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Charles University in Prague

Conference on Universal Algebra
and Lattice Theory, Szeged 2012

Dedicated to the 80th birthday of Béla Csákány
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Some definitions

a relational structure: A = 〈A; R1, . . . ,Rn〉, where Ri ⊆ Aki

a digraph: G = 〈G ;→〉, where → is binary

“ Everything is finite.” – L. Barto

for a fixed A, CSP(A) = {X : X→ A}
complexity of the membership problem?

Conjecture (CSP dichotomy conjecture – Feder, Vardi)

For every A, CSP(A) is in P or NP-complete.
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Algebra of polymorphisms

Definition

An operation f : An → A is a polymorphism of A, if f preserves every
relation of A.

e.g., for digraphs:

f (a1 a2 . . . an) = a
↓ ↓ ↓ =⇒ ↓

f (b1 b2 . . . bn) = b

algebra of polymorphisms of A = 〈A; all polymorphisms of A〉
for a Maltsev condition Σ, we say

A |= Σ

if the algebra of polymorphisms of A satisfies Σ
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Algebraic approach

For core A, complexity of CSP(A) depends (up to L reductions) only on
the idempotent Maltsev conditions satisfied by A.

Conjecture (Jeavons, Bulatov, Krokhin’05)

For core A, CSP(A) is in P iff A is Taylor, i.e., satisfies some nontrivial
idempotent Maltsev condition.

studying CSP(A)

↓ ↑
understanding Maltsev conditions

in relational structures
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Maltsev conditions
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Reduction to digraphs

Theorem (Feder, Vardi’93)

For every finite relational structure A there exists a digraph G [balanced,
of height 5] such that CSP(A) is P-equivalent to CSP(G).

How much of the algebraic structure is preserved?

Taylor term (if the CSP dichotomy conjecture holds)

SD(∧) (Bounded width)
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How much of the algebraic structure is preserved?

Taylor term (if the CSP dichotomy conjecture holds)

SD(∧) (Bounded width)

But. . .

Conjecture (Marković’s conjecture)

For digraphs, Maltsev implies majority (3-ary near-unanimity).
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Taylor term (if the CSP dichotomy conjecture holds)

SD(∧) (Bounded width)

But. . .

Theorem (Kazda’09)

For digraphs, Maltsev implies majority (3-ary near-unanimity).

Our result: this is the only new implication between “interesting” Maltsev
conditions in digraphs.
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Condensation of Maltsev conditions

Finite algebras

⇓ CD⇒ NU (Barto’11,Zhuk’12),
CM⇒ Few subpowers (Barto’12)

Relational structures

⇓ no new implications here

Binary relations only

⇓ Maltsev⇒ majority (Kazda’09)

Digraphs

⇓ CM⇒ NU (Maróti,Zádori’11)

Reflexive digraphs
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⇓ CM⇒ NU (Maróti,Zádori’11)

Reflexive digraphs
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Maltsev conditions: relational structures
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The result

Zigzag is the digraph
• •

• •

// ??

////
. It satisfies all Maltsev conditions from the

picture except for the Maltsev Maltsev condition.

Theorem (JB, Delić, Jackson, Niven’11)

For every finite relational structure A there exists a digraph DA such that

1 CSP(A) is L-reducible to CSP(DA), CSP(DA) is P-reducible to CSP(A)

2 A is pp-definable from DA and thus for all Maltsev conditions Σ

DA |= Σ ⇒ A |= Σ

3 if Σ is linear, idempotent, each of its equations is either balanced or

in at most 2 variables, and
• •

• •

// ??
////
|= Σ, then

A |= Σ ⇒ DA |= Σ
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Theorem (JB, Delić, Jackson, Niven’11)

For every finite relational structure A there exists a digraph DA such that

1 CSP(A) is L-reducible to CSP(DA), CSP(DA) is P-reducible to CSP(A)

2 A is pp-definable from DA and thus for all Maltsev conditions Σ

DA |= Σ ⇒ A |= Σ

3 if Σ is linear, idempotent, each of its equations is either balanced or

in at most 2 variables, and
• •

• •

// ??
////
|= Σ, then

A |= Σ ⇒ DA |= Σ
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Remarks

the construction is quite simple, can be done in L (wrt. A)

DA is balanced, DDA is balanced of height 5

among the Maltsev conditions preserved are
I all Maltsev conditions from the picture except for Maltsev,
I the six conditions for omitting TCT types,
I and many more. . .
I also, any Maltsev condition satisfied by distributive lattices

we can construct nice (counter-)examples in digraphs

Problem

Characterize all idempotent Maltsev conditions which are preserved by a
reduction (possibly different) from relational structures to digraphs.
(Conjecture: all that do not imply Maltsev?)
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The construction
WLOG A has just one relation R, say n-ary, and no isolated vertices. First,
construct the incidence multigraph of A: Inc(A) = 〈A ∪ R; E1, . . . ,En〉,
where Ei = {(a, r) : a = ri} (the ith projection of R). It’s a pp-definition.
Now replace multiedges of Inc(A) with oriented paths. For every a ∈ A
and r ∈ R let Pa,r be the following oriented path:

Pa,r = a • •// + P1
a,r + • •// + · · ·+ • •// + Pn

a,r + • •// r,

where

Pi
a,r =


• •// if (a, r) ∈ Ei ,

• •

• •

// ??

////
else.

Finally, DA is just the union of all the paths Pa,r.

Example: A = 〈{0, 1, 2}; {(0, 1, 1), (1, 1, 2)}〉 [PICTURE].
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Thanks

Thank you for your attention!
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Wait!
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Bonus: absorption
Let A be a relational structure and B ⊆ A. We say that B is an absorbing
subuniverse (B E A), if B is preserved by all polymorphisms of A, and
there exists a polymorphism t such that

t(A,B, . . . ,B,B) ⊆ B,

t(B,A, . . . ,B,B) ⊆ B,

...

t(B,B, . . . ,A,B) ⊆ B,

t(B,B, . . . ,B,A) ⊆ B.

Lemma

If B E A via k-ary t, then B EDA via some k-ary t ′. (Moreover, the
construction doesn’t add “new” absorption-free subuniverses.)

. . . a few open problems in the absorption theory of Barto and Kozik
reduce to digraphs.
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