Direct products and homomorphisms

Simion Breaz

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト ・

Outline

Commuting properties

- Products and coproducts
- Contravariant functors
- Covariant functors

(日) (四) (三) (三)

Commuting properties	Products and coproducts Contravariant functors Covariant functors
----------------------	---

Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Adámek and Rosicki: Locally presentable categories] there are the following examples:

If $\mathcal V$ is a variety of finitary algebras and $A \in \mathcal V$ then

- A is *finitely generated* iff the functor Hom(A, −) : V → Set preserves direct unions (i.e. directed colimits of monomorphisms);
- A is *finitely presented* (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −) : V → Set preserves directed colimits.

(□) (□) (Ξ) (Ξ)

Commuting properties	Products and coproducts Contravariant functors Covariant functors
Commuting properties	Contravariant functors Covariant functors

Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Adámek and Rosicki: Locally presentable categories] there are the following examples:

If $\mathcal V$ is a variety of finitary algebras and $\mathcal A\in\mathcal V$ then

- A is *finitely generated* iff the functor Hom(A, −) : V → Set preserves direct unions (i.e. directed colimits of monomorphisms);
- A is *finitely presented* (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −) : V → Set preserves directed colimits.

(□) (□) (Ξ) (Ξ)

Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Adámek and Rosicki: Locally presentable categories] there are the following examples:

If $\mathcal V$ is a variety of finitary algebras and $A\in\mathcal V$ then

- A is *finitely generated* iff the functor Hom(A, −) : V → Set preserves direct unions (i.e. directed colimits of monomorphisms);
- A is *finitely presented* (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −) : V → Set preserves directed colimits.

(□) (□) (□) (□) (□)

Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Adámek and Rosicki: Locally presentable categories] there are the following examples:

If $\mathcal V$ is a variety of finitary algebras and $A\in\mathcal V$ then

- A is *finitely generated* iff the functor Hom(A, −) : V → Set preserves direct unions (i.e. directed colimits of monomorphisms);
- A is *finitely presented* (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −) : V → Set preserves directed colimits.

(□) (□) (Ξ) (Ξ)

Basic constructions are described using **universal properties**. For instance, if $\mathfrak{F} = (A_i)_{i \in I}$ is a family of objects, we can define

the *direct product* of 𝔅: an object P := ∏_{i∈I} A_i together with a family of homomorphisms p_i : P → A_i with the (universal) property that for every object B and homomorphisms α_i : B → A_i there is a unique α : B → P s.t. α_i = p_iα.

Connection with hom-covariant

 P and p ⊂ P → A_i represent the direct product of β iff for every the natural map from (B, P) → []_{i∈P} from (B, A_i), α → p α is a bijection, i.e.

(D) (A) (A)

IOgo

Basic constructions are described using **universal properties**. For instance, if $\mathfrak{F} = (A_i)_{i \in I}$ is a family of objects, we can define

the *direct product* of 𝔅: an object P := ∏_{i∈I} A_i together with a family of homomorphisms p_i : P → A_i with the (universal) property that for every object B and homomorphisms α_i : B → A_i there is a unique α : B → P s.t. α_i = p_iα.

Connection with hom-covariant

- P and p_i : P → A_i represent the direct product of 3 iff for every B the natural map Hom(B, P) → Π_{i∈I} Hom(B, A_i), α → p_iα is a bijection, i.e.
- the hom-covariant functor commutes with respect does

(D) (A) (A)

IOgo

Basic constructions are described using **universal properties**. For instance, if $\mathfrak{F} = (A_i)_{i \in I}$ is a family of objects, we can define

the *direct product* of 𝔅: an object P := ∏_{i∈I} A_i together with a family of homomorphisms p_i : P → A_i with the (universal) property that for every object B and homomorphisms α_i : B → A_i there is a unique α : B → P s.t. α_i = p_iα.

Connection with hom-covariant

- P and $p_i : P \to A_i$ represent the direct product of \mathfrak{F} iff for every B the natural map $\operatorname{Hom}(B, P) \to \prod_{i \in I} \operatorname{Hom}(B, A_i), \ \alpha \mapsto p_i \alpha$ is a bijection, i.e.
- the hom-covariant functor commutes with respect direct products.

(日) (문) (문) (문)

iogo

Basic constructions are described using **universal properties**. For instance, if $\mathfrak{F} = (A_i)_{i \in I}$ is a family of objects, we can define

the *direct product* of 𝔅: an object P := ∏_{i∈I} A_i together with a family of homomorphisms p_i : P → A_i with the (universal) property that for every object B and homomorphisms α_i : B → A_i there is a unique α : B → P s.t. α_i = p_iα.

Connection with hom-covariant

• P and $p_i : P \to A_i$ represent the direct product of \mathfrak{F} iff for every B the natural map $\operatorname{Hom}(B, P) \to \prod_{i \in I} \operatorname{Hom}(B, A_i), \ \alpha \mapsto p_i \alpha$ is a bijection, i.e.

• the hom-covariant functor commutes with respect direct products.

(日) (四) (三) (三)

iogo

Basic constructions are described using **universal properties**. For instance, if $\mathfrak{F} = (A_i)_{i \in I}$ is a family of objects, we can define

the *direct product* of 𝔅: an object P := ∏_{i∈I} A_i together with a family of homomorphisms p_i : P → A_i with the (universal) property that for every object B and homomorphisms α_i : B → A_i there is a unique α : B → P s.t. α_i = p_iα.

Connection with hom-covariant

- P and $p_i : P \to A_i$ represent the direct product of \mathfrak{F} iff for every B the natural map $\operatorname{Hom}(B, P) \to \prod_{i \in I} \operatorname{Hom}(B, A_i), \ \alpha \mapsto p_i \alpha$ is a bijection, i.e.
- the hom-covariant functor commutes with respect direct products.

(日) (日) (日) (日) (日)

iogo

- the direct coproduct of 𝔅: an object C := ∐_{i∈I} A_i together with a family of homomorphisms u_i : A_i → C with the (universal) property that for every object B and homomorphisms α_i : A_i → B there is a unique α : C → B s.t. α_i = αu_i.
- disjoint union of sets (spaces), direct sums of modules, free products of groups, tensor products of commutative rings.

