Tolerances as congruence images Conference on Universal Algebra and Lattice Theory Dedicated to the 80-th birthday of Béla Csákány

Gábor Czédli, Emil W. Kiss

czedli@math.u-szeged.hu University of Szeged, Hungary ewkiss@cs.elte.hu Eötvös University, Budapest, Hungary

Szeged, Hungary, June 21-25, 2012

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tolerance images

Tolerance: compatible, reflexive, symmetric relation.

Tolerance images

Tolerance: compatible, reflexive, symmetric relation. If $\varphi : \mathbf{A} \to \mathbf{B}$ is a surjective homomorphism,

Tolerance images

Tolerance: compatible, reflexive, symmetric relation. If $\varphi : \mathbf{A} \to \mathbf{B}$ is a surjective homomorphism, and \mathcal{T} is a tolerance of \mathbf{A} ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Tolerance images

Tolerance: compatible, reflexive, symmetric relation. If $\varphi : \mathbf{A} \to \mathbf{B}$ is a surjective homomorphism, and \mathcal{T} is a tolerance of \mathbf{A} , then the image of \mathcal{T} under φ , $\varphi(\mathcal{T}) = \{(\varphi(a), \varphi(b)) : (a, b) \in \mathbf{A}\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Tolerance images

Tolerance: compatible, reflexive, symmetric relation. If $\varphi : \mathbf{A} \to \mathbf{B}$ is a surjective homomorphism, and \mathcal{T} is a tolerance of \mathbf{A} , then the image of \mathcal{T} under φ , $\varphi(\mathcal{T}) = \{(\varphi(a), \varphi(b)) : (a, b) \in \mathbf{A}\}$ is a tolerance of \mathbf{B} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Tolerance images

Tolerance: compatible, reflexive, symmetric relation. If $\varphi : \mathbf{A} \to \mathbf{B}$ is a surjective homomorphism, and T is a tolerance of \mathbf{A} , then the image of T under φ , $\varphi(T) = \{(\varphi(a), \varphi(b)) : (a, b) \in \mathbf{A}\}$ is a tolerance of \mathbf{B} .

In particular, the image of every congruence is a tolerance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tolerance images

Tolerance: compatible, reflexive, symmetric relation. If $\varphi : \mathbf{A} \to \mathbf{B}$ is a surjective homomorphism, and T is a tolerance of \mathbf{A} , then the image of T under φ , $\varphi(T) = \{(\varphi(a), \varphi(b)) : (a, b) \in \mathbf{A}\}$ is a tolerance of \mathbf{B} .

In particular, the image of every congruence is a tolerance.

Problem

Characterize all varieties in which every tolerance

is a homomorphic image of a congruence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Tolerance images

Tolerance: compatible, reflexive, symmetric relation. If $\varphi : \mathbf{A} \to \mathbf{B}$ is a surjective homomorphism, and T is a tolerance of \mathbf{A} , then the image of T under φ , $\varphi(T) = \{(\varphi(a), \varphi(b)) : (a, b) \in \mathbf{A}\}$ is a tolerance of \mathbf{B} .

In particular, the image of every congruence is a tolerance.

Problem

Characterize all varieties in which every tolerance is a homomorphic image of a congruence. Name: TImC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Tolerance images

Tolerance: compatible, reflexive, symmetric relation. If $\varphi : \mathbf{A} \to \mathbf{B}$ is a surjective homomorphism, and T is a tolerance of \mathbf{A} , then the image of T under φ , $\varphi(T) = \{(\varphi(a), \varphi(b)) : (a, b) \in \mathbf{A}\}$ is a tolerance of \mathbf{B} .

In particular, the image of every congruence is a tolerance.

Problem

Characterize all varieties in which every tolerance is a homomorphic image of a congruence. Name: TImC.

Motivating example

The variety of all lattices has TImC (Czédli, Grätzer).

Tolerance images

Tolerance: compatible, reflexive, symmetric relation. If $\varphi : \mathbf{A} \to \mathbf{B}$ is a surjective homomorphism, and \mathcal{T} is a tolerance of \mathbf{A} , then the image of \mathcal{T} under φ , $\varphi(\mathcal{T}) = \{(\varphi(a), \varphi(b)) : (a, b) \in \mathbf{A}\}$ is a tolerance of \mathbf{B} .

