems About Finite Algebras

The Minimal Variety Problem
An Upper Bound
A Lower Bound

A Conjecture and a Problem



Outline

Computational Problems About Finite Algebras

The Minimal Variety Problem
An Upper Bound
A Lower Bound

A Conjecture and a Problem



Outline

Computational Problems About Finite Algebras

The Minimal Variety Problem
An Upper Bound
A Lower Bound

A Conjecture and a Problem



The Minimal Variety Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is
minimal.

What is the computational complexity of this problem?

In 1955, Dana Scott observed that there is a brute force algorithm
to decide this problem.
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The Finite Algebra Membership Problem
For A Finite Algebra B of Finite Signature

Input: A finite algebra A of the signature of B.

Problem: Decide if A ∈ H S PB .

What is the computational complexity of this problem?

In 1998, Zoltan Székely devised a seven-element algebra B for
which this problem is NP-complete.



The Finite Algebra Membership Problem
For A Finite Algebra B of Finite Signature

Input: A finite algebra A of the signature of B.

Problem: Decide if A ∈ H S PB .

What is the computational complexity of this problem?

In 2000, Cliff Bergman and Giora S lutzki found Kalicki’s algorithm
is in 2EXPTIME.



The Finite Algebra Membership Problem
For A Finite Algebra B of Finite Signature

Input: A finite algebra A of the signature of B.

Problem: Decide if A ∈ H S PB .

What is the computational complexity of this problem?

In 2004, Marcel Jackson and Ralph McKenzie devised a finite
semigroup B for which this problem is NP-complete.



The Finite Algebra Membership Problem
For A Finite Algebra B of Finite Signature

Input: A finite algebra A of the signature of B.

Problem: Decide if A ∈ H S PB .

What is the computational complexity of this problem?

In 2009, Marcin Kozik devised a finite algebra B for which this
problem in 2EXPTIME-complete



The Minimal Variety Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is
minimal.

What is the computational complexity of this problem?
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Dana Scott’s Brute Force Algorithm

Let A be a nontrivial finite algebra of finite signature. To decide
whether H S PA is a minimal variety

Step I Make a list B0,B1, . . . , up to isomorphism, of all the
2-generated algebras in H S PA.

Step II For each algebra Bi on the list decide whether
H S PBi = H S PA.
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Kearnes and Szendrei Offer an Alternative

Let A be a nontrivial finite algebra of finite signature. To decide
whether H S PA is a minimal variety

Step I Construct a minimal nontrivial subalgebra S of A.

Step II Determine if S is simple. If not, punt.

Step III Determine if A ∈ H S PS. If not, punt.

Step IV Determine if every strictly simple algebra in H S PS is
isomorphic to S. If so, then A generates a minimal
variety. If not, punt.

How hard can that be?
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A Theorem of Keith and Ágnes, more or less

The Minimal Variety Problem can be settled in 2EXPTIME.
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Theorem
The Minimal Variety Problem is NP-hard.

The proof reduces the minimal variety problem to the 3-colorability
problem for finite connected graphs.
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The Algebra S◦

The universe of S◦ is S◦ = S ∪ {0}, where 0 is not in S.
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to name each element of S .



The Algebra S◦

The universe of S◦ is S◦ = S ∪ {0}, where 0 is not in S.

The signature of S◦ has 8 binary operation symbols:

·,∧,Qe ,Qr ,Qs ,Qe′ ,Qr ′ , and Qs′

to name the Shallon graph algebra operation, a height 1 meet
operation, and the Pigozzi operations.



The Operations of S◦

The Shallon operation:

u · v =

{
u if there is an edge joining u and v

0 Otherwise

for all u, v ∈ S◦.



The Operations of S◦

The height 1 meet:

u ∧ v =

{
u if u = v

0 Otherwise

for all u, v ∈ S◦.



The Operations of S◦

The Pigozzi operation Qe :

Qe(u, v) =

{
v if e = u

0 Otherwise

for all u, v ∈ S◦.



The Algebra S◦H

This algebra has the same signature as S◦. Its universe is SH ∪ {0}
and its operations are defined just as those for S◦. In particular,
there are only 7 constant symbols and they still name the elements
of S◦. Notice that S◦ is a subalgebra of S◦H.