Connection with hom-covariant

 C and up (A) == C is the direct coproduct of (3 iff for every B) the natural homomorphism (fom(C, B) == []), film(A), B), are an is a bijection, i.e.

(I) (I) (I) (I) (I)

- the direct coproduct of 𝔅: an object C := ∐_{i∈I} A_i together with a family of homomorphisms u_i : A_i → C with the (universal) property that for every object B and homomorphisms α_i : A_i → B there is a unique α : C → B s.t. α_i = αu_i.
- disjoint union of sets (spaces), direct sums of modules, free products of groups, tensor products of commutative rings.

Connection with hom-covariant

- C and u_i : A_i → C is the direct coproduct of 3 iff for every B the natural homomorphism Hom(C, B) → ∏_{i∈i} Hom(A_i, B), α → αu_i is a bijection, i.e.
- the hom-contravariant functor inverses coproducts.

(I) (I) (I) (I) (I)

- the direct coproduct of 𝔅: an object C := ∐_{i∈I} A_i together with a family of homomorphisms u_i : A_i → C with the (universal) property that for every object B and homomorphisms α_i : A_i → B there is a unique α : C → B s.t. α_i = αu_i.
- disjoint union of sets (spaces), direct sums of modules, free products of groups, tensor products of commutative rings.

Connection with hom-covariant

- *C* and $u_i : A_i \to C$ is the direct coproduct of \mathfrak{F} iff for every *B* the natural homomorphism $\operatorname{Hom}(C, B) \to \prod_{i \in I} \operatorname{Hom}(A_i, B), \alpha \mapsto \alpha u_i$ is a bijection, i.e.
- the hom-contravariant functor inverses coproducts.

- the direct coproduct of 𝔅: an object C := ∐_{i∈I} A_i together with a family of homomorphisms u_i : A_i → C with the (universal) property that for every object B and homomorphisms α_i : A_i → B there is a unique α : C → B s.t. α_i = αu_i.
- disjoint union of sets (spaces), direct sums of modules, free products of groups, tensor products of commutative rings.

Connection with hom-covariant

- *C* and $u_i : A_i \to C$ is the direct coproduct of \mathfrak{F} iff for every *B* the natural homomorphism $\operatorname{Hom}(C, B) \to \prod_{i \in I} \operatorname{Hom}(A_i, B), \alpha \mapsto \alpha u_i$ is a bijection, i.e.
- the hom-contravariant functor inverses coproducts.

- the direct coproduct of 𝔅: an object C := ∐_{i∈I} A_i together with a family of homomorphisms u_i : A_i → C with the (universal) property that for every object B and homomorphisms α_i : A_i → B there is a unique α : C → B s.t. α_i = αu_i.
- disjoint union of sets (spaces), direct sums of modules, free products of groups, tensor products of commutative rings.

Connection with hom-covariant

- *C* and $u_i : A_i \to C$ is the direct coproduct of \mathfrak{F} iff for every *B* the natural homomorphism $\operatorname{Hom}(C, B) \to \prod_{i \in I} \operatorname{Hom}(A_i, B)$, $\alpha \mapsto \alpha u_i$ is a bijection, i.e.
- the hom-contravariant functor inverses coproducts.

ogo

The general problem

Can we find, for a fixed variety \mathcal{V} , a non-trivial object B and (natural) bijective maps $\operatorname{Hom}(\prod A_i, B) \to \prod \operatorname{Hom}(A_i, B)$ for all families (A_i) ?

• The answer is NO for sets and vector spaces by computing some cardinalities;

There are situations when the answer is YES:

Theorem [D.M. Latch, Alg. Univ. (1976)]

In the category of complete (V-) semilattices arbitrary products and coproducts coincide.

logo

(□) (□) (□) (□) (□)

The general problem

Can we find, for a fixed variety \mathcal{V} , a non-trivial object B and (natural) bijective maps $\operatorname{Hom}(\prod A_i, B) \to \prod \operatorname{Hom}(A_i, B)$ for all families (A_i) ?

• The answer is NO for sets and vector spaces by computing some cardinalities;

There are situations when the answer is YES:

Theorem [D.M. Latch, Alg. Univ. (1976)]

In the category of complete (V-) semilattices arbitrary products and coproducts coincide.

Simion Breaz Direct products and homomorphisms

(□) (□) (□) (□) (□)

The general problem

Can we find, for a fixed variety \mathcal{V} , a non-trivial object B and (natural) bijective maps $\operatorname{Hom}(\prod A_i, B) \to \prod \operatorname{Hom}(A_i, B)$ for all families (A_i) ?

 The answer is NO for sets and vector spaces by computing some cardinalities;

There are situations when the answer is YES:

Theorem [D.M. Latch, Alg. Univ. (1976)]

In the category of complete (\lor -) semilattices arbitrary products and coproducts coincide.

Simion Breaz Direct products and homomorphisms

(□) (□) (□) (□) (□)

The general problem

Can we find, for a fixed variety \mathcal{V} , a non-trivial object B and (natural) bijective maps $\operatorname{Hom}(\prod A_i, B) \to \prod \operatorname{Hom}(A_i, B)$ for all families (A_i) ?

