On axiomatisablity questions about monoid acts

Miklós Hartmann

University of York

Universal Algebra and Lattice Theory, Szeged 25 June, 2012

Based on joint work with V. Gould and L. Shaheen

Right acts

A is a left S-act if there exists a map $\cdot: S \times A \to A$ such that for every $s, t \in S$ and $a \in A$,

$$st \cdot a = s \cdot (t \cdot a)$$
 and $1 \cdot a = a$.

Right acts

A is a left S-act if there exists a map $\cdot: S \times A \rightarrow A$ such that for every $s, t \in S$ and $a \in A$,

$$st \cdot a = s \cdot (t \cdot a)$$
 and $1 \cdot a = a$.

That is, a left S-act is just a monoid homomorphism from S to the full transformation monoid of A.

Right acts

A is a left S-act if there exists a map $\cdot: S \times A \rightarrow A$ such that for every $s, t \in S$ and $a \in A$,

$$st \cdot a = s \cdot (t \cdot a)$$
 and $1 \cdot a = a$.

That is, a left S-act is just a monoid homomorphism from S to the full transformation monoid of A.

S-morphisms

Let A, B be left S-acts. The map $\varphi \colon A \to B$ is an S-morphism if

$$(s \cdot a) arphi = s \cdot a arphi$$

for all $a \in A$ and $s \in S$.

Free acts

A left S-act F is free over a set X if there exists a map $\iota: X \to F$ such that for every map $\varphi: X \to A$ into a left S-act A, there exists a unique S-morphism $\psi: F \to A$ satisfying $\iota \psi = \varphi$.

Free acts

A left S-act F is free over a set X if there exists a map $\iota: X \to F$ such that for every map $\varphi: X \to A$ into a left S-act A, there exists a unique S-morphism $\psi: F \to A$ satisfying $\iota \psi = \varphi$.

Projective acts

A left S-act P is projective if, for every S-morphism $\varphi \colon P \to B$ and surjective S-morphism $\psi \colon A \to B$, there exists an S-morphism $\chi \colon P \to A$ such that $\varphi = \chi \psi$.

Definition

A left S-act A is strongly flat if the tensor-product functor $-\otimes A$ from the category of right S-acts to the category of sets preserves pullbacks and equalisers.

Definition

A left S-act A is strongly flat if the tensor-product functor $-\otimes A$ from the category of right S-acts to the category of sets preserves pullbacks and equalisers.

B. Stenström, 1970

The following are equivalent for a left S-act A:

- A is strongly flat,
- A is a direct limit of finitely generated free left S-acts,
- A satisfies the following conditions.
 - (P) For all $a, a' \in A$ and $s, s' \in S$ if sa = s'a' then there exist $a'' \in A$ and $u, u' \in S$ such that a = ua'', a' = u'a'' and su = s'u'.
 - (E) For all $a \in A$ and $s, s' \in S$ if sa = s'a then there exists $a'' \in A$ and $u \in S$ such that a = ua'' and su = s'u.

Question

Given a monoid S, is the class of all strongly flat left S-acts first-order axiomatisable?

Question

Given a monoid S, is the class of all strongly flat left S-acts first-order axiomatisable?

The first-order language contains the one-variable function symbols $\{\lambda_s : s \in S\}$, and the equality relation.

Answer, Gould, 1987

The class of strongly flat left S-acts is axiomatisable if and only if the following two conditions hold:

(R) For every $s, t \in S$, the subact

$$\mathsf{R}(s,t) = \{(u,v) : su = tv\} \subseteq S \times S$$

is finitely generated, that is, there exists a finite set $X \subseteq \mathbf{R}(s, t)$ such that $\mathbf{R}(s, t) = X \cdot S$.

(r) For every $s, t \in S$, the right ideal

$$\mathbf{r}(s,t) = \{u : su = tu\} \subseteq S$$

is finitely generated.

Direct product

If S, T are monoids satisfying (**R**) (respectively, (**r**)) then $S \times T$ satisfies (**R**)) (respectively, (**r**).

