Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Minimal Clones and Maximal Centralizing Monoids

Hajime Machida

Tokyo, Japan

Joint work with Ivo G. Rosenberg (Montréal)

UA and LT Szeged June 23, 2012

Outline

Wonderful 80?

Dedicated to B. Csákány

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoid Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

1 Wonderful 80?

2 PART I Minimal Clones on {0, 1, 2}

3 PART II Centralizing Monoids

4 PART III Maximal Centralizing Monoids on {0,1,2}

Wonderful 80 !

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoid Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Congratulations on your 80th birthday, Béla !!

Wonderful 80 !

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoid: Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } Congratulations on your 80th birthday, Béla !!

In 1983, Béla Csákány determined all minimal clones on a three-element set. (There are 84 minimal clones.)

Wonderful 80 !

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoid: Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } Congratulations on your 80th birthday, Béla !!

In 1983, Béla Csákány determined all minimal clones on a three-element set. (There are 84 minimal clones.)

The number of minimal clones on $\{0, 1, 2\}$ is the same as the age of Béla Csákány.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } In fact,

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

In fact,

of the minimal clones on $\{0, 1, 2\}$ = the age of Béla,

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoid Witness

```
PART III
Maximal
Centralizing
Monoids on
{ 0, 1, 2 }
```

In fact,

of the minimal clones on $\{0, 1, 2\}$ = the age of Béla,

I mean,

if you add Tax (VAT) to the age, which is currently 5~% in Japan.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoid Witness

```
PART III
Maximal
Centralizing
Monoids on
{ 0, 1, 2 }
```

In fact,

of the minimal clones on $\{0, 1, 2\}$ = the age of Béla,

I mean,

if you add Tax (VAT) to the age, which is currently 5~% in Japan.

 $84 \ = \ 80 + 80 \times 0.05$

Wonderful 80?

 $\begin{array}{l} PART \ I \\ Minimal \\ Clones \ on \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

PARTI

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } In 1983, Béla Csákány determined all minimal clones on the three element set $\{0, 1, 2\}$.

B. Csákány, All minimal clones on the three element set, Acta Cybernet., 6, 1983, 227-238.

Wonderful 80?

 $\begin{array}{l} PART \ I \\ Minimal \\ Clones \ on \\ \left\{ \ 0, \ 1, \ 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoid Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Definition

A function $f (\in \mathcal{O}_k)$ is called a minimal function

if

- f generates a minimal clone C.
- f has the minimum arity among functions generating C.

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoid Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Definition

A function $f (\in \mathcal{O}_k)$ is called a minimal function

if

- f generates a minimal clone C.
- *f* has the minimum arity among functions generating *C*.

In order to describe minimal functions, B. Csákány used the following numbering.

Csákány Numbering

Wonderful 80?

$\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

A unary function $u_r(x)$ is numbered in the following way:

$$r = u(0) \times 3^2 + u(1) \times 3^1 + u(2) \times 3^0$$

A binary idempotent function $b_s(x, y)$ is numbered as follows:

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on {0,1,2}

	$x \setminus y$	0	1	2
	0	0	а	b
$b_s(x,y) =$	1	С	1	d
	2	е	f	2

$$s = a \times 3^5 + b \times 3^4 + c \times 3^3 + d \times 3^2 + e \times 3^1 + f \times 3^0$$

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

A binary idempotent function $b_s(x, y)$ is numbered as follows:

$$b_s(x,y) = \begin{bmatrix} x \setminus y & 0 & 1 & 2 \\ 0 & 0 & a & b \\ 1 & c & 1 & d \\ 2 & e & f & 2 \end{bmatrix}$$

$$s = a \times 3^5 + b \times 3^4 + c \times 3^3 + d \times 3^2 + e \times 3^1 + f \times 3^0$$

In other word,

$$s = b(0,1) \times 3^{5} + b(0,2) \times 3^{4} + b(1,0) \times 3^{3} + b(1,2) \times 3^{2} + b(2,0) \times 3^{1} + b(2,1) \times 3^{0}$$

Similarly, ternary majority function $m_t(x, y, z)$ is numbered as follows:

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

t

$$m_t(x, y, z) = \begin{bmatrix} x \setminus y & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & d \\ 2 & 0 & f & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 & b \\ 1 & 1 & 1 & 1 \\ 2 & e & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & a & 2 \\ 1 & c & 1 & 2 \\ 2 & 2 & 2 & 2 \end{bmatrix}$$
$$z = 0 \qquad z = 1 \qquad z = 2$$

$$= \mathbf{a} \times \mathbf{3}^5 + \mathbf{b} \times \mathbf{3}^4 + \mathbf{c} \times \mathbf{3}^3 + \mathbf{d} \times \mathbf{3}^2 + \mathbf{e} \times \mathbf{3}^1 + \mathbf{f} \times \mathbf{3}^0$$

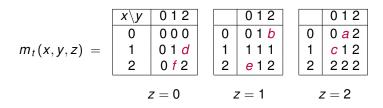
Nonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \, 0, 1, 2 \, \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Similarly, ternary majority function $m_t(x, y, z)$ is numbered as follows:



 $t = a \times 3^5 + b \times 3^4 + c \times 3^3 + d \times 3^2 + e \times 3^1 + f \times 3^0$ In other word,

$$t = m(0,1,2) \times 3^{5} + m(0,2,1) \times 3^{4} + m(1,0,2) \times 3^{3} + m(1,2,0) \times 3^{2} + m(2,0,1) \times 3^{1} + m(2,1,0) \times 3^{0}$$

Wonderful 80?

 $\begin{array}{l} PART \ I \\ Minimal \\ Clones \ on \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } A ternary function $p(x_1, x_2, x_3)$ is called a semiprojection if there exists $j \in \{1, 2, 3\}$ such that $p(x_1, x_2, x_3) = x_j$ whenever $|\{x_1, x_2, x_3\}| < 3$.

Wonderful 80?

 $\begin{array}{l} PART \ I \\ Minimal \\ Clones \ on \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoid Witness

PART III Maximal Centralizing Monoids on {0,1,2} A ternary function $p(x_1, x_2, x_3)$ is called a semiprojection if there exists $j \in \{1, 2, 3\}$ such that $p(x_1, x_2, x_3) = x_j$ whenever $|\{x_1, x_2, x_3\}| < 3$.

Semiprojection $p_t(x, y, z)$ is numbered in the same way: $t = a \times 3^5 + b \times 3^4 + c \times 3^3 + d \times 3^2 + e \times 3^1 + f \times 3^0$ In other word.

> $t = p(0,1,2) \times 3^{5} + p(0,2,1) \times 3^{4}$ $+ p(1,0,2) \times 3^{3} + p(1,2,0) \times 3^{2}$ $+ p(2,0,1) \times 3^{1} + p(2,1,0) \times 3^{0}$

Generators of all minimal clones on $\{0, 1, 2\}$

$\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \, 0, 1, 2 \, \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, \ 1, \ 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Generators of all minimal clones on $\{0,1,2\}$

(I) Unary functions (13)

 $u_0 \qquad u_{13} \qquad u_{26}$

where

0	=	$0\times9+0\times3+0\times1$
13	=	$1\times9+1\times3+1\times1$
26	=	$2 \times 9 + 2 \times 3 + 2 \times 1$

and

PART I Minimal Clones on { 0, 1, 2 }

(II) Binary idempotent functions (48)

$b_{728} = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ $b_0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad b_{364} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ $b_8 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 2 \end{bmatrix}$ $b_{368} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \qquad b_{80} = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ $b_{36} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ $b_{40} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ $b_{692} = \begin{bmatrix} 0 & 2 & 2 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$

etc. etc.

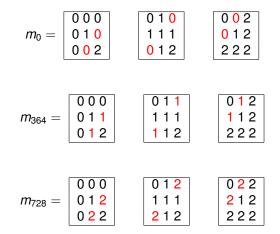
Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \, 0, \, 1, \, 2 \, \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

(III) Ternary majority functions (7)



Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids or { 0, 1, 2 }

$$m_{109} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
$$m_{473} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$
$$m_{510} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
$$m_{624} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