 The answer is NO for sets and vector spaces by computing some cardinalities;

There are situations when the answer is YES:

Theorem [D.M. Latch, Alg. Univ. (1976)]

In the category of complete (\lor -) semilattices arbitrary products and coproducts coincide.

logo

(D) (B) (E) (E)

- Let F : C → D be a contravariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families
 \$\vec{F}\$ and \$F(\vec{F}) = (F(A_i))_{i \in I}\$.
 - There is a null object 0 such that every composition
 - $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathcal{H}} : \prod_{i \in I} A_i \to \prod_{i \in I} A_i$
- Then we have a diagram:

イロト イヨト イヨト イヨト

- Let F : C → D be a contravariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition
 - $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}}: \coprod_{i\in I} A_i o \prod_{i\in I} A_i$
- Then we have a diagram:

(□) (□) (□) (□) (□)

- Let F : C → D be a contravariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition
 - $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}}: \coprod_{i \in I} A_i o \prod_{i \in I} A_i$
- Then we have a diagram:

(□) (□) (□) (□) (□)

- Let F : C → D be a contravariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}} : \coprod_{i \in I} A_i \to \prod_{i \in I} A_i$
- Then we have a diagram:

(日) (日) (日) (日) (日)

- Let $F : \mathcal{C} \to \mathcal{D}$ be a contravariant functor and $\mathfrak{F} = (A_i)_{i \in I}$ a family of objects in \mathcal{C} .
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}} : \coprod_{i \in I} A_i \to \prod_{i \in I} A_i$
- Then we have a diagram:

(日) (周) (日) (日)

- Let $F : \mathcal{C} \to \mathcal{D}$ be a contravariant functor and $\mathfrak{F} = (A_i)_{i \in I}$ a family of objects in \mathcal{C} .
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}} : \coprod_{i \in I} A_i \to \prod_{i \in I} A_i$
- Then we have a diagram:

(日) (周) (日) (日)

where the coproducts and products are taken over I, and t maps are the canonical ones.

- The compositions of the maps in top and bottom rows yield the identity maps.

$$F(A_{i}) \xrightarrow{\phi_{i}} \coprod F(A_{i}) = \coprod F(A_{i}) \xrightarrow{\gamma_{i}} F(A_{i})$$

$$\|$$

$$F(A_{i}) \xrightarrow{F(f_{i}')} F(\prod A_{i}) \xrightarrow{F(\iota_{\mathfrak{F}})} F(\prod A_{i}) \xrightarrow{F(f_{i})} F(A_{i})$$

$$\|$$

$$F(A_{i}) \xrightarrow{\phi_{i}'} \prod F(A_{i}) = \coprod F(A_{i}) \xrightarrow{\gamma_{i}'} F(A_{i})$$

where the coproducts and products are taken over I, and the maps are the canonical ones.

- The compositions of the maps in top and bottom rows yield the identity maps.
- Using universal properties, this diagram can be completed to a logo commutative diagram:

$$F(A_{i}) \xrightarrow{\phi_{i}} \coprod F(A_{i}) = \coprod F(A_{i}) \xrightarrow{\gamma_{i}} F(A_{i})$$

$$\|$$

$$F(A_{i}) \xrightarrow{F(f_{i}')} F(\prod A_{i}) \xrightarrow{F(\iota_{\mathfrak{F}})} F(\coprod A_{i}) \xrightarrow{F(f_{i})} F(A_{i})$$

$$\|$$

$$F(A_{i}) \xrightarrow{\phi_{i}'} \prod F(A_{i}) = \coprod F(A_{i}) \xrightarrow{\gamma_{i}'} F(A_{i})$$

where the coproducts and products are taken over I, and the maps are the canonical ones.

- The compositions of the maps in top and bottom rows yield the identity maps.
- Using universal properties, this diagram can be completed to a logo commutative diagram:

Products and coproducts Contravariant functors Covariant functors

Contravariant functors acting on direct (co)products

• $\Delta'_{\mathfrak{F}} = \Delta_{\mathfrak{F}} F(\iota_{\mathfrak{F}})$ and $F(\iota_{\mathfrak{F}}) \Psi'_{\mathfrak{F}} = \Psi_{\mathfrak{F}}$.

• $\Delta_3 \Psi_3 = \Delta'_3 \Psi'_3 = \iota_{F(3)}$.

イロン スロン スロン スロン 一座

ogo

Products and coproducts Contravariant functors Covariant functors

Contravariant functors acting on direct (co)products

• $\Delta'_{\mathfrak{F}} = \Delta_{\mathfrak{F}} F(\iota_{\mathfrak{F}})$ and $F(\iota_{\mathfrak{F}}) \Psi'_{\mathfrak{F}} = \Psi_{\mathfrak{F}}$.

• $\Delta_{\mathfrak{F}}\Psi_{\mathfrak{F}} = \Delta'_{\mathfrak{F}}\Psi'_{\mathfrak{F}} = \iota_{F(\mathfrak{F})}.$

(日) (四) (三) (三)

ogo

Products and coproducts Contravariant functors Covariant functors

Contravariant functors acting on direct (co)products

•
$$\Delta'_{\mathfrak{F}} = \Delta_{\mathfrak{F}} F(\iota_{\mathfrak{F}})$$
 and $F(\iota_{\mathfrak{F}}) \Psi'_{\mathfrak{F}} = \Psi_{\mathfrak{F}}$.

•
$$\Delta_{\mathfrak{F}}\Psi_{\mathfrak{F}} = \Delta'_{\mathfrak{F}}\Psi'_{\mathfrak{F}} = \iota_{F(\mathfrak{F})}.$$

ogo

3

- If Ψ₃ (Δ₃) are isomorphisms for all 3 we say that F preserves (inverts) direct coproducts.
- If Δ'₃ (Ψ'₃) are isomorphisms for all 3 we say that F preserves (inverts) direct products.
- The case $A_i \cong A$ for a fixed $A \mapsto F$, we say that F preserves or inverts self-coproducts/self-products.

$$\begin{array}{cccc} F(A_{i}) & \stackrel{\phi_{i}}{\longrightarrow} & \coprod F(A_{i}) & = & \coprod F(A_{i}) & \stackrel{\gamma_{i}}{\longrightarrow} & F(A_{i}) \\ & \parallel & & \psi_{\mathfrak{F}}' & & \psi_{\mathfrak{F}} & & \parallel \\ F(A_{i}) & \stackrel{F(f_{i}')}{\longrightarrow} & F(\prod A_{i}) & \stackrel{F(\iota_{\mathfrak{F}})}{\longrightarrow} & F(\coprod A_{i}) & \stackrel{F(f_{i})}{\longrightarrow} & F(A_{i}) \\ & \parallel & & \Delta_{\mathfrak{F}}' & & \Delta_{\mathfrak{F}} & & \parallel \\ F(A_{i}) & \stackrel{\phi_{i}'}{\longrightarrow} & \prod F(A_{i}) & = & \prod F(A_{i}) & \stackrel{\gamma_{i}'}{\longrightarrow} & F(A_{i}) \end{array}$$

- If Ψ_S (Δ_S) are isomorphisms for all S we say that F preserves (inverts) direct coproducts.
- If Δ'_{\$\vec{\mathcal{F}}\$} (Ψ'_{\$\vec{\mathcal{S}}\$}) are isomorphisms for all \$\vec{\mathcal{S}}\$ we say that F preserves (inverts) direct products.
- The case $A_i \cong A$ for a fixed $A \mapsto F$, we say that F preserves or inverts self-coproducts/self-products...

