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Salutation

I We celebrate Béla on his 80th birthday

I Béla is up front; the circle is a group
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A Joke

I What is polygamy?

I One wife too many.

I What is monogamy?

I The same.
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The Story

Half a century ago, I discovered with Schmidt the 1960
construction of a chopped lattice M
(made up of sectionally complemented lattices)
and the 1960 sectional complement S1960

(we’ll describe these soon).
The idea was: for the ideals I ⊆ J of the chopped lattice M,
form the sectional complements of I in J in each part, call this S.
In general, S is not an ideal.
Throw away everything that could cause problems,
and show that what was left, S1960, is still enough.



In 2006, I started working with Roddy going in the opposite
direction:

(i) Make a tiny correction (almost anywhere) in S;

(ii) carry on, until no more corrections are left.

This algorithm diverges at every step.
We figured that we get a large set (the 2006 sectional
complements)

SC2006(I , J)

of sectional complements of I in J.
We were interested in the size of SC2006(I , J),
how big it is compared to SC(I , J),
the set of all sectional complements of I in J,
and whether S1960 belongs to it.



Conjectures

The set SC2006(I , J) (the sectional complements of I in J obtained
by the algorithm) is large, but small compared to SC(I , J) (the set
of all sectional complements):

1

100
|SC(I , J)| ≤ |SC2006(I , J)| ≤ 1

16
|SC(I , J)|.

We had no idea whether S1960 belongs to SC(I , J)2006 (in all
examples, it did).



1940

So let me tell the story.
R. P. Dilworth proved the following result—it appeared as an
exercise (with an asterisk) in Birkhoff’s Lattice Theory (1948):

Theorem
Every finite distributive lattice D can be represented as the
congruence lattice of a finite lattice L.



1960

This is our result:

Theorem
Every finite distributive lattice D can be represented as the
congruence lattice of a finite sectionally complemented lattice L.

A lattice L with 0 is sectionally complemented if all intervals [0, a]
are complemented, that is, for all a ≤ b in L, there is an element
c ∈ L satisfying a ∧ c = 0 and a ∨ c = 1.

We rephrase our result as follows:

Theorem
Let P be a finite order. Then there exists a sectionally
complemented lattice L such that the order of join-irreducible
congruences, ConJi L, is isomorphic to P.



Chopped Lattices
This is the main technical tool:

A chopped lattice is a finite meet-semilattice (A;∧) regarded as a
partial algebra (A;∧,∨), where ∨ is a partial operation defined as
follows: a ∨ b is defined and a ∨ b = c iff c is the least upper
bound of a and b for a, b, c ∈ A.

Here is an example:

We denote by Max the set of maximal elements of A.



It is not difficult to see that the congruence lattice of a chopped
lattice A is isomorphic to the congruence lattice of the ideal lattice
of A, Id A, so if we construct a chopped lattice A with the
appropriate congruence lattice, the we also have a lattice with the
same congruence lattice.



Constructing M

We construct the chopped lattice M for the Theorem from copies
of the lattice N6 = N(p, q), for p � q ∈ P, which has exactly one
nontrivial congruence.

q1q2p1

p(q)

q

0



Example 1: P is the three-element chain C

Let C = {p, q, r} with r ≺ q ≺ p. We take two copies of the
gadget, N(p, q) and N(q, r); they share the ideal I = {0, q1}.
So we can “merge” them and form the chopped lattice MC :

q

0

C

p

q

p(q) q(r)

p1 q1q2

r

r1r2

r
N(p, q) N(q, r)



Example 2: P is the three-element order V

We take two copies of the gadget, N(p, r) and N(q, r); they share
the ideal J = {0, r1, r2, r}; we “merge” them to form the chopped
lattice MV :

0

p q

p(r) q(r)

q1

r

r1 r2p1

N(p, r) N(q, r)

r

V



Example 3: P is the three-element order H

The chopped lattice MH :

0

p

q

p(q) p(r)

p1

r

r1 r2q2

N(p, q) N(p, r)
rq

q1H



The general construction
Now it is easy to visualize the general construction of the chopped
lattice M: instead of the three atoms as in the examples, we start
with enough atoms to reflect the structure of P. Whenever b ≺ a
in P, we build a copy of N(a, b). It is routine to check that M has
the required congruence lattice.

