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1. Requisites and motivation

The tolerances and the congruences of an algebra A form algebraic
lattices with respect to ⊆ denoted by Tol(A) and Con(A),
respectively.

Using a congruence θ ∈ Con(A) we can define a factor algebra A/θ
having as elements the congruence classes [a]θ, a ∈ A. In case of a
tolerance T ∈ Tol(A) this is in general not possible.

In the case of lattices, Gábor Czédli (’82) proved that using a
tolerance T ∈ Tol(L) we can define a factor lattice of L modulo T ,
which elements are the the blocks of the tolerance T .

Although this construction generalize the factor lattice notion, its
properties are significantly different.
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There are some important properties, which are generally valid for the
congruence factors of any algebra, but they are not true in general for
tolerance factors of lattices:

It is known that for any ϕ ∈ Con(A), we have

Con(A/ϕ) ∼= [ϕ) (homomorphism theorem)

- where [ϕ) stands for the principal filter [ϕ) of ϕ in Con(A);

Moreover, any ψ ∈ Con(A) with ψ ≥ ϕ induces a congruence ψ/ϕ on the
factor algebra A/ϕ, such that

(A/ϕ)/(ψ/ϕ) ∼= A/ψ (second isomorphism theorem).

In this talk we are going to formulate analogous results for tolerance
factors of lattices.
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The ”fitting into” order

If ϕ, θ are equivalence relations and ϕ ≤ θ, then any equivalence class of
θ is a union of some equivalence classes of ϕ. The same is true for the
congruences of an algebra A = (A,F ) (see the figure below).

Figure 1

Definition 1. Let T ,S ∈ Tol(L), T ≤ S . We say that T fits into S and
we write T v S , if any block of S is the union of some blocks of T .

We already know that v is a partial order on Tol(L).
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2. Tolerances and polarities

Definition 2. Let L = (L,≤) be a lattice. A pair of maps σ, µ : L −→ L,
is called a polarity on L if for any x , y ∈ L, σ(x) ≤ x and

σ(x) ≤ y ⇐⇒ x ≤ µ(y)

This yields also x ≤ µ(x), for all x ∈ L. If (σ, µ) is a polarity, then σ is a
join-homomorphism and µ is a meet-homomorphism of L, i.e. for all
x1, x2 ∈ L

σ(x1 ∨ x2) = σ(x1) ∨ σ(x2), µ(x1 ∧ x2) = µ(x1) ∧ µ(x2).

In the case of a finite lattice L, there is a one-to-one correspondence
between its tolerances and polarities. The correpondence is given by
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Lemma 1. (D. Hobby, R. Mc Kenzie)

(i) If T is a tolerance on a finite lattice L, then the formulas

σT (x) :=
∧
{y ∈ L | (x , y) ∈ T}, µT (x) :=

∨
{y ∈ L | (x , y) ∈ τ}

define a polarity on L such that T = {(x , y) | σT (x ∨ y) ≤ x ∧ y}.
(ii) If (σ, µ) is any polarity of L, then there exists a unique tolerance T
such that σ, µ and T are related as in (i).

Proposition 1.

Let L be a finite lattice and T ,S ∈ Tol(L). Then the following are
equivalent:
(i) T v S ,
(ii) ImσS ⊆ ImσT and ImµS ⊆ ImµT ,
(iii) There is a pair f , g : L −→ L of order-preserving mappings such that
σS = f ◦ σT and µS = g ◦ µT .
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3. Isomorphism theorems

Let [T )v := {S ∈ Tol(L) | T v S}. In fact on the set [T )v we can
define two different posets: ([T )v,≤) and (([T )v,v).

Theorem 1. (Homomorphism Thm.) For any T ∈ Tol(L) we have:

(i) (Tol(L/T ),≤) ∼= ([T )v,≤);

(ii) (Tol(L/T ),v) ∼= ([T )v,v).

Hence ([T )v,≤) is a lattice and (Tol(L/T ),v) is isomorphic to a
principal filter of (Tol(L),v).

Theorem 2. (Second isomorphism Thm.)

(i) For any T ,S ∈ Tol(L) with T v S we have (L/T )/(S/T ) ∼= L/S .

(ii) For any θ ∈ Tol(L/T ) we have (L/T )/θ ∼= L/T θ.

