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Jelena Čolić (University of Novi Sad) On the Lattice of IS Clones Szeged 2012 1 / 29



1 What is IS operation?

2 Lattice of IS clones
Some properties
A maximal IS clone

3 Lattice of IS clones on A = {0,1}.
Cardinality of the lattice
Minimal IS clones on A = {0,1}
Maximal IS clones on A = {0,1}

4 IS operations preserving relations

5 IS operations via a one-point extension
Extended IS operations
Algebra of extended IS operations
Composition closed set of extended IS operations
Extended IS operations preserving relations
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What is IS operation?

What is IS operation?

Total operation:
OR 0 1
0 0 1
1 1 1

Let
h(x1, x2) = OR(g(x1), x2)

Partial operation:

OR(g(x1),1) undefined if g(x1) is undefined

Incompletely specified operation:

OR(g(x1),1) = 1
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What is IS operation?

How to define it formaly?

Let A be a finite set and k 6∈ A.
Partial operation:

f : An → A ∪ {k}, k − undefined

Incompletely specified operation:

f : An → A ∪ {k}, k − unspecified

IA - set of all IS operations on A
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What is IS operation?

New composition

Definition

Let f ∈ I(n)A and g1, . . . ,gn ∈ I(m)
A . The i-composition of f and g1, . . . ,gn

is an m-ary IS operation defined by

f [g1, . . . ,gn](x1, . . . , xm) =
∏

(y1, . . . , yn) ∈ An,
yi v gi(x1, . . . , xm)

1 ≤ i ≤ n

f (y1, . . . , yn)

where ∏
{xi : 1 ≤ i ≤ l} =

{
x1 , if x1 = x2 = . . . = xl ,
k , otherwise.

v= {(x , x) : x ∈ A ∪ {k}} ∪ {(x , k) : x ∈ A}
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What is IS operation?

Example

A = {0,1}
composition of partial operations

OR 0 1
0 0 1
1 1 1

g1 g2
0 1 2
1 0 0

OR(g1,g2)

0 2
1 0

OR(g1, g2)(0) = OR(g1(0), g2(0)) = 2

i-composition of IS operations

OR 0 1
0 0 1
1 1 1

g1 g2
0 1 2
1 0 0

OR[g1,g2]

0 1
1 0

OR[g1, g2](0) = OR(g1(0), g2(0)) = OR(1, 0) u OR(1, 1) = 1 u 1 = 1
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What is IS operation?

IS clone

Definition
A set C ⊆ IA is called a clone of incompletely specified operations (or
IS clone) if

C contains all projections and
C is closed with respect to i-composition.
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What is IS operation?

IS clone

for f ∈ I(1)A let ζf = τ f = ∆f = f ;

for f ∈ I(n)A ,n ≥ 2, let ζf , τ f ∈ I(n)A and ∆f ∈ I(n−1)
A be defined as

(ζf )(x1, x2, . . . , xn) = f (x2, . . . , xn, x1)

(τ f )(x1, x2, x3, . . . , xn) = f (x2, x1, x3, . . . , xn)

(∆f )(x1, x2, . . . , xn−1) = f (x1, x1, x2 . . . , xn−1)

for f ∈ I(n)A and g ∈ I(m)
A let f � g ∈ I(m+n−1)

A be defined as

(f � g)(x1, . . . , xm+n−1) =
∏

y ∈ A
y v g(x1, . . . , xm)

f (y , xm+1, . . . , xm+n−1)
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What is IS operation?

Example

A = {0,1}
OR 0 1
0 0 1
1 1 1

g
0 0
1 2

Let h(x1, x2) = OR(g(x1), x2).

For partial operations:
h 0 1
0 0 1
1 2 2

h(1, 1) = OR(g(1), 1) = 2

For IS operations:
h 0 1
0 0 1
1 2 1

h(1, 1) = OR(g(1), 1) = OR(0, 1) u OR(1, 1) = 1 u 1 = 1
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What is IS operation?

IS clone

IA = (IA; �, ζ, τ,∆,e2,A
1 ) full algebra of IS operations

Theorem
C ⊆ IA is an IS clone if and only if C is a subuniverse of the full algebra
of IS operations.
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Lattice of IS clones Some properties

Some properties

Li
A = (Li

A,⊆), Li
A - set of all IS clones on A.