. . .. . .
b1 b2 

0 

a1 a2 

. . .. . .

0 

a1a2

a(b)

b

b1b2

a



Is IdM sectionally complemented?

Let I ⊆ J be ideals of M. On the diagrams, ideals will be marked
by their “peaks”, like this:

q

0 

p( q) q( r) 

p1 q1 q2 r1 r2 

r
N( p, q) N( q, r) 



Choosing suitable sectional complements, we get the “black”
ideal S , a sectional complement.

q

0 

p( q) q( r) 

p1 q1 q2 r1 r2 

r
N( p, q) N( q, r) 



In general, if I ⊆ J, we can take the ideal S of M generated by all
the atoms a ∈ J − I . The problem is, some atoms are trouble
makers: if p � q in P and p1, q1 ∈ J − I (gray-filled), q2 ∈ I
(black-filled), then q2 is in the ideal generated by J − I , so it is not
disjoint to I (they have q2 in common).

q

0 

p( q) 

p1 q1 q2 

N( p, q) 

The 1960 construction of S1960: throw away all the trouble makers
from J − I . Then S1960 is the ideal generated by the atoms we
keep.



2006
If we get a candidate for an ideal (the black-filled elements in
N(p, q) and N(q, r)) that is not an ideal, it fails to be an ideal in a
part that is a C , a V , or an H.
Here is a C example: q, r1 (a C -failure) “cut to” q2, r1.

q

0 

C

p

q

p( q) q( r) 

p1 q1 q2 

r

r1 r2 

r
N( p, q) N( q, r) 

We call this a C -cut.
A C -failure at p � q � r is minimal if there is no C -failure at
p′ � q′ � r ′ with q′ < q.



Here is a V example: p(r), q1 (a V -failure) “cut to” p1, q1.

0 

p q

p( r) q( r) 

q1 

r

r1 r2 p1 

N( p, r) N( q, r) 

r

V

We call this a V -cut.



The Algorithm

Let I ⊆ J be ideals of M. For each peak of I in a peak of J, choose
a maximal sectional complement. Starting with these peaks:

Step 1. Look for a V -failure, and perform the corresponding
V -cut, obtaining the new peaks.
Step 2. Repeat Step 1 until there are no more V -failures.
Step 3. Look for a minimal C -failure, and perform the
corresponding C -cut.
Step 4. Repeat Step 3 until there are no more C -failures.



The Algorithm clearly terminates since the peaks are getting
smaller and M is finite. Here is my main result with Roddy:

Theorem
When the Algorithm terminates, it finds a sectional complement.
Hence the ideal lattice of M is sectionally complemented.

Note that a cut changes the peaks, so as a result of a cut another
failure may disappear.



2010

With two students, Klus and Nguyen, we started working on the
conjecture: SC2006(I , J) (the sectional complements obtained by
the algorithm) is large, but small compared to SC(I , J) (the set of
all sectional complements).
We did not find what we expected.



The Punch Line

Theorem (Punch Line)

Let Σ be any sequence of cuts in the Algorithm. Then the
sectional complement, SΣ(I , J), is independent of Σ and

SΣ(I , J) = {S1960(I , J)}.



Let Us Do Some Math

For a chopped lattice A, the congruence lattice of A is isomorphic
to the congruence lattice of the ideal lattice, Id A (Grätzer-Lakser).



One step in the proof: let α be a congruence relation of A.
For I , J ∈ Id A, define the relation α:

I ≡ J (mod α) if I/α = J/α.

(I/α is the image of I in A/α.)
We claim that α is a congruence on Id A.
To prove that if

I ≡ J (mod α),

then
I ∨ N ≡ J ∨ N (mod α),

we need a description of the join A ∨ B of two ideals A and B.



Define the set U(A,B)i ⊆ A inductively for all 0 < i < ω. Let

U(A,B)0 = A ∪ B.

If U(A,B)i−1 is defined, then let U(A,B)i be the set of all x ∈ A
for which there are u, v ∈ U(A,B)i−1 such that u ∨ v is defined
in A and x ≤ u ∨ v . Then

A ∨ B =
⋃

( U(A,B)i | i < ω ).

The rest is easy.