- If Ψ₃ (Δ₃) are isomorphisms for all 3 we say that F preserves (inverts) direct coproducts.
- If Δ'₃ (Ψ'₃) are isomorphisms for all 3 we say that F preserves (inverts) direct products.

• The case $A_i \cong A$ for a fixed $A \mapsto F$, we say that F preserves or inverts self-coproducts/self-products.

- If Ψ₃ (Δ₃) are isomorphisms for all 3 we say that F preserves (inverts) direct coproducts.
- If Δ'₃ (Ψ'₃) are isomorphisms for all 3 we say that F preserves (inverts) direct products.
- The case $A_i \cong A$ for a fixed $A \mapsto F$, we say that F preserves or inverts self-coproducts/self-products.
- Let *R* be a unital associative ring. We work on the category of right *R*-modules.
- Hom_{*R*}(-, *M*) inverses direct coproducts (the universal property).
- In general, the study of the product inverting property for Hom_R(-, M) (strongly slender modules) depends on set theoretic axioms:
 - if all cardinals are constructible (V=L) then Z is strongly slender
 - Hithmetic a non-mountable cardinal there there are not strongly storate abelian groups.
- In general it is enough to work with a weaker notion: a module *M* is called *slender* if Hom_R(-, *M*) inverts direct products with countable many factors.

イロト イヨト イヨト イヨト

- Let *R* be a unital associative ring. We work on the category of right *R*-modules.
- Hom_R(-, M) inverses direct coproducts (the universal property).
- In general, the study of the product inverting property for Hom_R(-, M) (strongly slender modules) depends on set theoretic axioms:
 - if all cardinals are constructible (V=L) then Z is strongly slender
 - if there is a non-measurable cardinal then there are not strongly slender abelian groups.
- In general it is enough to work with a weaker notion: a module M is called *slender* if Hom_R(-, M) inverts direct products with countable many factors.

イロト イヨト イヨト イヨト

- Let *R* be a unital associative ring. We work on the category of right *R*-modules.
- Hom_R(-, M) inverses direct coproducts (the universal property).
- In general, the study of the product inverting property for $\operatorname{Hom}_R(-, M)$ (strongly slender modules) depends on set theoretic axioms:
 - \bullet if all cardinals are constructible (V=L) then $\mathbb Z$ is strongly slender
 - if there is a non-measurable cardinal then there are not strongly slender abelian groups.
- In general it is enough to work with a weaker notion: a module M is called *slender* if $\operatorname{Hom}_R(-, M)$ inverts direct products with countable many factors.

(□) (□) (□) (□) (□)

- Let *R* be a unital associative ring. We work on the category of right *R*-modules.
- Hom_R(-, M) inverses direct coproducts (the universal property).
- In general, the study of the product inverting property for $\operatorname{Hom}_R(-, M)$ (strongly slender modules) depends on set theoretic axioms:
 - if all cardinals are constructible (V=L) then $\mathbb Z$ is strongly slender
 - if there is a non-measurable cardinal then there are not strongly slender abelian groups.
- In general it is enough to work with a weaker notion: a module *M* is called *slender* if Hom_R(-, *M*) inverts direct products with countable many factors.

(□) (□) (Ξ) (Ξ)

- Let *R* be a unital associative ring. We work on the category of right *R*-modules.
- Hom_R(-, M) inverses direct coproducts (the universal property).
- In general, the study of the product inverting property for $\operatorname{Hom}_R(-, M)$ (strongly slender modules) depends on set theoretic axioms:
 - if all cardinals are constructible (V=L) then $\mathbb Z$ is strongly slender
 - if there is a non-measurable cardinal then there are not strongly slender abelian groups.
- In general it is enough to work with a weaker notion: a module *M* is called *slender* if Hom_R(-, *M*) inverts direct products with countable many factors.

(□) (□) (Ξ) (Ξ)

- Let *R* be a unital associative ring. We work on the category of right *R*-modules.
- Hom_R(-, M) inverses direct coproducts (the universal property).
- In general, the study of the product inverting property for $\operatorname{Hom}_R(-, M)$ (strongly slender modules) depends on set theoretic axioms:
 - if all cardinals are constructible (V=L) then $\mathbb Z$ is strongly slender
 - if there is a non-measurable cardinal then there are not strongly slender abelian groups.
- In general it is enough to work with a weaker notion: a module M is called *slender* if $\operatorname{Hom}_R(-, M)$ inverts direct products with countable many factors.

(□) (□) (Ξ) (Ξ)

• Can we find objects *M* such that Hom_{*R*}(-, *M*) preserves products?

Theorem (Goldsmith and Kolmann, J. Alg. '07)

Assume that there is a strongly compact cardinal. If A is an abelian group s.t. $\operatorname{Hom}(\prod A_i, A) \cong \prod \operatorname{Hom}(A_i, A)$ for all families $\mathfrak{F} = (A_i)$ then A = 0.

• Can we find objects *M* such that Hom_{*R*}(-, *M*) preserves products?

Theorem (Goldsmith and Kolmann, J. Alg. '07)

Assume that there is a strongly compact cardinal. If A is an abelian group s.t. $\operatorname{Hom}(\prod A_i, A) \cong \prod \operatorname{Hom}(A_i, A)$ for all families $\mathfrak{F} = (A_i)$ then A = 0.

• Can we find objects *M* such that Hom_{*R*}(-, *M*) preserves products?