In particular, the image of every congruence is a tolerance.

Problem

Characterize all varieties in which every tolerance is a homomorphic image of a congruence. Name: TImC.

Motivating example

The variety of all lattices has TImC (Czédli, Grätzer).

Congruence permutable varieties: every tolerance is a congruence.

Linear identity: every variable occurs at most once on each side.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear identities

Linear identity: every variable occurs at most once on each side.

Theorem (Chajda, Czédli, Halaš, Lipparini)

Every variety defined by linear identities has TImC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear identities

Linear identity: every variable occurs at most once on each side.

Theorem (Chajda, Czédli, Halaš, Lipparini)

Every variety defined by linear identities has TImC.

Examples

• All algebras of a given similarity type.

Linear identity: every variable occurs at most once on each side.

Theorem (Chajda, Czédli, Halaš, Lipparini)

Every variety defined by linear identities has TImC.

Examples

• All algebras of a given similarity type.

Corollary

Every tolerance is a homomorphic image of a congruence

Linear identity: every variable occurs at most once on each side.

Theorem (Chajda, Czédli, Halaš, Lipparini)

Every variety defined by linear identities has TImC.

Examples

• All algebras of a given similarity type.

Corollary

Every tolerance is a homomorphic image of a congruence (of an algebra not necessarily in the same variety).

Linear identity: every variable occurs at most once on each side.

Theorem (Chajda, Czédli, Halaš, Lipparini)

Every variety defined by linear identities has TImC.

Examples

- All algebras of a given similarity type.
- All semigroups.

Corollary

Every tolerance is a homomorphic image of a congruence (of an algebra not necessarily in the same variety).

Linear identity: every variable occurs at most once on each side.

Theorem (Chajda, Czédli, Halaš, Lipparini)

Every variety defined by linear identities has TImC.

Examples

- All algebras of a given similarity type.
- All semigroups.
- All commutative semigroups.

Corollary

Every tolerance is a homomorphic image of a congruence (of an algebra not necessarily in the same variety).

4 / 7

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Mal'tsev-like condition

Condition M(n)

For any pair (f,g) of 2*n*-ary terms such that the identity $f(x_0, x_0, \dots, x_{n-1}, x_{n-1}) \approx g(x_0, x_0, \dots, x_{n-1}, x_{n-1})$ holds in \mathcal{V} ,

4 / 7

A Mal'tsev-like condition

Condition M(n)For any pair (f, g) of 2*n*-ary terms such that the identity $f(x_0, x_0, \dots, x_{n-1}, x_{n-1}) \approx g(x_0, x_0, \dots, x_{n-1}, x_{n-1})$ holds in \mathcal{V} , there exists a 4*n*-ary term *h* such that the identities $f(x_0, y_0, \dots, x_{n-1}, y_{n-1}) \approx$ $\approx h(x_0, y_0, x_0, y_0, \dots, x_{n-1}, y_{n-1}, x_{n-1}, y_{n-1})$

4 / 7

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

A Mal'tsev-like condition

Condition M(n)For any pair (f,g) of 2n-ary terms such that the identity $f(x_0, x_0, \dots, x_{n-1}, x_{n-1}) \approx g(x_0, x_0, \dots, x_{n-1}, x_{n-1})$ holds in \mathcal{V} , there exists a 4n-ary term h such that the identities $f(x_0, y_0, \dots, x_{n-1}, y_{n-1}) \approx$ $\approx h(x_0, y_0, x_0, y_0, \dots, x_{n-1}, y_{n-1}, x_{n-1}, y_{n-1})$ $g(x_0, y_0, \dots, x_{n-1}, y_{n-1}) \approx$ $\approx h(y_0, x_0, x_0, y_0, \dots, y_{n-1}, x_{n-1}, x_{n-1}, y_{n-1})$ also hold in \mathcal{V} .