It was proved by I. Chajda, and J. Nieminen that for any finite direct

product L =
n∏

i=1

Li of lattices the isomorphism Tol(L) ∼=
n∏

i=1

Tol(Li ) holds.

Moreover, we proved:
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Theorem 3.

Let L =
n∏

i=1

Li be a finite lattice, and vi the ”fitting into” relation on

Tol(Li ). Then (Tol(L),v) is isomorphic to the direct product of the
posets (Tol(Li ),vi ).

4. The partialy ordered set (Tol(L), v)

In this section we investigate some particular properties of the poset
(Tol(L), v). Of course, the partial orders ≤ and v defined on Tol(L),
are in general different:

Proposition 2.

Let L be a nontrivial finite distributive lattice. Then the partial orders v
and ≤ coincide on Tol(L) if and only if L is a Boolean lattice.

Remark. We note that the poset (Tol(L),v) is not a lattice in general!
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Example

T1: {0, 1, 2, 4}, {1, 3, 4, 6}, {2, 4, 5, 7}, {4, 6, 7, 8}, {6, 8, 9};
T2: {0, 1, 2, 4}, {1, 3, 4, 6}, {2, 4, 5, 7}, {4, 6, 7, 8}, {7, 8, 9};
S1: {0, 1, 2, 4}, {1, 3, 4, 6}, {2, 4, 5, 7}, {4,6,7,8,9};
S2: {0, 1, 2, 3, 4, 6}, {2, 4, 5, 6, 7, 8}, {4,6,7,8,9}.
Clearly, T1,T2 v S1,S2 and S1 = T1 ∨ T2. If sup{T1,T2} would exist in
(Tol(L),v), then S1 = T1 ∨ T2 ≤ sup{T1,T2} ≤ S1 ∩ S2 = S1 would
imply sup{T1,T2} = S1, which is a contradiction, because S2 is an
upperbound for {T1,T2}, however S1 v S2 does not hold.
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Lemma 2. For any finite lattice L, T ∈ Tol(L) and any system
Si ∈ Tol(L), i ∈ I , I 6= ∅ of tolerances

T v Si , i ∈ I imply T v
⋂
{Si | i ∈ I}.

Elementary notions related with directoids

Definition 3.(J. Ježek, R. Quackenbush)

(i) A join-directoid is an up-directed partially ordered set A = (A,≤)
where to any ordered pair (x , y) ∈ A2 of elements a common upperbound
xOy is assigned such that

x ≤ y ⇐⇒ y = xOy .

(ii) The join-directoid A is called commutative if xOy = yOx .

Remark. The choice of this common upperbound in general is not
unique (provided x and y are not comparable). Hence an up-directed
poset (A,≤) may be converted into several different join-directoids.
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Equivalent definition. Any join-directoid can be defined equivalently as
a grupoid A = (A,O) satisfying the identities:

D1) xOx = x ,
D2) (xOy)Ox = xOy , yO(xOy) = xOy ,
D3) xO((xOy)Oz) = (xOy)Oz .

In this case, the definition x ≤ y ⇐⇒ xOy = y determines an
up-directed poset (A,≤).

Now, let us define

T1OT2 =
⋂
{S ∈ Tol(L) | T1,T2 v S}, for any T1,T2 ∈ Tol(L).

Then we can formulate:

Proposition 3.

(i) (Tol(L),O) is a commutative join-directoid corresponding to the
partially ordered set (Tol(L),v).

(ii) If for some T1,T2 ∈ Tol(L), sup{T1,T2} there exists in (Tol(L),v),
then sup{T1,T2} = T1OT2.
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5. Some properties of (Tol(L),O)

Let (A,O) be a join-directoid and B ⊆ A, B 6= ∅. (B,O) is called a
subdirectoid of (A,O), whenever for any b, c ∈ B, bOc ∈ B holds.

Theorem 4.