Theorem (Goldsmith and Kolmann, J. Alg. '07)

Assume that there is a strongly compact cardinal. If A is an abelian group s.t. $\operatorname{Hom}(\prod A_i, A) \cong \prod \operatorname{Hom}(A_i, A)$ for all families $\mathfrak{F} = (A_i)$ then A = 0.

• Can we find objects *M* such that Hom_{*R*}(-, *M*) preserves products?

Theorem (Goldsmith and Kolmann, J. Alg. '07)

Assume that there is a strongly compact cardinal. If A is an abelian group s.t. $\operatorname{Hom}(\prod A_i, A) \cong \prod \operatorname{Hom}(A_i, A)$ for all families $\mathfrak{F} = (A_i)$ then A = 0.

Open questions (Goldsmith and Kolmann'07)

Is this theorem valid in ZFC?

How about we restrict to self-products (i.e. products of copies of A

• Can we find objects *M* such that Hom_{*R*}(-, *M*) preserves products?

Theorem (Goldsmith and Kolmann, J. Alg. '07)

Assume that there is a strongly compact cardinal. If A is an abelian group s.t. $\operatorname{Hom}(\prod A_i, A) \cong \prod \operatorname{Hom}(A_i, A)$ for all families $\mathfrak{F} = (A_i)$ then A = 0.

Open questions (Goldsmith and Kolmann'07)

• Is this theorem valid in ZFC?

How about we restrict to self-products (i.e. products of copies of A)

ogo

• Can we find objects *M* such that Hom_{*R*}(-, *M*) preserves products?

Theorem (Goldsmith and Kolmann, J. Alg. '07)

Assume that there is a strongly compact cardinal. If A is an abelian group s.t. $\operatorname{Hom}(\prod A_i, A) \cong \prod \operatorname{Hom}(A_i, A)$ for all families $\mathfrak{F} = (A_i)$ then A = 0.

Open questions (Goldsmith and Kolmann'07)

- Is this theorem valid in ZFC?
- How about we restrict to self-products (i.e. products of copies of A)?

Products and coproducts Contravariant functors Covariant functors

The case $F = \operatorname{Hom}_R(-, M)$

There is an answer for the natural homomorphisms:

Theorem (B.'11)

T.F.A.E. for a right R-module M:

- a) Hom_R(-, M) preserves direct products, i.e. Δ'₃ is an isomorphism for all 3;
- b) Hom_R(-, M) preserves self-products of copies of M, i.e. Δ'₃ is an isomorphism for all families 3 of copies of M;

c)
$$M = 0$$
.

(□) (□) (□) (□) (□)

Products and coproducts Contravariant functors Covariant functors

The case $F = \operatorname{Hom}_R(-, M)$

There is an answer for the natural homomorphisms:

Theorem (B.'11)

T.F.A.E. for a right *R*-module *M*:

- a) $\operatorname{Hom}_{R}(-, M)$ preserves direct products, i.e. $\Delta'_{\mathfrak{F}}$ is an isomorphism for all \mathfrak{F} ;
- b) Hom_R(-, M) preserves self-products of copies of M, i.e. Δ'₃ is an isomorphism for all families 3 of copies of M;

c)
$$M = 0$$
.

(□) (□) (□) (□) (□)

Products and coproducts Contravariant functors Covariant functors

The case $F = \operatorname{Hom}_R(-, M)$

There is an answer for the natural homomorphisms:

Theorem (B.'11)

T.F.A.E. for a right *R*-module *M*:

- a) Hom_R(-, M) preserves direct products, i.e. Δ'₃ is an isomorphism for all 3;
- b) Hom_R(-, M) preserves self-products of copies of M, i.e. Δ'₃ is an isomorphism for all families 3 of copies of M;

c) M = 0.

イロト イヨト イヨト イヨト

Products and coproducts Contravariant functors Covariant functors

The case $F = \operatorname{Hom}_R(-, M)$

There is an answer for the natural homomorphisms:

Theorem (B.'11)

T.F.A.E. for a right *R*-module *M*:

- a) $\operatorname{Hom}_{R}(-, M)$ preserves direct products, i.e. $\Delta'_{\mathfrak{F}}$ is an isomorphism for all \mathfrak{F} ;
- b) Hom_R(-, M) preserves self-products of copies of M, i.e. Δ'₃ is an isomorphism for all families 3 of copies of M;

c) M = 0.

イロト イヨト イヨト イヨト

- Let F : C → D be a covariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families
 \$\vec{F}\$ and \$F(\vec{F}) = (F(A_i))_{i \in I}\$.
 - There is a null object 0 such that every composition
 - $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathcal{H}} : []_{i \in I} A_i \rightarrow []_{i \in I} A_i$
- Then we have a diagram:

イロト イヨト イヨト イヨト

- Let F : C → D be a covariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition
 - $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}}: \coprod_{i \in I} A_i o \prod_{i \in I} A_i$
- Then we have a diagram:

(□) (□) (□) (□) (□)

- Let F : C → D be a covariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition $A \rightarrow 0 \rightarrow B$ is the zero homomorphism bases
 - $A \rightarrow 0 \rightarrow B$ is the zero nomomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}}: \prod_{i \in I} A_i \to \prod_{i \in I} A_i$
- Then we have a diagram:

(□) (□) (□) (□) (□)

- Let F : C → D be a covariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}}: \coprod_{i \in I} A_i \to \prod_{i \in I} A_i$
- Then we have a diagram:

(ロ) (部) (注) (す)

- Let F : C → D be a covariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}}: \coprod_{i \in I} A_i \to \prod_{i \in I} A_i$
- Then we have a diagram:

(日) (周) (日) (日)

- Let F : C → D be a covariant functor and 𝔅 = (A_i)_{i∈I} a family of objects in C.
- Assume that
 - there exist the direct products and coproducts for the families \mathfrak{F} and $F(\mathfrak{F}) = (F(A_i))_{i \in I}$.
 - There is a null object 0 such that every composition $A \rightarrow 0 \rightarrow B$ is the zero homomorphism, hence
 - There are canonical homomorphisms $\iota_{\mathfrak{F}}: \coprod_{i \in I} A_i \to \prod_{i \in I} A_i$
- Then we have a diagram:

(日) (周) (日) (日)

۲

$$F(A_{i}) \xrightarrow{\phi_{i}} \prod F(A_{i}) = \prod F(A_{i}) \xrightarrow{\gamma_{i}} F(A_{i})$$

$$\|$$

$$F(A_{i}) \xrightarrow{F(u_{i})} F(\prod A_{i}) \xrightarrow{F(u_{\mathfrak{F}})} F(\prod A_{i}) \xrightarrow{F(p_{i})} F(A_{i})$$

$$\|$$

$$F(A_{i}) \xrightarrow{\phi_{i}'} \prod F(A_{i}) = \prod F(A_{i}) \xrightarrow{\gamma_{i}'} F(A_{i})$$

- where all arrows are the canonical ones.
- It can be completed, using universal properties, to the following commutative diagram

(□) (□) (□) (□) (□)

۲

- where all arrows are the canonical ones.
- It can be completed, using universal properties, to the following commutative diagram

イロト イヨト イヨト イヨト

Commuting properties Products and coproducts Contravariant functors Covariant functors

Covariant functors acting on direct (co)products

۲

• $\Gamma'_{\mathfrak{F}}F(\iota_{\mathfrak{F}}) = \Gamma_{\mathfrak{F}}$ and $F(\iota_{\mathfrak{F}})\Phi_{\mathfrak{F}} = \Phi'_{\mathfrak{F}}$ • $\Gamma_{\mathfrak{F}}\Phi_{\mathfrak{F}} = \Gamma'_{\mathfrak{F}}\Phi'_{\mathfrak{F}} = \iota_{F(\mathfrak{F})}.$

(日) (四) (三) (三)

Commuting properties Products and coproducts Contravariant functors Covariant functors

Covariant functors acting on direct (co)products

۲

- $F(A_{i}) \xrightarrow{\phi_{i}} \prod F(A_{i}) = \prod F(A_{i}) \xrightarrow{\gamma_{i}} F(A_{i})$ $\parallel \qquad \Phi_{\mathfrak{F}} \downarrow \qquad \Phi_{\mathfrak{F}} \downarrow \qquad \Psi_{\mathfrak{F}}^{\prime} \downarrow \qquad \parallel$ $F(A_{i}) \xrightarrow{F(u_{i})} F(\prod A_{i}) \xrightarrow{F(\iota_{\mathfrak{F}})} F(\prod A_{i}) \xrightarrow{F(p_{i})} F(A_{i})$ $\parallel \qquad \Gamma_{\mathfrak{F}} \downarrow \qquad \Gamma_{\mathfrak{F}}^{\prime} \downarrow \qquad \parallel$ $F(A_{i}) \xrightarrow{\phi_{i}^{\prime}} \prod F(A_{i}) = \prod F(A_{i}) \xrightarrow{\gamma_{i}^{\prime}} F(A_{i})$ $\bullet \Gamma_{\mathfrak{F}}^{\prime}F(\iota_{\mathfrak{F}}) = \Gamma_{\mathfrak{F}} \text{ and } F(\iota_{\mathfrak{F}})\Phi_{\mathfrak{F}} = \Phi_{\mathfrak{F}}^{\prime}.$
- $\Gamma_{\mathfrak{F}} \Gamma(\iota_{\mathfrak{F}}) = \Gamma_{\mathfrak{F}} \text{ and } \Gamma(\iota_{\mathfrak{F}}) \Psi_{\mathfrak{F}} =$ • $\Gamma_{\mathfrak{F}} \Phi_{\mathfrak{F}} = \Gamma'_{\mathfrak{F}} \Phi'_{\mathfrak{F}} = \iota_{F(\mathfrak{F})}.$

Commuting properties Products and coproducts Contravariant functors Covariant functors

Covariant functors acting on direct (co)products

۲

۲

$$F(A_{i}) \xrightarrow{\phi_{i}} \prod F(A_{i}) = \prod F(A_{i}) \xrightarrow{\gamma_{i}} F(A_{i})$$

$$\parallel \qquad \Phi_{\mathfrak{F}} \downarrow \qquad \Phi'_{\mathfrak{F}} \downarrow \qquad \parallel$$

$$F(A_{i}) \xrightarrow{F(u_{i})} F(\prod A_{i}) \xrightarrow{F(\iota_{\mathfrak{F}})} F(\prod A_{i}) \xrightarrow{F(p_{i})} F(A_{i})$$

$$\parallel \qquad \Gamma_{\mathfrak{F}} \downarrow \qquad \Gamma'_{\mathfrak{F}} \downarrow \qquad \parallel$$

$$F(A_{i}) \xrightarrow{\phi'_{i}} \prod F(A_{i}) = \prod F(A_{i}) \xrightarrow{\gamma'_{i}} F(A_{i})$$

$$\Gamma'_{\mathfrak{F}} F(\iota_{\mathfrak{F}}) = \Gamma_{\mathfrak{F}} \text{ and } F(\iota_{\mathfrak{F}}) \Phi_{\mathfrak{F}} = \Phi'_{\mathfrak{F}}.$$

• $\Gamma_{\mathfrak{F}} \Phi_{\mathfrak{F}} = \Gamma'_{\mathfrak{F}} \Phi'_{\mathfrak{F}} = \iota_{F(\mathfrak{F})}.$

(日) (四) (王) (王) (王)

٥

 $F(A_{i}) \xrightarrow{\phi_{i}} \prod F(A_{i}) = \prod F(A_{i}) \xrightarrow{\gamma_{i}} F(A_{i})$ $\parallel \qquad \Phi_{\mathfrak{F}} \downarrow \qquad \Phi_{\mathfrak{F}} \downarrow \qquad \Psi_{\mathfrak{F}} \downarrow \qquad \parallel$ $F(A_{i}) \xrightarrow{F(u_{i})} F(\prod A_{i}) \xrightarrow{F(\iota_{\mathfrak{F}})} F(\prod A_{i}) \xrightarrow{F(p_{i})} F(A_{i})$ $\parallel \qquad \Gamma_{\mathfrak{F}} \downarrow \qquad \Gamma_{\mathfrak{F}} \downarrow \qquad \parallel$ $F(A_{i}) \xrightarrow{\phi_{i}'} \prod F(A_{i}) = \prod F(A_{i}) \xrightarrow{\gamma_{i}'} F(A_{i})$

- If Φ₃ (Γ₃) is an isomorphism for all 3 we say that F preserves (inverts) direct coproducts
- If Γ'₃ (Φ'₃) is an isomorphism for all 3 we say that F preserves (inverts) direct products.

