Implicit definition of the quaternary discriminator

Miguel Campercholi and Diego Vaggione

FaMAF Universidad Nacional de Córdoba Argentina

Szeged, June 2012

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let ${\mathcal K}$ be a class of algebras. Suppose the system of equations

$$t_1(x_1,\ldots,x_n,z) = s_1(x_1,\ldots,x_n,z)$$
$$\vdots$$
$$t_k(x_1,\ldots,x_n,z) = s_k(x_1,\ldots,x_n,z)$$

is such that

$$\mathcal{K} \vDash \forall \overline{x} \exists ! z \bigwedge t_i (\overline{x}, z) = s_i(\overline{x}, z)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\mathcal K$ be a class of algebras. Suppose the system of equations

$$t_1(x_1,\ldots,x_n,z) = s_1(x_1,\ldots,x_n,z)$$
$$\vdots$$
$$t_k(x_1,\ldots,x_n,z) = s_k(x_1,\ldots,x_n,z)$$

is such that

$$\mathcal{K} \vDash \forall \overline{x} \exists ! z \bigwedge t_i (\overline{x}, z) = s_i(\overline{x}, z)$$

Then for every $\mathbf{A} \in \mathcal{K}$, it *implicitly defines* a function $f : A^n \to A$

$$f\left(\overline{a}
ight)=$$
 unique b such that $\bigwedge t_{i}^{\mathbf{A}}\left(\overline{a},b
ight)=s_{i}^{\mathbf{A}}\left(\overline{a},b
ight)$

Examples

• Let
$$\mathbf{G} = \langle G, \cdot, e \rangle$$
 be a group. The system

 $x \cdot z = e$

implicitly defines the inverse operation on G.

Examples

• Let
$$\mathbf{G} = \langle G, \cdot, e \rangle$$
 be a group. The system

 $x \cdot z = e$

implicitly defines the inverse operation on G.

• Let $\mathbf{L} = \langle L, \lor, \land, 0, 1 \rangle$ be a boolean lattice. The system

$$x \lor z = 1$$
$$x \land z = 0$$

defines the complement operation on L.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

preserve homomorphisms,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- preserve homomorphisms,
- preserve products.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- preserve homomorphisms,
- preserve products.

- preserve homomorphisms,
- preserve products.

We studied them in [Cam&Vag2011a], [Cam&Vag2011b] and [Cam&Vag2011c], where we found all such functions for:

- Boolean algebras, distributive lattices, Kleene algebras, Stone algebras, Tarski algebras, semilattices.
- Algebraically closed fields, finitely generated abelian groups.
- Quasiprimal algebras.
- Algebras with the discriminator implicitly definable.

The quaternary discriminator on a set A is the function

$$\mathrm{d}^{\mathcal{A}}(x,y,z,w) = egin{cases} z & ext{if } x = y, \ w & ext{if } x
eq y. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The quaternary discriminator on a set A is the function

$$d^{\mathcal{A}}(x, y, z, w) = \begin{cases} z & \text{if } x = y, \\ w & \text{if } x \neq y. \end{cases}$$

Problem

When is the quaternary discriminator implicitly definable on every algebra in a class \mathcal{K} (by the same system)?

Let \mathcal{Q} be a quasivariety and let $\mathbf{A} \in \mathcal{Q}$.

•
$$\operatorname{Con}_{\mathcal{Q}}(\mathsf{A}) := \{ \theta \in \operatorname{Con}(\mathsf{A}) \mid \mathsf{A}/\theta \in \mathcal{Q} \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let \mathcal{Q} be a quasivariety and let $\mathbf{A} \in \mathcal{Q}$.

$$\bullet \operatorname{Con}_{\mathcal{Q}}(\mathsf{A}) := \{\theta \in \operatorname{Con}(\mathsf{A}) \mid \mathsf{A}/\theta \in \mathcal{Q}\}\$$

•
$$\theta_{\mathcal{Q}}^{\mathbf{A}}(\mathbf{a}, \mathbf{b}) := \bigcap \{ \theta \in \operatorname{Con}_{\mathcal{Q}}(\mathbf{A}) \mid \langle \mathbf{a}, \mathbf{b} \rangle \in \theta \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let \mathcal{Q} be a quasivariety and let $\mathbf{A} \in \mathcal{Q}$.