4 / 7

A Mal'tsev-like condition

Condition M(n)For any pair (f, g) of 2n-ary terms such that the identity $f(x_0, x_0, \dots, x_{n-1}, x_{n-1}) \approx g(x_0, x_0, \dots, x_{n-1}, x_{n-1})$ holds in \mathcal{V} , there exists a 4n-ary term h such that the identities $f(x_0, y_0, \dots, x_{n-1}, y_{n-1}) \approx$ $\approx h(x_0, y_0, x_0, y_0, x_0, y_0, \dots, x_{n-1}, y_{n-1}, x_{n-1}, y_{n-1})$ $g(x_0, y_0, \dots, x_{n-1}, y_{n-1}) \approx$ $\approx h(y_0, x_0, x_0, y_0, \dots, y_{n-1}, x_{n-1}, x_{n-1}, y_{n-1})$ also hold in \mathcal{V} . Pattern: f(xx) = g(xx) implies

4 / 7

A Mal'tsev-like condition

Condition M(n)For any pair (f, g) of 2*n*-ary terms such that the identity $f(x_0, x_0, \ldots, x_{n-1}, x_{n-1}) \approx g(x_0, x_0, \ldots, x_{n-1}, x_{n-1})$ holds in \mathcal{V} , there exists a 4*n*-ary term *h* such that the identities $f(x_0, y_0, \ldots, x_{n-1}, y_{n-1}) \approx$ $\approx h(x_0, y_0, x_0, y_0, \dots, x_{n-1}, y_{n-1}, x_{n-1}, y_{n-1})$ $g(x_0, y_0, \ldots, x_{n-1}, y_{n-1}) \approx$ $\approx h(y_0, x_0, x_0, y_0, \dots, y_{n-1}, x_{n-1}, x_{n-1}, y_{n-1})$ also hold in \mathcal{V} . Pattern: f(xx) = g(xx) implies $h(\mathbf{x}\mathbf{y}\mathbf{x}\mathbf{y}) = f(\mathbf{x}\mathbf{y})$

4 / 7

A Mal'tsev-like condition

Condition M(n)For any pair (f, g) of 2*n*-ary terms such that the identity $f(x_0, x_0, \ldots, x_{n-1}, x_{n-1}) \approx g(x_0, x_0, \ldots, x_{n-1}, x_{n-1})$ holds in \mathcal{V} , there exists a 4*n*-ary term *h* such that the identities $f(x_0, y_0, \ldots, x_{n-1}, y_{n-1}) \approx$ $x \approx h(x_0, y_0, x_0, y_0, \dots, x_{n-1}, y_{n-1}, x_{n-1}, y_{n-1})$ $g(x_0, y_0, \ldots, x_{n-1}, y_{n-1}) \approx$ $\approx h(y_0, x_0, x_0, y_0, \dots, y_{n-1}, x_{n-1}, x_{n-1}, y_{n-1})$ also hold in \mathcal{V} . Pattern: f(xx) = g(xx) implies $h(\mathbf{x}\mathbf{y}\mathbf{x}\mathbf{y}) = f(\mathbf{x}\mathbf{y})$ and $h(\mathbf{y}\mathbf{x}\mathbf{x}\mathbf{y}) = g(\mathbf{x}\mathbf{y})$.

4 / 7

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

A Mal'tsev-like condition

Condition M(n)For any pair (f, g) of 2*n*-ary terms such that the identity $f(x_0, x_0, \ldots, x_{n-1}, x_{n-1}) \approx g(x_0, x_0, \ldots, x_{n-1}, x_{n-1})$ holds in \mathcal{V} , there exists a 4*n*-ary term *h* such that the identities $f(x_0, y_0, \ldots, x_{n-1}, y_{n-1}) \approx$ $\approx h(x_0, y_0, x_0, y_0, \dots, x_{n-1}, y_{n-1}, x_{n-1}, y_{n-1})$ $g(x_0, y_0, \ldots, x_{n-1}, y_{n-1}) \approx$ $\approx h(y_0, x_0, x_0, y_0, \dots, y_{n-1}, x_{n-1}, x_{n-1}, y_{n-1})$ also hold in \mathcal{V} . Pattern: f(xx) = g(xx) implies h(xyxy) = f(xy) and h(yxxy) = g(xy).

Theorem (Czédli, Kiss)

A variety satisfies TImC iff it satisfies M(n) for every $n \ge 1$.