Direct product

If S, T are monoids satisfying (**R**) (respectively, (**r**)) then $S \times T$ satisfies (**R**)) (respectively, (**r**).

Retract

If S is a monoid, T is a retract of S, and S satisfies (R) (respectively, (r)) then T satisfies (R) (respectively, (r)).

Direct product

If S, T are monoids satisfying (**R**) (respectively, (**r**)) then $S \times T$ satisfies (**R**)) (respectively, (**r**).

Retract

If S is a monoid, T is a retract of S, and S satisfies (R) (respectively, (r)) then T satisfies (R) (respectively, (r)).

Submonoid, homomorphic image

The class of monoids satisfying (\mathbf{R}) is not closed under taking homomorphic images or submonoids. The class of monoids satisfying (\mathbf{r}) is not closed under taking

homomorphic images or submonoids.

(R) implies (r)

If Y is a semilattice, and it satisfies (**R**), then it satisfies (**r**). The converse is not true.

(R) implies (r)

If Y is a semilattice, and it satisfies (R), then it satisfies (r). The converse is not true.

Proof:

If $\mathbf{R}(\alpha,\beta) = X \cdot Y$, then

$$\mathbf{r}(\alpha,\beta) = \{\mu\nu : (\mu,\nu) \in X\} \cdot Y.$$

(R) implies (r)

If Y is a semilattice, and it satisfies (\mathbf{R}) , then it satisfies (\mathbf{r}) . The converse is not true.

Proof:

If $\mathbf{R}(\alpha,\beta) = X \cdot Y$, then

$$\mathbf{r}(\alpha,\beta) = \{\mu\nu : (\mu,\nu) \in X\} \cdot Y.$$

Take the infinite ascending chain with infinity.

(R) implies (r)

If Y is a semilattice, and it satisfies (R), then it satisfies (r). The converse is not true.

Proof:

If $\mathbf{R}(\alpha,\beta) = X \cdot Y$, then

$$\mathbf{r}(\alpha,\beta) = \{\mu\nu : (\mu,\nu) \in X\} \cdot Y.$$

Take the infinite ascending chain with infinity.

(R) implies finite above

If Y is a semilattice, and it satisfies (**R**), then it is finite above: every principal filter is finite.

(R) implies (r)

If Y is a semilattice, and it satisfies (R), then it satisfies (r). The converse is not true.

Proof:

If $\mathbf{R}(\alpha,\beta) = X \cdot Y$, then

$$\mathbf{r}(\alpha,\beta) = \{\mu\nu : (\mu,\nu) \in X\} \cdot Y.$$

Take the infinite ascending chain with infinity.

(R) implies finite above

If Y is a semilattice, and it satisfies (**R**), then it is finite above: every principal filter is finite.

If Y is a semilattice that satisfies (\mathbf{R}) , then it is a lattice.

Distributive lattices

If Y is a distributive lattice which is finite above, then it satisfies (R).

Distributive lattices

If Y is a distributive lattice which is finite above, then it satisfies (**R**).

Proof:

$$\mathbf{R}(\alpha,\beta) = \{(\mu,\nu) : \mu,\nu \ge \alpha \land \beta, \ \alpha \land \mu = \beta \land \nu\}.$$

Distributive lattices

If Y is a distributive lattice which is finite above, then it satisfies (**R**).

Proof:

$$\mathsf{R}(\alpha,\beta) = \{(\mu,\nu) : \mu,\nu \ge \alpha \land \beta, \ \alpha \land \mu = \beta \land \nu\}.$$

(R) and noetherian properties

There exists a semilattice which is finite above, it has width 3, but it does not satisfy (\mathbf{R}) . All of its ideals are finitely generated.

A reformulation

A distributive lattice Y satisfies (r) if and only if it has a 'generalised dual symmetric difference', that is, for every $\alpha, \beta \in Y$, the set

$$\{\gamma: \alpha \land \gamma = \beta \land \gamma\}$$

has a greatest element.

A reformulation

A distributive lattice Y satisfies (r) if and only if it has a 'generalised dual symmetric difference', that is, for every $\alpha, \beta \in Y$, the set

$$\{\gamma: \alpha \land \gamma = \beta \land \gamma\}$$

has a greatest element.