٢

- If Φ₃ (Γ₃) is an isomorphism for all 3 we say that F preserves (inverts) direct coproducts

\sim		
_		
-		

- If Φ_s (Γ_s) is an isomorphism for all s we say that F preserves (inverts) direct coproducts
- If $\Gamma'_{\mathfrak{F}}(\Phi'_{\mathfrak{F}})$ is an isomorphism for all \mathfrak{F} we say that F preserves (inverts) direct products.
- The case A_i ≅ A for a fixed A → F, we say that F preserves logo or inverts self-coproducts/self-products.

$$\begin{array}{cccc} F(A_i) & \stackrel{\phi_i}{\longrightarrow} & \coprod F(A_i) & = & \coprod F(A_i) & \stackrel{\gamma_i}{\longrightarrow} & F(A_i) \\ \| & & \Phi_{\mathfrak{F}} & & \Phi_{\mathfrak{F}}' & & \| \\ F(A_i) & \stackrel{F(u_i)}{\longrightarrow} & F(\coprod A_i) & \stackrel{F(\iota_{\mathfrak{F}})}{\longrightarrow} & F(\coprod A_i) & \stackrel{F(p_i)}{\longrightarrow} & F(A_i) \\ \| & & & \Gamma_{\mathfrak{F}} & & & \Gamma_{\mathfrak{F}}' & & \| \\ F(A_i) & \stackrel{\phi_i'}{\longrightarrow} & \prod F(A_i) & = & \prod F(A_i) & \stackrel{\gamma_i'}{\longrightarrow} & F(A_i) \end{array}$$

- If Φ₃ (Γ₃) is an isomorphism for all 3 we say that F preserves (inverts) direct coproducts
- If $\Gamma'_{\mathfrak{F}}(\Phi'_{\mathfrak{F}})$ is an isomorphism for all \mathfrak{F} we say that F preserves (inverts) direct products.
- The case A_i ≅ A for a fixed A → F, we say that F preserves or inverts self-coproducts/self-products.

• $\operatorname{Hom}_{R}(M, -)$ preserves products;

- If Hom_R(M, -) preserves (self-)coproducts then we call M (self-)small;
- Every finitely generated module is small;

(日) (四) (三) (三)

- $\operatorname{Hom}_{R}(M, -)$ preserves products;
- If Hom_R(M, -) preserves (self-)coproducts then we call M (self-)small;
- Every finitely generated module is small;

Theorem (Rentschler'69; Colpi-Trlifaj'94; Eklof-Goodearl-Trlifaj'97)

- If R is noetherian or perfect then self-small \Rightarrow fig.
- ullet . There are non-figuranal modules: If R is a simple regular ring set \mathbb{R}

all small modules are fig: then R is right artinian

(□) (□) (□) (□) (□)

- Hom_{*R*}(*M*, -) preserves products;
- If Hom_R(M, -) preserves (self-)coproducts then we call M (self-)small;
- Every finitely generated module is small;

Theorem (Rentschler'69; Colpi-Trlifaj'94; Eklof-Goodearl-Trlifaj'97)

- If R is noetherian or perfect then self-small \Rightarrow f.g.;
- There are non-fig. small modules: If R is a simple regular ring s.t. all small modules are fig. then R is right artinian.

(□) (□) (□) (□) (□)

- $\operatorname{Hom}_{R}(M, -)$ preserves products;
- If Hom_R(M, -) preserves (self-)coproducts then we call M (self-)small;
- Every finitely generated module is small;

Theorem (Rentschler'69; Colpi-Trlifaj'94; Eklof-Goodearl-Trlifaj'97)

- If R is noetherian or perfect then self-small \Rightarrow f.g.;
- There are non-f.g. small modules: If *R* is a simple regular ring s.t. all small modules are f.g. then *R* is right artinian.

(□) (□) (□) (□) (□)

- $\operatorname{Hom}_{R}(M, -)$ preserves products;
- If Hom_R(M, -) preserves (self-)coproducts then we call M (self-)small;
- Every finitely generated module is small;

Theorem (Rentschler'69; Colpi-Trlifaj'94; Eklof-Goodearl-Trlifaj'97)

- If R is noetherian or perfect then self-small \Rightarrow f.g.;
- There are non-f.g. small modules: If *R* is a simple regular ring s.t. all small modules are f.g. then *R* is right artinian.

(□) (□) (□) (□) (□)
The case $F = \operatorname{Hom}_R(M, -)$

- $\operatorname{Hom}_{R}(M, -)$ preserves products;
- If Hom_R(M, -) preserves (self-)coproducts then we call M (self-)small;
- Every finitely generated module is small;

Theorem (Rentschler'69; Colpi-Trlifaj'94; Eklof-Goodearl-Trlifaj'97)

- If R is noetherian or perfect then self-small \Rightarrow f.g.;
- There are non-f.g. small modules: If R is a simple regular ring s.t. all small modules are f.g. then R is right artinian.

(□) (□) (□) (□) (□)

Let \mathcal{V} be a variety of "pointed" universal algebras: i.e. for every $A \in \mathcal{V}$ we have a fixed singleton subalgebra $0 = \{0\}$, called the point of A, such that the points are invariant under homomorphisms.