JA is the least IS clone.

IA is the greatest IS clone.

Intersection of IS clones is an IS clone.

〈F 〉i = ∩{C : C is an IS clone and F ⊆ C}
⇒ 〈 〉i : P(IA)→ P(IA) is an algebraic closure operator.

Li
A is an algebraic lattice.
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Lattice of IS clones A maximal IS clone

A maximal IS clone

Theorem (Haddad, Rosenberg, Schweigert 1990)

OA ∪ 〈{ck}〉p is a maximal partial clone on A.

Theorem
OA is a maximal IS clone.
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Lattice of IS clones on A = {0, 1}. Cardinality of the lattice

Cardinality of the lattice on A = {0,1}

Lattice of IS clones is isomorphic to the lattice of hyperclones on
A = {0,1}.

HA → IA : f 7→ f is

f is(x1, . . . , xn) =


0 , f (x1, . . . , xn) = {0}
1 , f (x1, . . . , xn) = {1}
2 , f (x1, . . . , xn) = {0,1}

Theorem (Machida 2002)

There are continuum many IS clones on A = {0,1}.
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Lattice of IS clones on A = {0, 1}. Minimal IS clones on A = {0, 1}

Minimal IS clones on A = {0,1}

Theorem (Post 1941)

There are 7 minimal clones on A = {0,1}.

Theorem (Börner, Haddad, Pöschel 1991)

There are 11 minimal partial clones on A = {0,1}.

Theorem (Pantović, Vojvodić 2004)

There are 13 minimal IS clones on A = {0,1}.

m12 0 1
0 0 2
1 1 1

m13 0 1
0 0 0
1 2 1
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Lattice of IS clones on A = {0, 1}. Maximal IS clones on A = {0, 1}

Maximal IS clones on A = {0,1}

Theorem (Post 1941)

There are 5 maximal clones on A = {0,1}.

Theorem (Freivald 1966)

There are 8 maximal partial clones on A = {0,1}.

Theorem (Tarasov 1974)

There are 9 maximal IS clones on A = {0,1}.

M1 = iPol(0 1)

M9 = iPol
(
{0,1,2}3 \ {(0,1,1), (1,0,0)}

)
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IS operations preserving relations

Weak extension of ρ

Let ρ ⊆ Am. The weak extension of ρ is the relation ρw defined by

ρw = {(a1, . . . ,am) ∈ (A ∪ {k})m : there is (b1, . . . ,bm) such that
(b1, . . . ,bm) ∈ ρ and (b1, . . . ,bm) v (a1, . . . ,am)}.

Definition

f ∈ I(n)A u-preserves ρ iff for all A1, . . . ,Am ∈ An : A1
...

Am

 ⊆ ρ⇒
 f (A1)

...
f (Am)

 ∈ ρw
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IS operations preserving relations

Example (weak extension)

A = {0,1}

ρ =

(
0 0
0 1

)

ρw =

(
0 0 0 2 2 2
0 1 2 0 1 2

)

ρ′ =

(
0 0 0 2 1 2 2
0 1 2 0 2 1 2

)
(ρ′ is not the weak extension of ρ)

Jelena Čolić (University of Novi Sad) On the Lattice of IS Clones Szeged 2012 17 / 29



IS operations preserving relations

Weak extension of ρ

Theorem
Let m ≥ 1 and ρ ⊆ Am. Then uPolρ is an IS clone.

Theorem
If g u-preserves ρ and g v f then f u-preserves ρ.
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IS operations via a one-point extension Extended IS operations

One-point extension

Let us define the mapping IA → OA∪{k} : f 7→ f+, as follows:

f+(x1, . . . , xn) =
∏

(y1, . . . , yn) ∈ An,
(y1, . . . , yn) v (x1, . . . , xm)

f (y1, . . . , yn)
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IS operations via a one-point extension Extended IS operations

Example (one-point extension)

A = {0,1}
Partial operation:

OR+ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

OR+(2,1) = 2
Incompletely specified operation:

OR+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

OR+(2,1) = OR(0,1) u OR(1,1) = 1 u 1 = 1
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IS operations via a one-point extension Extended IS operations

Some denotations

f 0 1
0 0 1
1 1 1

⇒

f+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

g 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

⇒
g− 0 1
0 0 1
1 1 1

F+ = {f+ : f ∈ F} ⊆ OA∪{k} for F ⊆ IA.

