Lattices being blocks of skeleton tolerances

Katarzyna Grygiel Jagiellonian University in Kraków, Poland

Joint work with Anetta Górnicka and Joanna Grygiel

Szeged, 23rd June 2012

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Content

Skeletons

Which lattices can form a block of a skeleton tolerance?

Embedding blocks of the skeleton in blocks of the original lattice

Distributive lattices with at most k-dimensional Boolean cubes

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Tolerances

Let L be a lattice. A binary relation T on L is called a tolerance relation iff it is reflexive, symmetric and compatible with joins and meets of the lattice. We define a block of T as a maximal subset of L in which every two elements are in the relation T.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Tolerances

Let L be a lattice. A binary relation T on L is called a tolerance relation iff it is reflexive, symmetric and compatible with joins and meets of the lattice. We define a block of T as a maximal subset of L in which every two elements are in the relation T.

Every block of a tolerance relation T on a finite lattice L is an interval of L and the set L/T of all blocks of R in L with an order defined by

$$\alpha \leq \beta \Longleftrightarrow \mathbf{0}_\alpha \leq \mathbf{0}_\beta$$

(which is equivalent to the fact that $1_{\alpha} \leq 1_{\beta}$), where $\alpha = [0_{\alpha}, 1_{\alpha}], \ \beta = [0_{\beta}, 1_{\beta}]$ are blocks of T, forms a lattice called the factor lattice of L by T.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Skeleton

A tolerance whose transitive closure is the total relation on L is called a glued tolerance.

The intersection of any number of glued tolerances is a glued tolerance.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Skeleton

A tolerance whose transitive closure is the total relation on *L* is called a glued tolerance. The intersection of any number of glued tolerances is a glued tolerance.

The skeleton tolerance of a lattice L, which will be denoted by $\Sigma(L)$ (or just Σ when the context is obvious), is the smallest glued tolerance of L. The factor lattice $L/\Sigma(L)$ is called the skeleton of L and denoted by S(L).

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Blocks and skeletons in finite distributive lattices

If L is a finite modular lattice, then blocks of it skeleton tolerance relation $\Sigma(L)$ are maximal complementary intervals of the lattice. In particular, if L is a finite distributive lattice, then the blocks are maximal Boolean intervals of L.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Blocks and skeletons in finite distributive lattices

If L is a finite modular lattice, then blocks of it skeleton tolerance relation $\Sigma(L)$ are maximal complementary intervals of the lattice. In particular, if L is a finite distributive lattice, then the blocks are maximal Boolean intervals of L.

Theorem

Every finite lattice is a skeleton of some finite distributive lattice.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Skeleton tolerances

The skeleton tolerance of a lattice L is generated by the set of all prime quotients in L, i.e., pairs (a, b) such that $a \prec b$.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Skeleton tolerances

The skeleton tolerance of a lattice L is generated by the set of all prime quotients in L, i.e., pairs (a, b) such that $a \prec b$.

Lemma

If $\alpha = [0_{\alpha}, 1_{\alpha}]$ is a block of $\Sigma(L)$ for some finite lattice L, then $0_{\alpha} = p(x_1, \dots, x_n)$ and $1_{\alpha} = p(y_1, \dots, y_n)$ for a lattice polynomial p and a system $x_1, \dots, x_n, y_1, \dots, y_n$ of elements of L such that $x_j \leq y_j$ for every $j = 1, \dots, n$.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Two-tailed lattices are not blocks of a skeleton tolerance...

Let M(L) and J(L) denote, respectively, sets of all meet-irreducible and join-irreducible elements of the lattice L.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Two-tailed lattices are not blocks of a skeleton tolerance...

Let M(L) and J(L) denote, respectively, sets of all meet-irreducible and join-irreducible elements of the lattice L.

Lemma

Let L be a finite lattice. If $\alpha = [0_{\alpha}, 1_{\alpha}]$ is a block of $\Sigma(L)$ such that $0_{\alpha} \not\prec 1_{\alpha}$. Then $0_{\alpha} \notin M(L)$ or $1_{\alpha} \notin J(L)$.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Two-tailed lattices are not blocks of a skeleton tolerance...

Let M(L) and J(L) denote, respectively, sets of all meet-irreducible and join-irreducible elements of the lattice L.