$$\bullet \operatorname{Con}_{\mathcal{Q}}(\mathsf{A}) := \{\theta \in \operatorname{Con}(\mathsf{A}) \mid \mathsf{A}/\theta \in \mathcal{Q}\}\$$

$$\bullet \ \theta_{\mathcal{Q}}^{\mathsf{A}}(\mathsf{a}, \mathsf{b}) := \bigcap \{ \theta \in \operatorname{Con}_{\mathcal{Q}}(\mathsf{A}) \mid \langle \mathsf{a}, \mathsf{b} \rangle \in \theta \}$$

• A is Relatively Simple (RS) if $|Con_Q(A)| \le 2$ $Q_{RS} := \{A \in Q \mid A \text{ is } RS\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let \mathcal{Q} be a quasivariety and let $\mathbf{A} \in \mathcal{Q}$.

 $\bullet \operatorname{Con}_{\mathcal{Q}}(\mathsf{A}) := \{\theta \in \operatorname{Con}(\mathsf{A}) \mid \mathsf{A}/\theta \in \mathcal{Q}\}\$

$$\bullet \ \theta_{\mathcal{Q}}^{\mathsf{A}}(\mathsf{a}, \mathsf{b}) := \bigcap \{ \theta \in \operatorname{Con}_{\mathcal{Q}}(\mathsf{A}) \mid \langle \mathsf{a}, \mathsf{b} \rangle \in \theta \}$$

- A is Relatively Simple (RS) if $|Con_Q(A)| \le 2$ $Q_{RS} := \{A \in Q \mid A \text{ is RS}\}$
- Q has Equationally Definable Relative Principal Congruences (EDRPC) if there are quaternary terms $p_1, \ldots, p_n, q_1, \ldots, q_n$ such that $\forall \mathbf{A} \in Q$

$$heta_{\mathcal{Q}}^{\mathbf{A}}(a,b) = \{ \langle c,d \rangle : \bigwedge p_i (a,b,c,d) = q_i (a,b,c,d) \}.$$

Theorem

Let \mathcal{K} be class of algebras. T.f.a.e.:

1 The quaternary discriminator is implicitly definable in \mathcal{K} .

Theorem

Let \mathcal{K} be class of algebras. T.f.a.e.:

The quaternary discriminator is implicitly definable in K.
 SP_u(K) ⊆ Q_{RS} for some rel. congruence dist. quasivariety Q.

Theorem

Let \mathcal{K} be class of algebras. T.f.a.e.:

- **1** The quaternary discriminator is implicitly definable in \mathcal{K} .
- **2** $\mathbb{SP}_u(\mathcal{K}) \subseteq \mathcal{Q}_{RS}$ for some rel. congruence dist. quasivariety \mathcal{Q} .
- **3** $\mathcal{K} \subseteq \mathcal{Q}_{RS}$ for some quasivariety \mathcal{Q} with EDRPC.

Theorem

Let \mathcal{K} be class of algebras. T.f.a.e.:

- 1 The quaternary discriminator is implicitly definable in K.
- **2** $\mathbb{SP}_u(\mathcal{K}) \subseteq \mathcal{Q}_{RS}$ for some rel. congruence dist. quasivariety \mathcal{Q} .
- **3** $\mathcal{K} \subseteq \mathcal{Q}_{RS}$ for some quasivariety \mathcal{Q} with EDRPC.
- **4** There are terms $p_1, \ldots, p_n, q_1, \ldots, q_n$, such that

$$\mathcal{K} \vDash \left(\bigwedge p_i(x, y, z, w) = q_i(x, y, z, w) \right) \leftrightarrow (x = y \rightarrow z = w).$$

Theorem

Let \mathcal{K} be class of algebras. T.f.a.e.:

- **1** The quaternary discriminator is implicitly definable in *K*.
- **2** $\mathbb{SP}_u(\mathcal{K}) \subseteq \mathcal{Q}_{RS}$ for some rel. congruence dist. quasivariety \mathcal{Q} .
- **3** $\mathcal{K} \subseteq \mathcal{Q}_{RS}$ for some quasivariety \mathcal{Q} with EDRPC.
- **4** There are terms $p_1, \ldots, p_n, q_1, \ldots, q_n$, such that

$$\mathcal{K} \vDash \left(\bigwedge p_i(x, y, z, w) = q_i(x, y, z, w) \right) \leftrightarrow (x = y \rightarrow z = w).$$

For every trivial satisfiable open formula O(x₁,..., x_m) there are terms s₁,..., s_k, t₁,..., t_k such that

$$\mathcal{K} \vDash \left(\bigwedge s_i(\overline{x}) = t_i(\overline{x}) \right) \leftrightarrow O(\overline{x}).$$

Proof.

