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Introduction
Implicit definitions

Let K be a class of algebras. Suppose the system of equations

t1(x1, . . . , xn, z) = s1(x1, . . . , xn, z)
...

tk (x1, . . . , xn, z) = sk (x1, . . . , xn, z)

is such that
K � ∀x∃!z

∧
ti (x , z) = si (x , z)

Then for every A ∈ K, it implicitly defines a function f : An → A

f (a) = unique b such that
∧
tAi (a, b) = s

A
i (a, b)
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Introduction
Implicit definitions

Examples

Let G = 〈G , ·, e〉 be a group. The system

x · z = e

implicitly defines the inverse operation on G .

Let L = 〈L,∨,∧, 0, 1〉 be a boolean lattice. The system

x ∨ z = 1
x ∧ z = 0

defines the complement operation on L.



Introduction
Implicit definitions

Examples

Let G = 〈G , ·, e〉 be a group. The system

x · z = e

implicitly defines the inverse operation on G .

Let L = 〈L,∨,∧, 0, 1〉 be a boolean lattice. The system

x ∨ z = 1
x ∧ z = 0

defines the complement operation on L.



Introduction
Implicitly definable functions

These functions have some nice properties. E.g., they:

preserve homomorphisms,

preserve products.

We studied them in [Cam&Vag2011a], [Cam&Vag2011b] and
[Cam&Vag2011c], where we found all such functions for:

Boolean algebras, distributive lattices, Kleene algebras, Stone
algebras, Tarski algebras, semilattices.

Algebraically closed fields, finitely generated abelian groups.

Quasiprimal algebras.

Algebras with the discriminator implicitly definable.



Introduction
Implicitly definable functions

These functions have some nice properties. E.g., they:

preserve homomorphisms,

preserve products.

We studied them in [Cam&Vag2011a], [Cam&Vag2011b] and
[Cam&Vag2011c], where we found all such functions for:

Boolean algebras, distributive lattices, Kleene algebras, Stone
algebras, Tarski algebras, semilattices.

Algebraically closed fields, finitely generated abelian groups.

Quasiprimal algebras.

Algebras with the discriminator implicitly definable.



Introduction
Implicitly definable functions

These functions have some nice properties. E.g., they:

preserve homomorphisms,

preserve products.

We studied them in [Cam&Vag2011a], [Cam&Vag2011b] and
[Cam&Vag2011c], where we found all such functions for:

Boolean algebras, distributive lattices, Kleene algebras, Stone
algebras, Tarski algebras, semilattices.

Algebraically closed fields, finitely generated abelian groups.

Quasiprimal algebras.

Algebras with the discriminator implicitly definable.



Introduction
Implicitly definable functions

These functions have some nice properties. E.g., they:

preserve homomorphisms,

preserve products.

We studied them in [Cam&Vag2011a], [Cam&Vag2011b] and
[Cam&Vag2011c], where we found all such functions for:

Boolean algebras, distributive lattices, Kleene algebras, Stone
algebras, Tarski algebras, semilattices.

Algebraically closed fields, finitely generated abelian groups.

Quasiprimal algebras.

Algebras with the discriminator implicitly definable.



Introduction
The quaternary discriminator

The quaternary discriminator on a set A is the function

dA(x , y , z ,w) =

{
z if x = y ,

w if x 6= y .

Problem

When is the quaternary discriminator implicitly definable on every
algebra in a class K (by the same system)?
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Preliminaries
Quasivarieties

Let Q be a quasivariety and let A ∈ Q.
ConQ(A) := {θ ∈ Con(A) | A/θ ∈ Q}

θAQ(a, b) :=
⋂{θ ∈ ConQ(A) | 〈a, b〉 ∈ θ}

A is Relatively Simple (RS) if |ConQ(A)| ≤ 2
QRS := {A ∈ Q | A is RS}

Q has Equationally Definable Relative Principal Congruences
(EDRPC) if there are quaternary terms p1, . . . , pn, q1, . . . , qn
such that ∀A ∈ Q

θAQ(a, b) = {〈c , d〉 :
∧
pi (a, b, c , d) = qi (a, b, c , d)}.
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Main Theorem

Theorem

Let K be class of algebras. T.f.a.e.:
1 The quaternary discriminator is implicitly definable in K.

2 SPu(K) ⊆ QRS for some rel. congruence dist. quasivariety
Q.

3 K ⊆ QRS for some quasivariety Q with EDRPC.
4 There are terms p1, . . . , pn, q1, . . . , qn, such that

K �
(∧

pi (x , y , z ,w) = qi (x , y , z ,w)
)
↔ (x = y → z = w).

5 For every trivial satisfiable open formula O(x1, . . . , xm) there
are terms s1, . . . , sk , t1, . . . , tk such that

K �
(∧

si (x) = ti (x)
)
↔ O(x).
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Main Theorem
Sketching an implication

Proof.

[1⇒2] Let ε(x , y , z ,w , u) be a conjunction of equations such that
for all A ∈ K

A � ε(x , y , z ,w , u)↔ dA(x , y , z ,w) = u.

This also holds for all A ∈ SPu(K). So, if A,B ∈ SPu(K) and
h : A→ B, then h :

〈
A,dA

〉
→
〈
B,dB

〉
. Thus h is either injective

or constant, and hence

SPu(K) ⊆ Q(K)RS .

Observe that for all A ∈ K

A � ε(x , y , z ,w , z)↔ (x = y ∨ z = w) .

So, by [Cze&Dzi1990], Q(K) is rel. congruence distributive.
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Main Theorem
Semisimple quasivarieties with EDRPC

Q has Equationally Definable Principal Meets (EDPM) if there are
quaternary terms p1, . . . , pn, q1, . . . , qn such that for all A ∈ Q

θAQ(a, b) ∩ θAQ(c , d) =
⊔

θAQ(pi (a, b, c, d), qi (a, b, c, d)).

Corollary

Let Q be a quasivariety. The following are equivalent:
1 Q is relatively semisimple and has EDRPC.
2 Q has EDPM and QRFSI = QRS .
3 Q has EDPM and θAQ(a, b) is a complemented element of

ConQ(A), for every A ∈ Q, and a, b ∈ A.
4 Q = Q(K), for some class K satisfying some of the
equivalent conditions of the theorem.
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Relative permutability

An algebra A ∈ Q is relatively permutable if

θ ◦ δ = δ ◦ θ = θ t δ, for all θ, δ ∈ ConQ(A).

Theorem

Let Q be rel. semisimple with EDRPC. Let ε (x , y , z ,w , u) be a
conj. of equations such that for all S ∈ QRS

S � ε (x , y , z ,w , u)↔ dA (x , y , z ,w) = u.

Then, for A ∈ Q, t.f.a.e.:

1 A is relatively permutable.
2 A � ∀xyzw∃!u ε (x , y , z ,w , u).

3 A is a boolean product with factors in QRS .
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Relative permutability
The missing operation

So, if A is relatively permutable we can define a ‘new’operation by

NA (a, b, c, d) = the unique u ∈ A such that A � ε (a, b, c , d , u) .

Then:

ConQ (A) = Con
(
A,NA).

If θ ∈ Con
(
A,NA) then A/θ is rel. permutable.

P = {
(
A,NA) : A ∈ Q is rel. perm.} is a variety.

Every A ∈ Q has a unique permutable extension E satisfying
〈A〉E = E .
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