Let L be a finite lattice. Then the following assertions are true:

(i) (Con(L),∨) is a subdirectoid of (Tol(L),O);

(ii) For every T ∈ Tol(L), ([T )v, O) is a subdirectoid of (Tol(L),O) and
([T )v, O) ∼= (Tol(L/T ),O);

(iii) Let L =
n∏

i=1

Li , and denote by Oi the grupoid operation corresponding

to the directoid (Tol(Li ), vi ). Then (Tol(L),O) ∼=
n∏

i=1

(Tol(Li ),Oi )

Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint work with Joanna Grygiel, Math. Institute, Jan Dlugos University).Tolerance factors



5. Some properties of (Tol(L),O)

Let (A,O) be a join-directoid and B ⊆ A, B 6= ∅. (B,O) is called a
subdirectoid of (A,O), whenever for any b, c ∈ B, bOc ∈ B holds.

Theorem 4.

Let L be a finite lattice. Then the following assertions are true:

(i) (Con(L),∨) is a subdirectoid of (Tol(L),O);

(ii) For every T ∈ Tol(L), ([T )v, O) is a subdirectoid of (Tol(L),O) and
([T )v, O) ∼= (Tol(L/T ),O);

(iii) Let L =
n∏

i=1

Li , and denote by Oi the grupoid operation corresponding

to the directoid (Tol(Li ), vi ). Then (Tol(L),O) ∼=
n∏

i=1

(Tol(Li ),Oi )

Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint work with Joanna Grygiel, Math. Institute, Jan Dlugos University).Tolerance factors



5. Some properties of (Tol(L),O)

Let (A,O) be a join-directoid and B ⊆ A, B 6= ∅. (B,O) is called a
subdirectoid of (A,O), whenever for any b, c ∈ B, bOc ∈ B holds.

Theorem 4.

Let L be a finite lattice. Then the following assertions are true:

(i) (Con(L),∨) is a subdirectoid of (Tol(L),O);

(ii) For every T ∈ Tol(L), ([T )v, O) is a subdirectoid of (Tol(L),O) and
([T )v, O) ∼= (Tol(L/T ),O);

(iii) Let L =
n∏

i=1

Li , and denote by Oi the grupoid operation corresponding

to the directoid (Tol(Li ), vi ). Then (Tol(L),O) ∼=
n∏

i=1

(Tol(Li ),Oi )

Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint work with Joanna Grygiel, Math. Institute, Jan Dlugos University).Tolerance factors



5. Some properties of (Tol(L),O)

Let (A,O) be a join-directoid and B ⊆ A, B 6= ∅. (B,O) is called a
subdirectoid of (A,O), whenever for any b, c ∈ B, bOc ∈ B holds.

Theorem 4.

Let L be a finite lattice. Then the following assertions are true:

(i) (Con(L),∨) is a subdirectoid of (Tol(L),O);

(ii) For every T ∈ Tol(L), ([T )v, O) is a subdirectoid of (Tol(L),O) and
([T )v, O) ∼= (Tol(L/T ),O);

(iii) Let L =
n∏

i=1

Li , and denote by Oi the grupoid operation corresponding

to the directoid (Tol(Li ), vi ). Then (Tol(L),O) ∼=
n∏

i=1

(Tol(Li ),Oi )

Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint work with Joanna Grygiel, Math. Institute, Jan Dlugos University).Tolerance factors



5. Some properties of (Tol(L),O)

Let (A,O) be a join-directoid and B ⊆ A, B 6= ∅. (B,O) is called a
subdirectoid of (A,O), whenever for any b, c ∈ B, bOc ∈ B holds.

Theorem 4.

Let L be a finite lattice. Then the following assertions are true:

(i) (Con(L),∨) is a subdirectoid of (Tol(L),O);

(ii) For every T ∈ Tol(L), ([T )v, O) is a subdirectoid of (Tol(L),O) and
([T )v, O) ∼= (Tol(L/T ),O);

(iii) Let L =
n∏

i=1

Li , and denote by Oi the grupoid operation corresponding

to the directoid (Tol(Li ), vi ). Then (Tol(L),O) ∼=
n∏

i=1

(Tol(Li ),Oi )

Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint work with Joanna Grygiel, Math. Institute, Jan Dlugos University).Tolerance factors



Chajda, I. and Nieminen, J. Direct decomposability of
tolerances on lattices, semilattices and quasilattices,
Czech. Math. J. 32 (1982), 110-115.

Czédli, G.: Factor lattices by tolerances, Acta Sci. Math.
(Szeged) 44 (1982), 35-42.

Ganter, B. and Wille, R.: Formal concept analysis:
Mathematical foundations, Springer, Berlin-Heidelberg,
1999.
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