Plan of the Proof
We will prove that for any finite connected graph H

H is 3-colorable

if and only if

S◦H generates a minimal variety.
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Plan of the Proof
We do this in three stages:

1. S◦ generates a minimal variety.

2. S◦H ∈ H S PS◦ if and only if there is a natural number t and
an embedding ϕ : SH → St with the property that
ϕ(a) = 〈a, . . . , a〉 for each a ∈ S .

3. There is a natural number t and an embedding ϕ : SH → St
with the property that ϕ(a) = 〈a, . . . , a〉 for each a ∈ S if and
only if H is 3-colorable.

Then

S◦H generates a minimal variety ⇔ S◦H ∈ H S PS◦

⇔ H is 3-colorable.



Step 1: Listen to Don Pigozzi

For this step show

S◦ generates a minimal variety.

The idea is to show that S◦ can be embedded into every nontrivial
algebra B ∈ H S PS◦ via the map that sends each element of S◦

to the element of B named by the corresponding constant symbol.
The only real issue is to show that this map is one-to-one. It is the
Pigozzi operations that save the day.



Step 2: Listen to Zoltan Székely Invoke Ralph McKenzie

For this step show

S◦H ∈ H S PS◦ if and only if there is a natural number t and an
embedding ϕ : SH → St with the property that ϕ(a) = 〈a, . . . , a〉
for each a ∈ S .

For the right-to-left direction consider the subalgebra of (S◦)t

generated by the image of SH. A glance at the operations reveals
that this subalgebra consists of the elements of the image, all of
which are proper t-tuples, as well as some improper t-tuples. The
equivalence relation that lumps together the improper elements
and isolates the proper elements is a congruence. The quotient
algebra is isomorphic to S◦H.
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Step 2: Listen to Zoltan Székely Invoke Ralph McKenzie

For this step show

S◦H ∈ H S PS◦ if and only if there is a natural number t and an
embedding ϕ : SH → St with the property that ϕ(a) = 〈a, . . . , a〉
for each a ∈ S .

For the left-to-right direction observe that S◦H is subdirectly
irreducible, since SH is connected. Ralph McKenzie showed us how
to pick a natural number t, a subalgebra B of (S◦)t , a congruence
θ ∈ ConB and a proper element p ∈ B so that

(a) S◦H
∼= B/θ

(b) For all u, v ∈ B we have

u θ v if and only if µ(u) = p ⇔ µ(v) = p for all translations µ.

Take B as small as possible.
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class that we will call the zero-block. McKenzie also tells us that
θ isolates p. Using the Pigozzi operations we can show that none
of the t-tuples like 〈e, . . . , e〉 belong to the zero-block.
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For the left-to-right direction:
Let U be the complement of the zero-block and let B′ be the
subalgebra of B generated by U and let θ′ be the restriction of θ to
B ′. A glance at the operations reveals that B ′ consists of the
elements of U together with certain improper tuples. But this
means B/θ ∼= B′/θ′. So by the minimality of B we see that
B = B′.
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Step 2: Listen to Zoltan Székely Invoke Ralph McKenzie

For this step show

S◦H ∈ H S PS◦ if and only if there is a natural number t and an
embedding ϕ : SH → St with the property that ϕ(a) = 〈a, . . . , a〉
for each a ∈ S .

For the left-to-right direction:
This means that SH is isomorphic to the subgraph of St induced by
the proper elements of B via an isomorphism ϕ with the property
that ϕ(a) = 〈a, . . . , a〉 for each a ∈ S .



Step 3: Listen to Zoltan Székely
(but recall William Wheeler)

For this step show

There is a natural number t and an embedding ϕ : SH → St with
the property that ϕ(a) = 〈a, . . . , a〉 for each a ∈ S if and only if
H is 3-colorable.

For the left-to-right direction, the map ε ◦ π ◦ ϕ turns out to be a
3-coloring of SH, where π can be any of the projection functions,
and ε is the function erasing primes (e.g., ε(e ′) = e = ε(e)).
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For the right-to-left direction, we conceive of ϕ as given by an
array with t columns and one row for each vertex of SH.