4 / 7

A Mal'tsev-like condition

Condition M(n)For any pair (f, g) of 2*n*-ary terms such that the identity $f(x_0, x_0, \ldots, x_{n-1}, x_{n-1}) \approx g(x_0, x_0, \ldots, x_{n-1}, x_{n-1})$ holds in \mathcal{V} , there exists a 4*n*-ary term *h* such that the identities $f(x_0, y_0, \ldots, x_{n-1}, y_{n-1}) \approx$ $x \approx h(x_0, y_0, x_0, y_0, \dots, x_{n-1}, y_{n-1}, x_{n-1}, y_{n-1})$ $g(x_0, y_0, \ldots, x_{n-1}, y_{n-1}) \approx$ $\approx h(y_0, x_0, x_0, y_0, \dots, y_{n-1}, x_{n-1}, x_{n-1}, y_{n-1})$ also hold in \mathcal{V} . Pattern: f(xx) = g(xx) implies h(xyxy) = f(xy) and h(yxxy) = g(xy).

Theorem (Czédli, Kiss)

A variety satisfies TImC iff it satisfies M(n) for every $n \ge 1$.

Remark: No finite set of conditions M(n) suffices.

Corollary

Every variety of lattices has TImC.

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(..., x, x, ...) \approx g(..., x, x, ...)$$
 is a lattice identity, then let

$$h(..., x, y, u, v, ...) =$$

$$= f(..., x \land u, y \land v, ...) \lor g(..., y \land u, x \land v, ...).$$

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(\ldots, x, x, \ldots) \approx g(\ldots, x, x, \ldots)$$
 is a lattice identity, then let

$$h(\ldots, x, y, u, v, \ldots) =$$

$$= f(\ldots, x \wedge u, y \wedge v, \ldots) \lor g(\ldots, y \wedge u, x \wedge v, \ldots).$$
Then we have

i nen we nave

 $h(\ldots, \mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, \ldots) =$

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(..., x, x, ...) \approx g(..., x, x, ...)$$
 is a lattice identity, then let

$$h(..., \mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}, ...) =$$

$$= f(..., \mathbf{x} \wedge \mathbf{u}, \mathbf{y} \wedge \mathbf{v}, ...) \lor g(..., \mathbf{y} \wedge \mathbf{u}, \mathbf{x} \wedge \mathbf{v}, ...).$$

$$h(\ldots, \mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, \ldots) = f(\ldots, \mathbf{x} \wedge \mathbf{x}, \mathbf{y} \wedge \mathbf{y}, \ldots)$$

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(\ldots, x, x, \ldots) \approx g(\ldots, x, x, \ldots)$$
 is a lattice identity, then let

$$h(\ldots, \mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}, \ldots) =$$

$$= f(\ldots, \mathbf{x} \wedge \mathbf{u}, \mathbf{y} \wedge \mathbf{v}, \ldots) \vee g(\ldots, \mathbf{y} \wedge \mathbf{u}, \mathbf{x} \wedge \mathbf{v}, \ldots).$$

$$h(\ldots, \mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, \ldots) = \\ = f(\ldots, \mathbf{x} \wedge \mathbf{x}, \mathbf{y} \wedge \mathbf{y}, \ldots) \lor g(\ldots, \mathbf{y} \wedge \mathbf{x}, \mathbf{x} \wedge \mathbf{y}, \ldots),$$

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(..., x, x, ...) \approx g(..., x, x, ...)$$
 is a lattice identity, then let

$$h(..., \mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}, ...) =$$

$$= f(..., \mathbf{x} \wedge \mathbf{u}, \mathbf{y} \wedge \mathbf{v}, ...) \vee g(..., \mathbf{y} \wedge \mathbf{u}, \mathbf{x} \wedge \mathbf{v}, ...).$$

$$\begin{aligned} h(\ldots, \mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, \ldots) &= \\ &= f(\ldots, \mathbf{x} \wedge \mathbf{x}, \mathbf{y} \wedge \mathbf{y}, \ldots) \lor g(\ldots, \mathbf{y} \wedge \mathbf{x}, \mathbf{x} \wedge \mathbf{y}, \ldots), \\ \text{which is } f(\ldots, x, y, \ldots), \text{ since } f \text{ is monotone,} \end{aligned}$$

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(..., x, x, ...) \approx g(..., x, x, ...)$$
 is a lattice identity, then let

$$h(..., x, y, u, v, ...) =$$

$$= f(..., x \land u, y \land v, ...) \lor g(..., y \land u, x \land v, ...).$$

$$\begin{aligned} h(\ldots, \mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, \ldots) &= \\ &= f(\ldots, \mathbf{x} \land \mathbf{x}, \mathbf{y} \land \mathbf{y}, \ldots) \lor g(\ldots, \mathbf{y} \land \mathbf{x}, \mathbf{x} \land \mathbf{y}, \ldots) \,, \end{aligned}$$
which is $f(\ldots, x, y, \ldots)$, since f is monotone, and similarly, $h(\ldots, \mathbf{y}, \mathbf{x}, \mathbf{x}, \mathbf{y}, \ldots) = \end{aligned}$