Dedicated to B. Csákány	(IV) Semiprojections (16)						
Wonderful 80? PART I Minimal Clones on { 0, 1, 2 } PART II	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Centralizing Monoids Centralizer Centralizing Monoids Witness PART III Maximal Centralizing Monoids on	where						
{0,1,2}	$\begin{array}{rcl} 76 &=& 0\times 3^5 + 0\times 3^4 + 2\times 3^3 + 2\times 3^2 + 1\times 3^1 + 1\times 3^0 \\ 684 &=& 2\times 3^5 + 2\times 3^4 + 1\times 3^3 + 1\times 3^2 + 0\times 3^1 + 0\times 3^0 \\ 332 &=& 1\times 3^5 + 1\times 3^4 + 0\times 3^3 + 0\times 3^2 + 2\times 3^1 + 2\times 3^0 \\ 624 &=& 2\times 3^5 + 1\times 3^4 + 2\times 3^3 + 0\times 3^2 + 1\times 3^1 + 0\times 3^0 \end{array}$						

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Number of minimal clones on $\{0,1,2\}$

Unary functions	:	13	(4)
Binary idempotent functions	:	48	(12)
Ternary majority functions	:	7	(3)
Ternary semiprojections	:	16	(5)

Total : 84 (24)

Wonderful 803

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids

Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

PART II

Centralizing Monoids

Wonderful 80?

PART I Minimal Clones or { 0, 1, 2 }

PART II Centralizing Monoids

Centralizer Centralizing Monoids Witness Notation

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

$$E_{k} = \{0, 1, \dots, k-1\} \text{ for } k > 1$$

$$\mathcal{O}_{k}^{(n)} (= E_{k}^{(E_{k})^{n}}) \text{ : The set of } n\text{-variable functions on } E_{k}$$

$$\mathcal{O}_{k} = \bigcup_{n=1}^{\infty} \mathcal{O}_{k}^{(n)}$$

 \mathcal{J}_k : The set of all projections e_i^n $(1 \le i \le n)$ on E_k where $e_i^n(x_1, \dots, x_i, \dots, x_n) = x_i$ for $\forall x_1, \dots, x_n \in E_k$

Definition

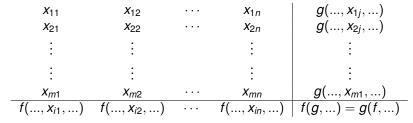
Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids

Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } For $f \in \mathcal{O}_k^{(m)}$ and $g \in \mathcal{O}_k^{(n)}$ f and g commute (expressed as $f \perp g$) if the following holds for every $m \times n$ matrix $A = (x_{ij})$ over E_k $f(g(x_{11}, \dots, x_{1n}), \dots, g(x_{m1}, \dots, x_{mn}))$ $= g(f(x_{11}, \dots, x_{m1}), \dots, f(x_{1n}, \dots, x_{mn}))$



Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids

Centralizer Centralizing Monoids Witness

```
PART III
Maximal
Centralizing
Monoids or
{ 0, 1, 2 }
```

Example

 \Longrightarrow

- $f \in \mathcal{O}_k^{(m)}$: constant function
- $g \in \mathcal{O}_k^{(n)}$: idempotent function

f and g commute, i.e., $f \perp g$

(Here, g is *idempotent* if g(a, ..., a) = a for $\forall a \in E_k$.)

Wonderful 80?

 $\begin{array}{l} PART \ I \\ Minimal \\ Clones \ on \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids

Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

The case where f is a unary function :

For $f \in \mathcal{O}_k^{(1)}$ and $g \in \mathcal{O}_k^{(n)}$ *f* and *g* commute $(f \perp g)$

if the following holds for all $(b_1, \ldots, b_n) \in (E_k)^n$

 $f(g(b_1,...,b_n)) = g(f(b_1),...,f(b_n))$

Centralizer

Wonderful 80?

Dedicated to B. Csákány

PART I Minimal Clones or { 0, 1, 2 }

PART II Centralizing Monoids

Centralizer

Witness

PART III Maximal Centralizing Monoids on {0,1,2}

Definition

For $F \subseteq \mathcal{O}_k$ define F^* by

 $F^* = \{ g \in \mathcal{O}_k \mid g \perp f \text{ for all } f \in F \}$

 F^* is called the centralizer of F.

Centralizer

Wonderful 80?

