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Tolerances

Let L be a lattice. A binary relation T on L is called a tolerance

relation i� it is re�exive, symmetric and compatible with joins and

meets of the lattice. We de�ne a block of T as a maximal subset

of L in which every two elements are in the relation T .

Every block of a tolerance relation T on a �nite lattice L is an

interval of L and the set L/T of all blocks of R in L with an order

de�ned by

α ≤ β ⇐⇒ 0α ≤ 0β

(which is equivalent to the fact that 1α ≤ 1β), where

α = [0α, 1α], β = [0β, 1β] are blocks of T , forms a lattice called

the factor lattice of L by T .
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Skeleton

A tolerance whose transitive closure is the total relation on L is

called a glued tolerance.

The intersection of any number of glued tolerances is a glued

tolerance.

The skeleton tolerance of a lattice L, which will be denoted by Σ(L)
(or just Σ when the context is obvious), is the smallest glued

tolerance of L. The factor lattice L/Σ(L) is called the skeleton of L

and denoted by S(L).
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Blocks and skeletons in �nite distributive lattices

If L is a �nite modular lattice, then blocks of it skeleton tolerance

relation Σ(L) are maximal complementary intervals of the lattice.

In particular, if L is a �nite distributive lattice, then the blocks are

maximal Boolean intervals of L.

Theorem
Every �nite lattice is a skeleton of some �nite distributive lattice.
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Skeleton tolerances

The skeleton tolerance of a lattice L is generated by the set of all

prime quotients in L, i.e., pairs (a, b) such that a ≺ b.

Lemma
If α = [0α, 1α] is a block of Σ(L) for some �nite lattice L, then

0α = p(x1, . . . , xn) and 1α = p(y1, . . . , yn) for a lattice polynomial

p and a system x1, . . . , xn, y1, . . . , yn of elements of L such that

xj � yj for every j = 1, . . . , n.
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Two-tailed lattices are not blocks of a skeleton tolerance. . .

Let M(L) and J(L) denote, respectively, sets of all meet-irreducible

and join-irreducible elements of the lattice L.

Lemma
Let L be a �nite lattice. If α = [0α, 1α] is a block of Σ(L) such that

0α 6≺ 1α. Then 0α 6∈ M(L) or 1α 6∈ J(L).

Corollary

No chain of length greater than 1 can be a block of Σ(L) for any

lattice L.
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. . . but all others are

Theorem
Let L be a �nite lattice. L is a block of the skeleton tolerance of a

�nite lattice i� |L| ≤ 2 or 0L 6∈ M(L) or 1L 6∈ J(L).
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Blocks belonging to the same block overlap

Lemma
Let L be a �nite lattice. Assume that α, β ∈ S(L) such that

(α, β) ∈ Σ(S(L)). Then α ∩ β 6= ∅.

Corollary

If [α, β] ∈ S(S(L)), then α ∩ β 6= ∅.
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Important embeddings

Theorem
If L is a �nite lattice, then every block [α, β] of Σ(S(L)) can be

join-embedded in α and meet-embedded in β.
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When the embeddings are possible?

Lemma
Let L be a �nite lattice, D be a distributive lattice. If there is a

meet-embedding π : L→ D then |J(D)| ≥ |J(L)|. Dually, if there is

a join-embedding σ : L→ D then |M(D)| ≥ |M(L)|.

If D is a �nite Boolean lattice then

dimD = |J(D)| = |M(D)|.

Thus, if π is a meet-embedding of a �nite lattice L into a Boolean

lattice α then dimα ≥ |J(L)| and, similarly, if σ is a

join-embedding of L into a Boolean lattice β then dimβ ≥ |M(L)|.
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Blocks of skeletons of distributive lattices with at most

k-dimensional Boolean cubes

A block of the skeleton of a distributive lattice with at most

k-dimensional maximal Boolean intervals

I can be join- and meet-embedded into a k-dimensional Boolean

lattice, i.e., the number of its join- and meet-irreducible

elements is not greater than k ;

I cannot be a two-tailed lattice.
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The case k=3

Possible blocks and the number of possible non-isomorphic

distributive lattices for these blocks.

4 14 10 1 1 1 1 1 1

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

Possible non-isomorphic distributive lattices for

Lattices being blocks of skeleton tolerances



Skeletons Possible blocks Embeddings Lattices with constraints

The end

Thank you for your attention.
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