In this
conception, the row associated to each vertex is to be the image of
that vertex under ϕ. We know the row associated to any vertex in
S must have the same entry in each column. We fill out the
balance of the array a column at a time to satisfy a list of
constraints. We will be able to satisfy all the constraints using only
finitely many columns—in this way we will discover the value of t.
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Step 3: Listen to Zoltan Székely
(but recall William Wheeler)

The Constraints on the Array

(a) No two rows are exactly alike.

(b) The entries of the row associated with p are drawn from
{r , r ′, s, s ′} and all four of these values occur as entries in that
row.

(c) For each k < t the kth column of the array is a 3-coloring of
SH once the primes are erased. (Well,. . . )

(d) For each vertex q of H other than p each of the values r ′, s ′,
and e ′ occur among the entries of the row associated with q.

(e) For distinct vertices q and q′ of H that are not adjacent, there
is a k < t so that in the kth column the entries on the row
associated with q and q′ are members of {r ′, s ′, e ′}.
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row.

(c) For each k < t the kth column of the array is a 3-coloring of
SH once the primes are erased. (Well,. . . )

(d) For each vertex q of H other than p each of the values r ′, s ′,
and e ′ occur among the entries of the row associated with q.

(e) For distinct vertices q and q′ of H that are not adjacent, there
is a k < t so that in the kth column the entries on the row
associated with q and q′ are members of {r ′, s ′, e ′}.



How to handle the last constraint

Suppose that q and q′ are vertices of H that are not adjacent.
Pick a 3-coloring, using r , s, and e, of H that assigns r to the
vertex p. Place this coloring in the column under construction.

p → r
...

...
q → s
...

...
q′ → e

In S the vertices r , s, and e are pairwise adjacent, so this column
as it stands would not disrupt the adjacency of the images of q
and q′.
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How to handle the last constraint

Modify the column by putting primes on the entries associated
with q and q′. In S, the no primed vertex is adjacent to a primed
vertex, so this modified coloring entails that the images of q and q′

will not be adjacent.

p → r
...

...
q → s ′

...
...

q′ → e ′

Have other, needed, adjacency been disrupted?

No. Suppose q
was assigned the color s. Then the vertices adjacent to q must
have been assigned colors from {r , e}. But in S the vertex s ′ is
adjacent to both the vertex r and the vertex e.
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How to handle the last constraint

Modify the column by putting primes on the entries associated
with q and q′. In S, the no primed vertex is adjacent to a primed
vertex, so this modified coloring entails that the images of q and q′

will not be adjacent.

p → r
...

...
q → s ′

...
...

q′ → e ′

Have other, needed, adjacency been disrupted? No. Suppose q
was assigned the color s. Then the vertices adjacent to q must
have been assigned colors from {r , e}. But in S the vertex s ′ is
adjacent to both the vertex r and the vertex e.
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The Graph SH



The Gap

We see that the Minimal Variety Problem is in 2EXPTIME and it
is at least NP-Hard.

That is quite a gap! Particularly, if P=NP.

Conjecture

The Minimal Variety Problem is 2EXPTIME complete.
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The Congruence Distributive Variety
Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is
congruence distributive.

What is the computational complexity of this problem?



The Congruence Distributive Variety
Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is
congruence distributive.

What is the computational complexity of this problem?

According to folklore (but probably Bjarni Jónsson is the folk
mentioned), there is a brute force algorithm to decide this.



The Congruence Distributive Variety
Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is
congruence distributive.

What is the computational complexity of this problem?

In 2009, Ralph Freese and Matthew Valeriote proved that this
problem, as well as several similar problems, is EXPTIME-complete.



The Affine Complete Variety Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is affine
complete.

What is the computational complexity of this problem?



The Affine Complete Variety Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is affine
complete.

What is the computational complexity of this problem?

In 2002, Kalle Kaarli and Alden Pixley gave a not quite brute force
algorithm to decide this problem.



The Affine Complete Variety Problem

Input: A finite algebra A of finite signature.

Problem: Decide if the variety generated by A is affine
complete.

What is the computational complexity of this problem?

It should be a homework problem for Ralph Freese and Matthew
Valeriote to show that this problem is actually EXPTIME-complete.



Béla and a Buddy


	Computational Problems About Finite Algebras
	The Minimal Variety Problem
	An Upper Bound
	A Lower Bound

	A Conjecture and a Problem