Dedicated to B. Csákány

PART I Minimal Clones or { 0, 1, 2 }

PART II Centralizing Monoids

Centralizer Centralizing Monoid Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Definition

For $F \subseteq \mathcal{O}_k$ define F^* by

 $F^* = \{ g \in \mathcal{O}_k \mid g \perp f \text{ for all } f \in F \}$

 F^* is called the centralizer of F.

Note: A centralizer is always a clone.

Centralizing Monoids

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

A "centralizing monoid" can be characterized

in several different ways.

Lemma

PART I Minimal Clones on { 0, 1, 2 }

Centralizing Monoids Centralizer Centralizing Monoids

PART III Maximal Centralizing Monoids on { 0, 1, 2 } For $M \subseteq \mathcal{O}_{k}^{(1)}$, the following conditions are equivalent. (1) $M = M^{**} \cap \mathcal{O}_{k}^{(1)}$ (2) $\exists F \subseteq \mathcal{O}_{k}, \quad M = F^{*} \cap \mathcal{O}_{k}^{(1)}$ (*M* is the unary part of some centralizer) (3) $\exists \mathcal{A} = (E_{k}; F)$: algebra, $M = \operatorname{End}(\mathcal{A})$

Lemma

PART I Minimal Clones on { 0, 1, 2 }

Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } For $M \subseteq \mathcal{O}_{k}^{(1)}$, the following conditions are equivalent. (1) $M = M^{**} \cap \mathcal{O}_{k}^{(1)}$ (2) $\exists F \subseteq \mathcal{O}_{k}, \quad M = F^{*} \cap \mathcal{O}_{k}^{(1)}$ (*M* is the unary part of some centralizer) (3) $\exists \mathcal{A} = (E_{k}; F)$: algebra, $M = \operatorname{End}(\mathcal{A})$

Definition

For $M \subseteq \mathcal{O}_k^{(1)}$, *M* is a **centralizing monoid** if *M* satisfies the above conditions.

Witness

Wonderful 80?

Dedicated to B. Csákány

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Lemma (Witness Lemma)

For a monoid $M \subseteq \mathcal{O}^{(1)}$ of unary functions and a subset $S \subseteq \mathcal{O}$,

suppose the following conditions (i) and (ii) hold:

(i) For $\forall f \in M$ and $\forall u \in S$ $f \perp u$

(ii) For $\forall g \in \mathcal{O}^{(1)} \setminus M$ and $\exists w \in S \quad g \not\perp w$

Then *M* is a centralizing monoid.

Witness

Wonderful 80?

Dedicated to B. Csákány

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Lemma (Witness Lemma)

For a monoid $M \subseteq \mathcal{O}^{(1)}$ of unary functions and a subset $S \subseteq \mathcal{O}$,

suppose the following conditions (i) and (ii) hold:

(i) For $\forall f \in M$ and $\forall u \in S$ $f \perp u$ (ii) For $\forall g \in \mathcal{O}^{(1)} \setminus M$ and $\exists w \in S$ $g \not\perp w$

Then *M* is a centralizing monoid.

Definition

We say that

S in the lemma is a witness for a centralizing monoid M.

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Notation and Property of Witnesses

Notation

Denote by M(S) the centralizing monoid M which has S as its witness. (i.e., $M(S) = S^* \cap \mathcal{O}_k^{(1)}$)

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Lemma

Every centralizing monoid *M* has a witness.

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Lemma

Every centralizing monoid *M* has a witness.

Proof M^* is a witness for M.

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Theorem

For every centralizing monoid M there exists a finite subset of \mathcal{O}_k which is a witness of M,

that is,

every centralizing monoid M has a finite witness.

Proof. Let $S \subseteq O_k$ be a witness for M. For each $f \in O_k^{(1)} \setminus M$ there exists $u \in S$ such that $f \not\perp u$. We pick one such $u = u_f$ for each f and let

$$T = \{ u_f \mid f \in \mathcal{O}_k^{(1)} \setminus M \}.$$

Then, *T* is clearly a witness for *M*. Furthermore, *T* is finite because $\mathcal{O}_k^{(1)}$ is finite.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } Now we turn to maximal centralizing monoids,

which are related to minimal clones !!