Both Boolean lattices and completely distributive lattices satisfy (r).

Let Y be the sublattice (not complete sublattice) of $\mathcal{P}(\mathbb{N})$ generated by the following sets, together with \mathbb{N} :

$$A = \{n : n \equiv 1 \pmod{3}\}$$
$$B = \{n : n \equiv 2 \pmod{3}\}$$
$$C_i = \{n : 3 \mid n, n \leq 3i\} \text{ for all } i \geq 1$$

Then the lattice Y is a distributive lattice such that (Y, \cap) does not satisfy (r).

Let Y be the sublattice (not complete sublattice) of $\mathcal{P}(\mathbb{N})$ generated by the following sets, together with \mathbb{N} :

$$A = \{n : n \equiv 1 \pmod{3}\}$$
$$B = \{n : n \equiv 2 \pmod{3}\}$$
$$C_i = \{n : 3 \mid n, n \leq 3i\} \text{ for all } i \geq 1$$

Then the lattice Y is a distributive lattice such that (Y, \cap) does not satisfy (r).

Because $\mathbf{r}(A, B) = \{C_i : i = 1, 2, ...\}$, which is not finitely generated.

Definition

Let Y be a semilattice, and for every $\alpha \in Y$, let G_{α} be a group with identity e_{α} . Furthermore, for every $\alpha \geq \beta$, let $\varphi_{\alpha,\beta} \colon G_{\alpha} \to G_{\beta}$ be a homomorphism such that $\varphi_{\alpha,\beta}\varphi_{\beta,\gamma} = \varphi_{\alpha,\gamma}$ for every $\alpha \geq \beta \geq \gamma$. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$, and define a multiplication on S by

$$s \cdot t = s\varphi_{\alpha,\alpha\beta} \cdot t\varphi_{\beta,\alpha\beta},$$

where $s \in G_{\alpha}$ and $t \in G_{\beta}$. *S* is an inverse semigroup with semilattice of idempotents $E(S) = \{e_{\alpha} : \alpha \in Y\}$ isomorphic to *Y*. E(S) is a retract of *S*. *S* is a monoid if and only if *Y* is a monoid.

Clifford monoids with finite semilattice of idempotents

Clifford monoids with finite semilattice of idempotents

Clifford monoids with finite semilattice of idempotents

(r) If Y is finite, then S satisfies (r).

Proof:

In this case every right ideal is finitely generated.

(R)

If Y is finite, then S satisfies (**R**) if and only if for every $\alpha, \beta, \gamma \in Y$ satisfying $\gamma \leq \alpha \land \beta$, we have that [H:K] is finite where

$$\begin{aligned} & \mathcal{H} = \{(u, v) : u\varphi_{\alpha,\gamma} = v\varphi_{\beta,\gamma}\} \leq \mathcal{G}_{\alpha} \times \mathcal{G}_{\beta} \\ & \mathcal{K} = \{(g\varphi_{\alpha \lor \beta,\alpha}, g\varphi_{\alpha \lor \beta,\beta}\} \leq \mathcal{G}_{\alpha} \times \mathcal{G}_{\beta}. \end{aligned}$$

Clifford monoids with infinite semilattice of idempotents and trivial structure homomorphisms

Definition

$$\mathbf{R}(s,t)\mathcal{J} = \{(u\mathcal{J},v\mathcal{J}) : su = tv\}.$$

Clifford monoids with infinite semilattice of idempotents and trivial structure homomorphisms

Definition

$$\mathbf{R}(s,t)\mathcal{J} = \{(u\mathcal{J},v\mathcal{J}) : su = tv\}.$$

Theorem

S satisfies (**R**) if and only if the following are true

② for every
$$0
eq lpha\in Y$$
, \mathcal{G}_{lpha} is finite

- for every $\alpha \in Y$, the set $\{\beta : \beta \perp \alpha, |G_{\beta}| > 1\}$ is finite,
- for every $s \in G_{\alpha}$ and $t \in G_{\beta}$, $\mathbf{R}(s, t)\mathcal{J}$ is finitely generated.