 $[1{\Rightarrow}2]$ Let $\varepsilon(x,y,z,w,u)$ be a conjunction of equations such that for all ${\bf A}\in {\cal K}$

$$\mathbf{A} \vDash \varepsilon(x, y, z, w, u) \leftrightarrow \mathbf{d}^{A}(x, y, z, w) = u.$$

Proof.

 $[1{\Rightarrow}2]$ Let $\varepsilon(x,y,z,w,u)$ be a conjunction of equations such that for all ${\bf A}\in \mathcal{K}$

$$\mathbf{A} \vDash \varepsilon(x, y, z, w, u) \leftrightarrow \mathbf{d}^{A}(x, y, z, w) = u.$$

This also holds for all $\mathbf{A} \in \mathbb{SP}_u(\mathcal{K})$.

Proof.

 $[1{\Rightarrow}2]$ Let $\varepsilon(x,y,z,w,u)$ be a conjunction of equations such that for all ${\bf A}\in \mathcal{K}$

$$\mathbf{A} \vDash \varepsilon(x, y, z, w, u) \leftrightarrow \mathbf{d}^{A}(x, y, z, w) = u.$$

This also holds for all $\mathbf{A} \in \mathbb{SP}_u(\mathcal{K})$. So, if $\mathbf{A}, \mathbf{B} \in \mathbb{SP}_u(\mathcal{K})$ and $h : \mathbf{A} \to \mathbf{B}$, then $h : \langle \mathbf{A}, \mathbf{d}^A \rangle \to \langle \mathbf{B}, \mathbf{d}^B \rangle$.

Proof.

 $[1{\Rightarrow}2]$ Let $\varepsilon(x,y,z,w,u)$ be a conjunction of equations such that for all ${\bf A}\in \mathcal{K}$

$$\mathbf{A} \vDash \varepsilon(x, y, z, w, u) \leftrightarrow \mathbf{d}^{A}(x, y, z, w) = u.$$

This also holds for all $\mathbf{A} \in \mathbb{SP}_u(\mathcal{K})$. So, if $\mathbf{A}, \mathbf{B} \in \mathbb{SP}_u(\mathcal{K})$ and $h : \mathbf{A} \to \mathbf{B}$, then $h : \langle \mathbf{A}, d^A \rangle \to \langle \mathbf{B}, d^B \rangle$. Thus *h* is either injective or constant, and hence

 $\mathbb{SP}_u(\mathcal{K}) \subseteq \mathbb{Q}(\mathcal{K})_{RS}.$

Proof.

 $[1{\Rightarrow}2]$ Let $\varepsilon(x,y,z,w,u)$ be a conjunction of equations such that for all ${\bf A}\in {\cal K}$

$$\mathbf{A} \vDash \varepsilon(x, y, z, w, u) \leftrightarrow \mathbf{d}^{A}(x, y, z, w) = u.$$

This also holds for all $\mathbf{A} \in \mathbb{SP}_u(\mathcal{K})$. So, if $\mathbf{A}, \mathbf{B} \in \mathbb{SP}_u(\mathcal{K})$ and $h : \mathbf{A} \to \mathbf{B}$, then $h : \langle \mathbf{A}, d^A \rangle \to \langle \mathbf{B}, d^B \rangle$. Thus *h* is either injective or constant, and hence

 $\mathbb{SP}_u(\mathcal{K}) \subseteq \mathbb{Q}(\mathcal{K})_{RS}.$

Observe that for all $\mathbf{A} \in \mathcal{K}$

$$\mathbf{A} \vDash \varepsilon(x, y, z, w, z) \leftrightarrow (x = y \lor z = w).$$

Proof.

