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Our goal

M. Maróti and L. Zádori: CM ⇒ NU for reflexive digraphs.

We show an alternative proof using absorption.

All our graphs will be reflexive.
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CM ⇒ MZ1 + 2

Let G be a CM reflexive digraph. Then for any K reflexive
digraph:

MZ1 If H is a connected component of G , R ≤ GK and R ⊂ HK

then R is connected.

MZ2 If H is a strongly connected component of G , R ≤ GK and
R ⊂ HK then R is extremely connected.

Maróti and Zádori have given a nice proof that MZ1 + 2 implies
NU.
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GK

The digraph GK has as vertices all the homomorphisms
K → G .

We have f → g if whenever u → v in K then f (u)→ g(v) in
G .

In particular GK is itself a reflexive digraph. . .

. . . that contains a copy of G on the “diagonal”. . .

. . . and if G was CM then so is GK .
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Absorption

Let (V ,E ) be reflexive, U ⊂ V . Assume we have Gumm terms and
U Eg V . Then:

If (V ,E ) is connected then so is (U,E ).

If (V ,E ) is strongly connected then so is (U,E ).

Note: Maróti and Zádori actually prove both claims in their paper
(without mentioning absorption).
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Proving MZ1

Goal: If H is a connected component of G , R ≤ GK and R ⊂ HK

then R is connected.

We show by induction that R is connected if it contains the
diagonal.

In the general case, we have some pp definition D of R. If we
remove all constant constraints in D we get a pp definition of
some S ⊃ R.

Now S contains the diagonal and R Eg S .

Therefore, R must be connected.
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MZ1.5

The previous argument can be easily modified to prove that if
H is strongly connected then R ⊂ HK is strongly connected.

Corollary: Any subalgebra of a strongly connected CM digraph
is strongly connected.
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Proving MZ2

Goal: If H is a strongly connected component of G , R ≤ GK and
R ⊂ HK then R is extremely connected.

By the previous argument we know that R is strongly
connected.

All we need is CM + strongly connected ⇒ all subalgebras
extremely connected.
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Strongly connected ⇒ extremely connected

Take the smallest counterexample G : CM, strongly
connected, some subalgebra not extremely connected.

MZ1.5: Any subalgebra of G must be strongly connected.

By minimality, any proper subalgebra of G must be extremely
connected and G is not extremely connected.

Singletons are subalgebras ⇒ G is extremely connected.
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We now have:

MZ1 (“Subpowers of connected are connected”)

MZ2 (“Subpowers of strongly connected are extremely
connected”)

MZ1 + 2 implies NU

NU
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Thanks for your attention.
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