Working with Peaks

For a chopped lattice A,

A =
⋃

( id(m) | m ∈ Max )

and each id(m) is a (finite) lattice.
(Recall that Max is the set of maximal elements of A.)
A vector (associated with A) is of the form (im | m ∈ Max),
where im ∈ id(m) for all m ∈ A.
We order the vectors componentwise.
With every ideal I of A, we can associate the vector
(im | m ∈ Max) defined by I ∩ id(m) = id(im) (the peaks). Clearly,
I =

⋃
( id(im) | m ∈ A ). Such vectors are easy to characterize.



Let us call the vector (jm | m ∈ Max) compatible if
jm ∧ n = jn ∧m, for all m, n ∈ Max.

Lemma
Let A be a chopped lattice.

(i) There is a one-to-one correspondence between ideals and
compatible vectors of A.

(ii) Given any vector g = (gm | m ∈ Max), there is a smallest
compatible vector g = (im | m ∈ Max) containing g.

(iii) Let I and J be ideals of A, with corresponding compatible
vectors (im | m ∈ Max) and (jm | m ∈ Max). Then

(a) I ≤ J in Id A iff im ≤ jm for all m ∈ Max.
(b) The compatible vector corresponding to I ∧ J is

(im ∧ jm | m ∈ Max).
(c) Let a = (im ∨ jm | m ∈ Max). Then the a is the compatible

vector corresponding to I ∨ J.



Examples of M

Recall that we construct the chopped lattice M for the Theorem
from copies of the lattice N6 = N(p, q), for p � q ∈ P.

q1q2p1

p(q)

q

0

So Max = { p(q) | p � q ∈ P }.



q

0 

C

p

q

p( q) q( r) 

p1 q1 q2 

r

r1 r2 

r
N( p, q) N( q, r) 

Red: compatible vector, p1 ∧ q(r) = p(r) ∧ r1

Green: not compatible vector, q ∧ q(r) 6= p(q) ∧ r



0 

p q

p( r) q( r) 

q1 

r

r1 r2 p1 

N( p, r) N( q, r) 

r

V

Red: not compatible vector, r1 ∧ q(r) = p(q) ∧ r1

Green: not compatible vector, p1 ∧ q(r) 6= p(r) ∧ q(r)
Max = (p(r), q(r)) is a compatible vextor



Starting the Formal Definitions

Elements of M are compatible vectors:
v = (vp,q | p � q ∈ P, vp,q ∈ N(p, q)).

We begin with some definitions utilizing the fact that in N(p, q),
for every x ≤ y , there is a unique sectional complement z of x
in y , except for x = p1 and y = p(q), in which case, there are
three, q, q1, and q2; of these, q is maximal.

q1q2p1

p(q)

q

0



The Vector s

Let u and v be compatible vectors of the chopped lattice M with
u ≤ v, that is, let u = (uxy | x � y ∈ P) and
v = (vxy | x � y ∈ P), with uxy ≤ vxy in N(x , y)
for all x � y ∈ P.
Define the vector s = (sxy | x � y ∈ P), where sxy is the maximal
sectional complement of uxy in vxy .



C -compatibility

Let p � q � r in P, that is, let {p, q, r} be a cover-preserving
suborder C in P.

(i) We call a vector c = (cxy | x � y ∈ P) C -compatible at
{p, q, r}, if cpq ∧ q1 = cqr ∧ q1 in M. Otherwise, c is
C -incompatible at {p, q, r}.

(ii) The vector c is C -compatible, if it has no C -incompatibilty.

(iii) We say that c has a C -failure at {p, q, r}, if c is
C -incompatible at {p, q, r} and, additionally, cpr = spr and
cqr = sqr , that is, c = s on {p, q, r}.

(iv) A C (p, q, r)-failure for c at p � q � r is minimal if there is
no C (p′, q′, r ′)-failure for c with q′ < q.



Similarly, we define V -compatibility and H-compatibility.

A vector c is compatible iff it is
C -compatible,
V -compatible, and
H-compatible.



C -failure Lemma

Recall that u ≤ v are compatible vectors
and the vector s is constructed from u and v
(maximal sectional complements).