 $[1{\Rightarrow}2]$ Let $\varepsilon(x,y,z,w,u)$ be a conjunction of equations such that for all ${\bf A}\in {\cal K}$

$$\mathbf{A} \vDash \varepsilon(x, y, z, w, u) \leftrightarrow \mathbf{d}^{A}(x, y, z, w) = u.$$

This also holds for all $\mathbf{A} \in \mathbb{SP}_u(\mathcal{K})$. So, if $\mathbf{A}, \mathbf{B} \in \mathbb{SP}_u(\mathcal{K})$ and $h : \mathbf{A} \to \mathbf{B}$, then $h : \langle \mathbf{A}, d^A \rangle \to \langle \mathbf{B}, d^B \rangle$. Thus *h* is either injective or constant, and hence

 $\mathbb{SP}_u(\mathcal{K}) \subseteq \mathbb{Q}(\mathcal{K})_{RS}.$

Observe that for all $\mathbf{A} \in \mathcal{K}$

$$\mathbf{A} \vDash \varepsilon(x, y, z, w, z) \leftrightarrow (x = y \lor z = w).$$

So, by [Cze&Dzi1990], $\mathbb{Q}(\mathcal{K})$ is rel. congruence distributive.

Q has Equationally Definable Principal Meets (EDPM) if there are quaternary terms $p_1, \ldots, p_n, q_1, \ldots, q_n$ such that for all $\mathbf{A} \in Q$

$$\theta_{\mathcal{Q}}^{\mathbf{A}}(a,b) \cap \theta_{\mathcal{Q}}^{\mathbf{A}}(c,d) = \bigsqcup \theta_{\mathcal{Q}}^{\mathbf{A}}(p_i(a,b,c,d),q_i(a,b,c,d)).$$

Q has Equationally Definable Principal Meets (EDPM) if there are quaternary terms $p_1, \ldots, p_n, q_1, \ldots, q_n$ such that for all $\mathbf{A} \in Q$

$$\theta_{\mathcal{Q}}^{\mathbf{A}}(a,b) \cap \theta_{\mathcal{Q}}^{\mathbf{A}}(c,d) = \bigsqcup \theta_{\mathcal{Q}}^{\mathbf{A}}(p_i(a,b,c,d),q_i(a,b,c,d)).$$

Corollary

Let Q be a quasivariety. The following are equivalent:

- **1** Q is relatively semisimple and has EDRPC.
- **2** Q has EDPM and $Q_{RFSI} = Q_{RS}$.
- 3 Q has EDPM and θ^A_Q(a, b) is a complemented element of Con_Q(A), for every A ∈ Q, and a, b ∈ A.
- Q = Q(K), for some class K satisfying some of the equivalent conditions of the theorem.

An algebra $\textbf{A} \in \mathcal{Q}$ is relatively permutable if

$$\theta \circ \delta = \delta \circ \theta = \theta \sqcup \delta$$
, for all $\theta, \delta \in \operatorname{Con}_{\mathcal{Q}}(\mathsf{A})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An algebra $\mathbf{A} \in \mathcal{Q}$ is *relatively permutable* if

$$\theta \circ \delta = \delta \circ \theta = \theta \sqcup \delta$$
, for all $\theta, \delta \in \operatorname{Con}_{\mathcal{Q}}(\mathsf{A})$.

Theorem

Let Q be rel. semisimple with EDRPC. Let $\varepsilon(x, y, z, w, u)$ be a conj. of equations such that for all $\mathbf{S} \in Q_{RS}$

$$\mathbf{S} \vDash \varepsilon (x, y, z, w, u) \leftrightarrow \mathbf{d}^{A} (x, y, z, w) = u.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Then, for $\mathbf{A} \in \mathcal{Q}$, t.f.a.e.:

1 A is relatively permutable.

An algebra $\mathbf{A} \in \mathcal{Q}$ is *relatively permutable* if

$$\theta \circ \delta = \delta \circ \theta = \theta \sqcup \delta$$
, for all $\theta, \delta \in \operatorname{Con}_{\mathcal{Q}}(\mathsf{A})$.