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(..., x, x, ...) \approx g(..., x, x, ...)$$
 is a lattice identity, then let

$$h(..., x, y, u, v, ...) =$$

$$= f(..., x \land u, y \land v, ...) \lor g(..., y \land u, x \land v, ...).$$

$$h(\dots, \mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, \dots) =$$

$$= f(\dots, \mathbf{x} \land \mathbf{x}, \mathbf{y} \land \mathbf{y}, \dots) \lor g(\dots, \mathbf{y} \land \mathbf{x}, \mathbf{x} \land \mathbf{y}, \dots),$$
which is $f(\dots, \mathbf{x}, \mathbf{y}, \dots)$, since f is monotone, and similarly,
$$h(\dots, \mathbf{y}, \mathbf{x}, \mathbf{x}, \mathbf{y}, \dots) =$$

$$= f(\dots, \mathbf{y} \land \mathbf{x}, \mathbf{x} \land \mathbf{y}, \dots)$$

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(..., x, x, ...) \approx g(..., x, x, ...)$$
 is a lattice identity, then let

$$h(..., x, y, u, v, ...) =$$

$$= f(..., x \land u, y \land v, ...) \lor g(..., y \land u, x \land v, ...).$$

$$\begin{aligned} h(\ldots, \mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, \ldots) &= \\ &= f(\ldots, \mathbf{x} \wedge \mathbf{x}, \mathbf{y} \wedge \mathbf{y}, \ldots) \lor g(\ldots, \mathbf{y} \wedge \mathbf{x}, \mathbf{x} \wedge \mathbf{y}, \ldots), \\ \text{which is } f(\ldots, x, y, \ldots), \text{ since } f \text{ is monotone, and similarly,} \\ h(\ldots, \mathbf{y}, \mathbf{x}, \mathbf{x}, \mathbf{y}, \ldots) &= \\ &= f(\ldots, \mathbf{y} \wedge \mathbf{x}, \mathbf{x} \wedge \mathbf{y}, \ldots) \lor g(\ldots, \mathbf{x} \wedge \mathbf{x}, \mathbf{y} \wedge \mathbf{y}, \ldots), \end{aligned}$$

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(..., x, x, ...) \approx g(..., x, x, ...)$$
 is a lattice identity, then let

$$h(..., x, y, u, v, ...) =$$

$$= f(..., x \land u, y \land v, ...) \lor g(..., y \land u, x \land v, ...).$$

$$\begin{aligned} h(\ldots, \mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, \ldots) &= \\ &= f(\ldots, \mathbf{x} \land \mathbf{x}, \mathbf{y} \land \mathbf{y}, \ldots) \lor g(\ldots, \mathbf{y} \land \mathbf{x}, \mathbf{x} \land \mathbf{y}, \ldots), \\ \text{which is } f(\ldots, x, y, \ldots), \text{ since } f \text{ is monotone, and similarly,} \\ h(\ldots, \mathbf{y}, \mathbf{x}, \mathbf{x}, \mathbf{y}, \ldots) &= \\ &= f(\ldots, \mathbf{y} \land \mathbf{x}, \mathbf{x} \land \mathbf{y}, \ldots) \lor g(\ldots, \mathbf{x} \land \mathbf{x}, \mathbf{y} \land \mathbf{y}, \ldots), \\ \text{which is } g(\ldots, x, y, \ldots). \end{aligned}$$

Corollary

Every variety of lattices has TImC.