F+ is the extension of F
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IS operations via a one-point extension Algebra of extended IS operations

Algebra of extended IS operations

Full algebra of operations on A ∪ {k}:

OA∪{k} = (OA∪{k}; ◦, ζ, τ,∆,e
2,A∪{k}
1 )

I+A is closed w.r.t. ζ, τ and e2,A∪{k}
1 :

e2,A∪{k}
1 =

(
e2,A

1

)+
ζ(f ) = (ζ(f−))+

τ(f ) = (τ(f−))+

I+A is not closed w.r.t. ∆ and ◦ :

∆(f ) 6= (∆(f−))+

f ◦ g 6= ((f−) � (g−))+
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IS operations via a one-point extension Algebra of extended IS operations

∆(f ) 6= (∆(f−))+

f 0 1 2
0 0 0 0
1 2 0 2
2 2 0 2

∆f
0 0
1 0
2 2

f− 0 1
0 0 0
1 2 0

∆f−

0 0
1 0

(∆f−)+

0 0
1 0
2 0
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IS operations via a one-point extension Algebra of extended IS operations

A = {0,1} ⇒ f ◦ g = ((f−) � (g−))+

|A| ≥ 3⇒ f ◦ g 6= ((f−) � (g−))+

f 0 1 2 3
0 1
1 1
2 2
3 3

g
0 0
1 0
2 1
3 3

⇒

f ◦ g 0 1 2 3
0 1
1 1
2 1
3 3

(f ◦ g)(3,2) = f (g(3),2) = 3

f− 0 1 2
0 1
1 1
2 2

g−

0 0
1 0
2 1

⇒

(f− � g−)+ 0 1 2 3
0 1
1 1
2 1
3 1

(f− � g−)+(3,2) = f (g(0),2) u f (g(1),2) u f (g(2),2)
= f (0,2) u f (0,2) u f (1,2) = 1
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IS operations via a one-point extension Algebra of extended IS operations

Algebra of extended IS operations

Full algebra of extended IS operations:

I+A = (I+A ; ◦i , ζ, τ,∆i ,e
2,A∪{k}
1 )

where
∆i(f ) = (∆(f−))+

f ◦i g = ((f−) � (g−))+
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IS operations via a one-point extension Algebra of extended IS operations

Extended IS clone

I+A = (I+A ; ◦i , ζ, τ,∆i ,e2
1)

Theorem

C ⊆ I+A is extended from an IS clone
iff

C is a subuniverse of the full algebra I+A of extended IS operations.
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IS operations via a one-point extension Composition closed set of extended IS operations

Extended IS clone

i-composition of extended IS operations:
f ∈ (I+A )(n),g1, . . . ,gn ∈ (I+A )(m) f [g1, . . . ,gn] ∈ (I+A )(m) :

f [g1, . . . ,gn] = (f−[g−1 , . . . ,g
−
n ])+

Theorem

C ⊆ I+A is an extended clone of IS operations if and only if
C contains all projections
C is closed with respect to i-composition.
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IS operations via a one-point extension Extended IS operations preserving relations

Extended IS operations preserving relations

A = {0,1}
ρ ⊆ {0,1,2}m f ∈ (I+A )(n)

δ(f ) = {(δα(f−))+ | α : {1, . . . ,n} → {1, . . . l},1 ≤ l ≤ n}

where
δα(f−)(x1, . . . , xl) = f−(xα(1), . . . , xα(n))

Definition
f i-preserves ρ if and only if δ(f ) ⊆ Polρ.

iPolρ = {f ∈ I+A : f i-preserves ρ}

Theorem (Tarasov 1974)

Let A = {0,1}. If C+ = iPolρ, then C is an IS clone.
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IS operations via a one-point extension Extended IS operations preserving relations

Thank you for your attention!
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