Lemma
For a vector c, a C (p, q, r)-failure is represented by a row in the
following table with cpq = spq and cqr = sqr :

upq uqr vpq vqr spq sqr
q2 0 p(q) p1 p1 q1

q2 0 p(q) q(r) p1 q(r)
q2 r1 p(q) q(r) p1 q1

q2 r2 p(q) q(r) p1 q1

q2 r p(q) q(r) p1 q1



C -cuts

Let c be a vector with a C (p, q, r)-failure. The C -cut of c is a
vector RC (c) all but one of whose components are the same as
those of c. One component of c is “cut” (substituted by an
element it covers) as shown in this table (the C -cut Table):

upq uqr vpq vqr cpq = spq cqr = sqr
q2 0 p(q) q1 p1 q1 cqr 7→ 0
q2 0 p(q) q(r) p1 q(r) cqr 7→ r
q2 r1 p(q) q(r) p1 q1 cqr 7→ 0
q2 r2 p(q) q(r) p1 q1 cqr 7→ 0
q2 r p(q) q(r) p1 q1 cqr 7→ 0



V -failure and V -cuts

Similarly, we have the V -failure Lemma, V -cut Table, and V -cuts.



The Algorithm

Step 1. Set c = s.
Step 2. Look for a V -failure, and perform the corresponding
V -cut, obtaining a new c = RV (c).
Step 3. Repeat Step 2 until there are no more V -failures.
Step 4. Look for a minimal C -failure, and perform the
corresponding C -cut, obtaining a new c = RC (c).
Step 5. Repeat Step 4 until there are no more C -failures.

Since M is finite and RC (c),RV (c) < c, the process must
terminate, yielding a vector s∗.



The s∗ Theorem

Given the compatible vectors u ≤ v, the vector s, and a vector s∗,
a result of the Algorithm, we have the following result (Grätzer and
Roddy):

Theorem
The vector s∗ is compatible and it is a sectional complement of u
in v in Id M. Hence the lattice Id M is sectionally complemented.
Moreover, for every p � q in P, either s∗pq = spq or s∗pq ≺ sp,q
holds.



Lament1

The proof is 15 pages long, comprising 41 cases, each from one
line to half a page long. If the statement of any one of these cases
fails, the theorem collapses.

1An expression of regret or disappointment



The Invariance for Step 3

The result with Klus and Nguyen (for any sequence of cuts, Σ, in
the Algorithm, the sectional complement, SΣ(I , J), is independent
of Σ and SΣ(I , J) = {S1960(I , J)} ) follows from a sequence of
lemmas.
Let m2 denote the following vector:

m2
pr =


0, if mpr = ri

and there is a V (p, q, r)-failure for some q � r ;

mpr , otherwise.

Lemma
At the end of Step 3, we obtain the vector m2, independent of the
sequence of V -cuts performed.

Lemma
The vector m2 is V -compatible.



The Invariance for Step 5

p � q � r in P
Let C (p, q, r) be a C -suborder (r ≺ q ≺ p). We call r ≺ q the
stem of C .

Lemma
Let m2 have a C-failure at C (p, q, r). Then any C -suborder of P
with the same stem, r ≺ q, also has a C -failure. Moreover, all
these failures are resolved by the same cut.

Lemma
Let C1 and C2 be two minimal C-failures that do not share a stem.
Then, after a C -cut at C1, the chain C2 still has a C -failure.

Lemma
Let Σ be any sequence of C -cuts on m2 such that the vector m2

Σ

obtained by Σ has no C-failures. Then m2
Σ does not depend on Σ.



So we proved that sΣ does not depend on the choice of Σ. Let s
denote this vector.
Therefore, SC2006(I , J) = {s} is a singleton.
It remains to prove that s = s1960.

Lemma
Let u ≤ v be vectors in P. Let c be a vector obtained in a step of
the algorithm and let Cut(c) be the vector obtained in next step of
the algorithm. If s1960 ≤ c, then s1960 ≤ Cut(c).

Lemma
Let c be a compatible vector for which s1960 ≤ c ≤ m. Then
c = s1960.



Problems

Problem
The Intuitive Algorithm: find a failure, cut it.
Does it work?

Problem
Are there different algorithms that find other sectional
complements?



More Problems

Problem
Can we apply the Algorithm to more general classes of sectionally
complemented chopped lattices? (For counter examples, see my
paper with Lakser and Roddy.)

Problem
Is there a proof not utilizing the s∗ Theorem that the only
sectional complements found by the Algorithm is s1960?

For lot more problems, see the papers:
Notes on sectionally complemented lattices. I.–V.
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