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Definition

A centralizing monoid *M* is maximal if $\mathcal{O}_k^{(1)}$ is the only centralizing monoid properly containing *M*.

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Definition

A centralizing monoid M is maximal if $\mathcal{O}_k^{(1)}$ is the only centralizing monoid properly containing M.

Theorem

For any maximal centralizing monoid M, there exists $u (\in \mathcal{O}_k)$ such that

M = M(u),

that is,

every maximal centralizing monoid has a singleton witness.

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Definition

A centralizing monoid M is maximal if $\mathcal{O}_k^{(1)}$ is the only centralizing monoid properly containing M.

Theorem

For any maximal centralizing monoid M, there exists $u (\in \mathcal{O}_k)$ such that

M = M(u),

that is,

every maximal centralizing monoid has a singleton witness.

 $(Proof M(S_1) \cap M(S_2) = M(S_1 \cup S_2))$

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Theorem

For any maximal centralizing monoid M, there exists a minimal function $f (\in \mathcal{O}_k)$ such that

M = M(f),

that is,

every maximal centralizing monoid has a witness which is a minimal function.

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Proof

- Since a maximal centralizing monoid has a singleton witness, there exists *g* ∈ *O_k* such that *M* = *M*(*g*).
- Every non-trivial clone *C* (i.e., *C* ≠ *J_k*) contains a minimal clone. Hence, there exists *f* ∈ *O_k* which satisfies the following.

(i) $\langle f \rangle$ is a minimal clone. (ii) $\langle f \rangle \subseteq \langle g \rangle$ ($\Leftrightarrow f \in \langle g \rangle$)

• In general, for any $u, v, w \in \mathcal{O}_k$,

 $u \in \langle v \rangle$ and $v \perp w \implies u \perp w$.

As a corollary,

$$u \in \langle v \rangle \implies v^* \subseteq u^*.$$

- PART I Minimal Clones on { 0, 1, 2 }
- PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Proof (cont.)

• Hence, for *f* and *g* given above,

$$g^* \subseteq f^*$$

It follows that

$$M(g) = g^* \cap \mathcal{O}_k^{(1)} \subseteq f^* \cap \mathcal{O}_k^{(1)} = M(f)$$

• Since *M*(*g*) is a maximal centralizing monoid, by assumption, it holds either

$$M(g) = M(f) \quad (\Rightarrow M = M(f))$$

.

or

$$M(f) = \mathcal{O}_k^{(1)}$$

Wonderful 80?

- PART I Minimal Clones on { 0, 1, 2 }
- PART II Centralizing Monoids Centralizer Centralizing Monoids Witness
- PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Proof (cont. cont.)

· However, we know that

$$(S_k \cup \operatorname{Const})^* = J_k$$
.

• Therefore, $M(f) = O_k^{(1)}$ cannot happen for a minimal function f, and so

$$M = M(f)$$

must hold.

This completes the proof.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

PART III

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

```
PART III
Maximal
Centralizing
Monoids on
{ 0, 1, 2 }
```

Minimal Clones and Maximal Centralizing Monoids on $E_3 = \{0, 1, 2\}$

From here, we shall concentrate on the ternary case, that is, the case where the base set is

 $E_3 = \{0, 1, 2\}.$

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

$\begin{array}{c} \text{Centralizing Monoids on} \\ \{0,1,2\} \end{array}$

First,

we have determined all maximal centralizing monoids on E_3 using the result on minimal clones due to B. Csákány.

The number of the maximal centralizing monoids is 10.

Then

we have enumerated all centralizing monoids on E_3 .

The number of the centralizing monoids is 192.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Question (concerning all centralizing monoids)

- The number of centralizing monoids on E_3 is 192.
- They are divided into 48 conjugate classes.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Question (concerning all centralizing monoids)

- The number of centralizing monoids on E_3 is 192.
- They are divided into 48 conjugate classes.

Both numbers are beautiful numbers !!

 $192 = 2^6 \times 3$ and $48 = 2^4 \times 3$

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Question (concerning all centralizing monoids)

- The number of centralizing monoids on E_3 is 192.
- They are divided into 48 conjugate classes.

Both numbers are beautiful numbers !!

 $192 = 2^6 \times 3$ and $48 = 2^4 \times 3$

Is this phenomenon just for k = 3? Or, could this be generalized to any k (> 3) ??