Proof

If
$$f(..., x, x, ...) \approx g(..., x, x, ...)$$
 is a lattice identity, then let

$$h(..., \mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}, ...) =$$

$$= f(..., \mathbf{x} \wedge \mathbf{u}, \mathbf{y} \wedge \mathbf{v}, ...) \lor g(..., \mathbf{y} \wedge \mathbf{u}, \mathbf{x} \wedge \mathbf{v}, ...).$$

Then we have

 $h(\dots, \mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, \dots) =$ $= f(\dots, \mathbf{x} \land \mathbf{x}, \mathbf{y} \land \mathbf{y}, \dots) \lor g(\dots, \mathbf{y} \land \mathbf{x}, \mathbf{x} \land \mathbf{y}, \dots),$ which is $f(\dots, x, y, \dots)$, since f is monotone, and similarly, $h(\dots, \mathbf{y}, \mathbf{x}, \mathbf{x}, \mathbf{y}, \dots) =$ $= f(\dots, \mathbf{y} \land \mathbf{x}, \mathbf{x} \land \mathbf{y}, \dots) \lor g(\dots, \mathbf{x} \land \mathbf{x}, \mathbf{y} \land \mathbf{y}, \dots),$ which is $g(\dots, \mathbf{x}, \mathbf{y}, \dots)$. Thus M(n) holds.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

• The variety of semilattices.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TIMC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).
- All varieties of unary algebras.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).
- All varieties of unary algebras.

Negative results:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).
- All varieties of unary algebras.

Negative results:

Lattices are idempotent algebras: t(x, x, ..., x) = x for every term;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).
- All varieties of unary algebras.

Negative results:

Lattices are idempotent algebras: t(x, x, ..., x) = x for every term; have a majority term: $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).
- All varieties of unary algebras.

Negative results:

Lattices are idempotent algebras: t(x, x, ..., x) = x for every term; have a majority term: $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$.

Example

There exists an idempotent variety

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).
- All varieties of unary algebras.

Negative results:

Lattices are idempotent algebras: t(x, x, ..., x) = x for every term; have a majority term: $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$.

Example

There exists an idempotent variety with a majority term

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).
- All varieties of unary algebras.

Negative results:

Lattices are idempotent algebras: t(x, x, ..., x) = x for every term; have a majority term: $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$.

Example

There exists an idempotent variety with a majority term which fails TImC.

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).
- All varieties of unary algebras.

Negative results:

Lattices are idempotent algebras: t(x, x, ..., x) = x for every term; have a majority term: $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$.

Example

There exists an idempotent variety with a majority term (generated by a 3-element algebra), which fails TImC.

Further examples

Positive results

The following varieties satisfy M(n) for all n (so have TImC).

- The variety of semilattices.
- All algebras of a given similarity type (new proof).
- All varieties of unary algebras.

Negative results:

Lattices are idempotent algebras: t(x, x, ..., x) = x for every term; have a majority term: $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$.

Example

There exists an idempotent variety with a majority term (generated by a 3-element algebra), which fails TImC.

Rules out possible generalizations.

Other varieties without TImC

Theorem

If a congruence *n*-permutable variety has TImC,

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Other varieties without TImC

Theorem

If a congruence n-permutable variety has TImC, then it is congruence permutable.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Other varieties without TImC

Theorem

If a congruence n-permutable variety has TImC, then it is congruence permutable.

Proof: by applying M(n) to the Mal'tsev condition discovered by Hagemann and Mitschke.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Other varieties without TImC

Theorem

If a congruence n-permutable variety has TImC, then it is congruence permutable.

Proof: by applying M(n) to the Mal'tsev condition discovered by Hagemann and Mitschke.

Problems: discover positive and negative examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Other varieties without TImC

Theorem

If a congruence n-permutable variety has TImC, then it is congruence permutable.

Proof: by applying M(n) to the Mal'tsev condition discovered by Hagemann and Mitschke.

Problems: discover positive and negative examples

• Which important semigroup varieties have TImC?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Other varieties without TImC

Theorem

If a congruence n-permutable variety has TImC, then it is congruence permutable.

Proof: by applying M(n) to the Mal'tsev condition discovered by Hagemann and Mitschke.

Problems: discover positive and negative examples

- Which important semigroup varieties have TImC?
- Apply M(n) to other famous Mal'tsev conditions, as above.

Other varieties without TImC

Theorem

If a congruence n-permutable variety has TImC, then it is congruence permutable.

Proof: by applying M(n) to the Mal'tsev condition discovered by Hagemann and Mitschke.

Problems: discover positive and negative examples

- Which important semigroup varieties have TImC?
- Apply M(n) to other famous Mal'tsev conditions, as above.

Preprint

Czédli, Kiss: Varieties whose tolerances are homomorphic images of their congruences, http://arxiv.org/pdf/1204.2228.pdf.