Theorem

Let Q be rel. semisimple with EDRPC. Let $\varepsilon(x, y, z, w, u)$ be a conj. of equations such that for all $\mathbf{S} \in Q_{RS}$

$$\mathbf{S} \vDash \varepsilon (x, y, z, w, u) \leftrightarrow \mathbf{d}^{A} (x, y, z, w) = u.$$

Then, for $\mathbf{A} \in \mathcal{Q}$, t.f.a.e.:

A is relatively permutable.

2
$$\mathbf{A} \models \forall xyzw \exists ! u \ \varepsilon (x, y, z, w, u).$$

An algebra $\mathbf{A} \in \mathcal{Q}$ is *relatively permutable* if

$$\theta \circ \delta = \delta \circ \theta = \theta \sqcup \delta$$
, for all $\theta, \delta \in \operatorname{Con}_{\mathcal{Q}}(\mathsf{A})$.

Theorem

Let Q be rel. semisimple with EDRPC. Let $\varepsilon(x, y, z, w, u)$ be a conj. of equations such that for all $\mathbf{S} \in Q_{RS}$

$$\mathbf{S} \vDash \varepsilon (x, y, z, w, u) \leftrightarrow \mathbf{d}^{A} (x, y, z, w) = u.$$

Then, for $\mathbf{A} \in \mathcal{Q}$, t.f.a.e.:

A is relatively permutable.

2
$$\mathbf{A} \models \forall xyzw \exists ! u \ \varepsilon (x, y, z, w, u).$$

3 A is a boolean product with factors in Q_{RS} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then:

• $\operatorname{Con}_{\mathcal{Q}}(\mathbf{A}) = \operatorname{Con}(\mathbf{A}, \mathbf{N}^{\mathbf{A}}).$

Then:

• $\operatorname{Con}_{\mathcal{Q}}(\mathbf{A}) = \operatorname{Con}(\mathbf{A}, \mathbf{N}^{\mathbf{A}}).$ • If $\theta \in \operatorname{Con}(\mathbf{A}, \mathbf{N}^{\mathbf{A}})$ then \mathbf{A}/θ is rel. permutable.

Then:

• $\operatorname{Con}_{\mathcal{Q}}(\mathbf{A}) = \operatorname{Con}(\mathbf{A}, \mathbf{N}^{\mathbf{A}}).$ • If $\theta \in \operatorname{Con}(\mathbf{A}, \mathbf{N}^{\mathbf{A}})$ then \mathbf{A}/θ is rel. permutable. • $\mathcal{P} = \{(\mathbf{A}, \mathbf{N}^{\mathbf{A}}) : \mathbf{A} \in \mathcal{Q} \text{ is rel. perm.}\}$ is a variety. So, if $\boldsymbol{\mathsf{A}}$ is relatively permutable we can define a 'new' operation by

 $N^{A}(a, b, c, d) =$ the unique $u \in A$ such that $A \vDash \varepsilon(a, b, c, d, u)$.

Then:

- $\operatorname{Con}_{\mathcal{Q}}(\mathbf{A}) = \operatorname{Con}(\mathbf{A}, \mathbf{N}^{\mathbf{A}}).$
- If $\theta \in \text{Con}(\mathbf{A}, \mathbf{N}^{\mathbf{A}})$ then \mathbf{A}/θ is rel. permutable.
- $\mathcal{P} = \{ (\mathbf{A}, N^{\mathbf{A}}) : \mathbf{A} \in \mathcal{Q} \text{ is rel. perm.} \}$ is a variety.
- Every $\mathbf{A} \in \mathcal{Q}$ has a unique permutable extension \mathbf{E} satisfying $\langle A \rangle^{\mathbf{E}} = E$.

References

- Campercholi, M., Vaggione D.: Algebraic functions, Studia Logica, 98, 285–306 (2011)
- Campercholi, M., Vaggione D.: An implicit function theorem for algebraically closed fields, Algebra Universalis 65, 299–304 (2011)
- Campercholi, M., Vaggione D.: Axiomatizability by ∀∃!-sentences, Arch. Math. Logic, 50, 713–725 (2011)
- Czelakowski, J., Dziobiak, W.: Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class, Algebra Universalis 27, 128–149 (1990)

THANK YOU!