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

By the way, what is the number 48?

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

By the way, what is the number 48?

1 It is the number of conjugate classes of centralizing monoids on E_3 .

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

```
PART III
Maximal
Centralizing
Monoids on
{ 0, 1, 2 }
```

By the way, what is the number 48?

- 1 It is the number of conjugate classes of centralizing monoids on E_3 .
- 2 It is the number of minimal clones generated by binary idempotent functions on E_3 .

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

- PART II Centralizing Monoids Centralizer Centralizing Monoids Witness
- $\begin{array}{l} \text{PART III} \\ \text{Maximal} \\ \text{Centralizing} \\ \text{Monoids on} \\ \left\{ \ 0, \ 1, \ 2 \ \right\} \end{array}$

By the way, what is the number 48 ?

- 1 It is the number of conjugate classes of centralizing monoids on E_3 .
- 2 It is the number of minimal clones generated by binary idempotent functions on E_3 .
- It is also the age of the Chairperson of this Session !? (Addition of 20 % Tax needed ???)

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on {0,1,2}

Maximal Centralizing Monoids on $\{0,1,2\}$

For each minimal function $f \in \mathcal{O}_3^{(1)}$, let $\{f\}$ be a witness and determine a centralizing monoid M(f).

Then,

some of such centralizing monoids are maximal, while some are not maximal.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

 $\begin{array}{l} \text{PART III} \\ \text{Maximal} \\ \text{Centralizing} \\ \text{Monoids on} \\ \left\{ \ 0, \ 1, \ 2 \ \right\} \end{array}$

Maximal Centralizing Monoids on $\{0, 1, 2\}$

For each minimal function $f \in \mathcal{O}_3^{(1)}$, let $\{f\}$ be a witness and determine a centralizing monoid M(f).

Then,

some of such centralizing monoids are maximal, while some are not maximal.

IMPORTANT: All maximal centralizing monoids can be obtained in this way.

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Proposition

Over a three-element set, there are 10 maximal centralizing monoids.

More precisely:

- there are 3 maximal centralizing monoids, each of which has a unary constant function as its witness.
- there are 7 maximal centralizing monoids, each of which has a ternary majority function which generates a minimal clone as its witness.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } The following is the list of minimal functions which, as witnesses, correspond to maximal centralizing monoids:

Constant functions

 $c_0(x) = 0$ $c_1(x) = 1$ $c_2(x) = 2$

Majority functions

(showing the values only for $|\{x, y, z\}| = 3$)

 $m_0(x, y, z) = 0$ if $|\{x, y, z\}| = 3$ $m_{364}(x, y, z) = 1$ if $|\{x, y, z\}| = 3$ $m_{728}(x, y, z) = 2$ if $|\{x, y, z\}| = 3$ if $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \sigma$ $m_{109}(x,y,z) = \begin{cases} 0 \\ 1 \end{cases}$ if $(x, y, z) \in \tau$ if $(x, y, z) \in \sigma$ if $(x, y, z) \in \tau$ $m_{473}(x,y,z) = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$ if $(x, y, z) \in \sigma$ $m_{510}(x,y,z) = \begin{cases} 2\\ 0 \end{cases}$ if $(x, y, z) \in \tau$ $m_{624}(x, y, z) = y$ if $|\{x, y, z\}| = 3$

where $\sigma = \{0, 1, 2\}, (1, 2, 0), (2, 0, 1)\}$ and $\tau = \{(0, 2, 1), (1, 0, 2), (2, 1, 0)\}$

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on {0,1,2}

Number of Elements in Maximal Centralizing Monoids on {0,1,2}

$M(c_0)$	9
<i>M</i> (<i>c</i> ₁)	9
M (c ₂)	9
$M(m_0)$	17
M (m ₃₆₄)	17
M (m ₇₂₈)	17
M (m ₁₀₉)	11
M (m ₄₇₃)	11
M (<i>m</i> ₅₁₀)	11
M (m ₆₂₄)	9

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Remark :

There exist other minimal functions which serve as witnesses of maximal centralizing monoids.