Lemma

Let L be a finite lattice. If $\alpha = [0_{\alpha}, 1_{\alpha}]$ is a block of $\Sigma(L)$ such that $0_{\alpha} \not\prec 1_{\alpha}$. Then $0_{\alpha} \notin M(L)$ or $1_{\alpha} \notin J(L)$.

Corollary

No chain of length greater than 1 can be a block of $\Sigma(L)$ for any lattice L.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

... but all others are

Theorem

Let L be a finite lattice. L is a block of the skeleton tolerance of a finite lattice iff $|L| \leq 2$ or $0_L \notin M(L)$ or $1_L \notin J(L)$.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

... but all others are

Theorem

Let L be a finite lattice. L is a block of the skeleton tolerance of a finite lattice iff $|L| \leq 2$ or $0_L \notin M(L)$ or $1_L \notin J(L)$.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Blocks belonging to the same block overlap

Lemma

Let L be a finite lattice. Assume that $\alpha, \beta \in S(L)$ such that $(\alpha, \beta) \in \Sigma(S(L))$. Then $\alpha \cap \beta \neq \emptyset$.

Corollary If $[\alpha, \beta] \in S(S(L))$, then $\alpha \cap \beta \neq \emptyset$.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Important embeddings

Theorem If L is a finite lattice, then every block $[\alpha, \beta]$ of $\Sigma(S(L))$ can be join-embedded in α and meet-embedded in β .

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Skeletons	Possible blocks	Embeddings	Lattices with constraints

When the embeddings are possible?

Lemma

Let L be a finite lattice, D be a distributive lattice. If there is a meet-embedding $\pi: L \to D$ then $|J(D)| \ge |J(L)|$. Dually, if there is a join-embedding $\sigma: L \to D$ then $|M(D)| \ge |M(L)|$.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

When the embeddings are possible?

Lemma

Let L be a finite lattice, D be a distributive lattice. If there is a meet-embedding $\pi: L \to D$ then $|J(D)| \ge |J(L)|$. Dually, if there is a join-embedding $\sigma: L \to D$ then $|M(D)| \ge |M(L)|$.

If D is a finite Boolean lattice then

$$\dim D = |J(D)| = |M(D)|.$$

Thus, if π is a meet-embedding of a finite lattice L into a Boolean lattice α then dim $\alpha \ge |J(L)|$ and, similarly, if σ is a join-embedding of L into a Boolean lattice β then dim $\beta \ge |M(L)|$.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Blocks of skeletons of distributive lattices with at most *k*-dimensional Boolean cubes

A block of the skeleton of a distributive lattice with at most k-dimensional maximal Boolean intervals

- can be join- and meet-embedded into a k-dimensional Boolean lattice, i.e., the number of its join- and meet-irreducible elements is not greater than k;
- cannot be a two-tailed lattice.

Skeletons	Possible blocks	Embeddings	Lattices with constraints
The case	k=3		

Possible blocks and the number of possible non-isomorphic distributive lattices for these blocks.

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Possible non-isomorphic distributive lattices for $\ \ \bigcirc$

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣ぬゆ

Skeletons	Possible blocks	Embeddings	Lattices with constraints

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 - つへで

Skeletons	Possible blocks	Embeddings	Lattices with constraints

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣ぬゆ

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Skeletons	Possible blocks	Embeddings	Lattices with constraints

Skeletons	Possible blocks	Embeddings	Lattices with constraints
Possible n	on-isomorphic dist	ributive lattices	for 🖒

Skeletons	Possible blocks	Embeddings	Lattices with constraints
Possible n	on-isomorphic dist	ributive lattices	for 🕎

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Lattices being blocks of skeleton tolerances

・ロト ・四ト ・ヨト ・ヨト

3

・ロト・日本・日本・日本・日本・今日・

Skeletons	Possible blocks	Embeddings	Lattices with constraints
Possible r	ion-isomorphic dist	ributive lattices for	\langle
		\wedge	

- * ロト * 課 ト * 語 ト * 語 * うへ()

Skeletons	Possible blocks	Embeddings	Lattices with constraints
Possible non-	isomorphic distr	ributive lattices for	· 🚯

Skeletons	Possible blocks	Embeddings	Lattices with constraints

The end

Thank you for your attention.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ 回 ▶