They are:

Binary function: **b**₆₂₄

and

Semiprojections: p_{76} , p_{684} , p_{332} and p_{624}

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } However, the centralizing monoids having them as witnesses all coincide with already known centralizing monoids.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } However, the centralizing monoids having them as witnesses all coincide with already known centralizing monoids.

More precisely,

Binary function: $M(b_{624}) = M(m_{624})$

Wonderful 80?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } However, the centralizing monoids having them as witnesses all coincide with already known centralizing monoids.

More precisely,

Binary function: $M(b_{624}) = M(m_{624})$

and

Semiprojections:	$M(p_{76}) = M(m_{473})$
	$M(p_{684}) = M(m_{510})$
	$M(p_{332}) = M(m_{109})$
	$M(p_{624}) = M(m_{624})$

Just for curiosity,

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

$$m_{624} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ z = 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \\ z & 2 & 2 \\ z & 2$$

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Remark :

One can generalize the results on constant functions for any k > 1.

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoid Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Remark :

One can generalize the results on constant functions for any k > 1.

Theorem

For any k > 1 and any constant function c on E_k , M(c) is a maximal centralizing monoid.

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

We assume $c = c_0$, the constant function taking value 0.

Lemma 1

Proof

 $M(c_0) = (Pol(0))^{(1)}$

Lemma 2

 $(CONST)^* = IDEMP$

Lemma 3

For $f \in \mathcal{O}_k$, if $f \in (\text{Pol}(0)^{(1)})^* \cap \text{IDEMP}$ then f is conservative.

Lemma 4

 $(\operatorname{Pol}(0)^{(1)})^* \cap \operatorname{IDEMP} = \mathcal{J}_k$

(This lemma follows from several Claims.)

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 } **Proof of Theorem** For any $u \in \mathcal{O}_k^{(1)} \setminus M(c_0)$ let M be a monoid containing $M(c_0) \cup \{u\}$. Since $M(c_0) = \text{Pol}(0)^{(1)}$, u maps 0 to some $a \neq 0$. Then M must necessarily contain all constant functions. Hence we have

 $M \supset M(c_0) \cup \text{CONST}.$

It follows that

 $M^* \subseteq M(c_0)^* \cap \mathrm{CONST}^*$.

which implies, by Lemmas 1 and 2, that

 $M^* \subseteq (\operatorname{Pol}(0)^{(1)})^* \cap \operatorname{IDEMP}.$

Since M^* is a clone and contains \mathcal{J}_k it follows by Lemma 4 that $M^* = \mathcal{J}_k$. By applying * to both sides, we obtain

$$M^{**} = \mathcal{J}_k^* (= \mathcal{O}_k).$$

Hence

$$M^{**} \cap \mathcal{O}_k^{(1)} = \mathcal{O}_k^{(1)}.$$

Therefore, if *M* is a centralizing monoid then, by definition, $M (= M^{**} \cap \mathcal{O}_k^{(1)}) = \mathcal{O}_k^{(1)}$. This concludes that $M(c_0)$ is a maximal centralizing monoid.

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Problem

Is it also possible to generalize the results on minimal majority functions?

Namely, is it true that,

for every majority function f, if f is minimal then M(f) is a maximal centralizing monoid ?

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Problem

Is it also possible to generalize the results on minimal majority functions?

Namely, is it true that,

for every majority function f, if f is minimal then M(f) is a maximal centralizing monoid ?

Still open.

 $\begin{array}{l} \text{PART I} \\ \text{Minimal} \\ \text{Clones on} \\ \left\{ \ 0, 1, 2 \ \right\} \end{array}$

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on {0,1,2}

Problem

Is it also possible to generalize the results on minimal majority functions?

Namely, is it true that,

for every majority function f, if f is minimal then M(f) is a maximal centralizing monoid ?

Still open.

Hopefully,

the answer will be reported at the Conference celebrating the "84" th Birthday of Béla Csákány !!

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Thank you

for your attention !

Wonderful 80?

PART I Minimal Clones on { 0, 1, 2 }

PART II Centralizing Monoids Centralizer Centralizing Monoids Witness

PART III Maximal Centralizing Monoids on { 0, 1, 2 }

Thank you

for your attention !

and

Thank you, Béla

for your great contribution and friendship to Algebra community in the world !!