 If 𝔅 = (A_i)_{i∈I} is a family of algebras in 𝒱, we consider the restricted direct product:

 $\prod^{<\omega} A_i = \{(a_i) \in \prod A_i \mid a_i = 0 \text{ for almost all } i \in I\}.$

• There is a canonical map $\phi_A^{\widetilde{s}} : \prod^{<\omega} \operatorname{Hom}(A, A_i) \to \operatorname{Hom}(A, \prod^{<\omega} A_i),$ $(f_i) \mapsto [a \mapsto (f_i(a))].$

ullet A is called *small* if ϕ^{\Im}_A is bijective for all \Im

(□) (□) (□) (□) (□)

Let \mathcal{V} be a variety of "pointed" universal algebras: i.e. for every $A \in \mathcal{V}$ we have a fixed singleton subalgebra $0 = \{0\}$, called the point of A, such that the points are invariant under homomorphisms.

If 𝔅 = (A_i)_{i∈I} is a family of algebras in 𝒱, we consider the restricted direct product:

 $\prod^{<\omega} A_i = \{(a_i) \in \prod A_i \mid a_i = 0 \text{ for almost all } i \in I\}.$

• There is a canonical map $\phi_A^{\widetilde{\delta}} : \prod^{<\omega} \operatorname{Hom}(A, A_i) \to \operatorname{Hom}(A, \prod^{<\omega} A_i),$ $(f_i) \mapsto [a \mapsto (f_i(a))].$

ullet A is called *small* if ϕ^{\Im}_A is bijective for all \Im

(□) (□) (□) (□) (□)

Let \mathcal{V} be a variety of "pointed" universal algebras: i.e. for every $A \in \mathcal{V}$ we have a fixed singleton subalgebra $0 = \{0\}$, called the point of A, such that the points are invariant under homomorphisms.

If 𝔅 = (A_i)_{i∈I} is a family of algebras in 𝒱, we consider the restricted direct product:

 $\prod^{<\omega} A_i = \{(a_i) \in \prod A_i \mid a_i = 0 \text{ for almost all } i \in I\}.$

• There is a canonical map $\phi_A^{\mathfrak{F}} : \prod^{<\omega} \operatorname{Hom}(A, A_i) \to \operatorname{Hom}(A, \prod^{<\omega} A_i),$ $(f_i) \mapsto [a \mapsto (f_i(a))].$

ullet A is called small if $\phi^{\mathfrak{F}}_A$ is bijective for all \mathfrak{F}

(□) (□) (□) (□) (□)

Let \mathcal{V} be a variety of "pointed" universal algebras: i.e. for every $A \in \mathcal{V}$ we have a fixed singleton subalgebra $0 = \{0\}$, called the point of A, such that the points are invariant under homomorphisms.

If 𝔅 = (A_i)_{i∈I} is a family of algebras in 𝒱, we consider the restricted direct product:

 $\prod^{<\omega} A_i = \{(a_i) \in \prod A_i \mid a_i = 0 \text{ for almost all } i \in I\}.$

- There is a canonical map $\phi_A^{\mathfrak{F}} : \prod^{<\omega} \operatorname{Hom}(A, A_i) \to \operatorname{Hom}(A, \prod^{<\omega} A_i),$ $(f_i) \mapsto [a \mapsto (f_i(a))].$
- A is called small if $\phi^{\mathfrak{F}}_A$ is bijective for all \mathfrak{F}

(□) (□) (□) (□) (□)

Let \mathcal{V} be a variety of "pointed" universal algebras: i.e. for every $A \in \mathcal{V}$ we have a fixed singleton subalgebra $0 = \{0\}$, called the point of A, such that the points are invariant under homomorphisms.

If 𝔅 = (A_i)_{i∈I} is a family of algebras in 𝒱, we consider the restricted direct product:

 $\prod^{<\omega} A_i = \{(a_i) \in \prod A_i \mid a_i = 0 \text{ for almost all } i \in I\}.$

- There is a canonical map $\phi_{\mathcal{A}}^{\mathfrak{F}} : \prod^{<\omega} \operatorname{Hom}(\mathcal{A}, \mathcal{A}_i) \to \operatorname{Hom}(\mathcal{A}, \prod^{<\omega} \mathcal{A}_i),$ $(f_i) \mapsto [a \mapsto (f_i(a))].$
- A is called *small* if $\phi_A^{\mathfrak{F}}$ is bijective for all \mathfrak{F} .

Let \mathcal{V} be a variety of "pointed" universal algebras: i.e. for every $A \in \mathcal{V}$ we have a fixed singleton subalgebra $0 = \{0\}$, called the point of A, such that the points are invariant under homomorphisms.

If 𝔅 = (A_i)_{i∈I} is a family of algebras in 𝒱, we consider the restricted direct product:

 $\prod^{<\omega} A_i = \{(a_i) \in \prod A_i \mid a_i = 0 \text{ for almost all } i \in I\}.$

- There is a canonical map $\phi_A^{\mathfrak{F}} : \prod^{<\omega} \operatorname{Hom}(A, A_i) \to \operatorname{Hom}(A, \prod^{<\omega} A_i),$ $(f_i) \mapsto [a \mapsto (f_i(a))].$
- A is called *small* if $\phi_A^{\mathfrak{F}}$ is bijective for all \mathfrak{F} .

If $A \in \mathcal{V}$ and $K \leq A$ we denote by ρ_K the smallest congruence of A which contains $K \times 0$.

- The map Sub(A) → Cong(A), K → ρ_K, is a homomorphism of lattices.
- Conversely, if $\rho \in \operatorname{Cong}(A)$, $\rho \mapsto \rho(0) \in \operatorname{Sub}(A)$.
- $\rho_{\rho\langle 0\rangle} \subseteq \rho$ and $K \subseteq \rho_K \langle 0 \rangle$.

(□) (□) (□) (□) (□)

If $A \in \mathcal{V}$ and $K \leq A$ we denote by ρ_K the smallest congruence of A which contains $K \times 0$.

- The map Sub(A) → Cong(A), K → ρ_K, is a homomorphism of lattices.
- Conversely, if $\rho \in \operatorname{Cong}(A)$, $\rho \mapsto \rho \langle 0 \rangle \in \operatorname{Sub}(A)$.
- $\rho_{\rho\langle 0\rangle} \subseteq \rho$ and $K \subseteq \rho_K \langle 0 \rangle$.

If $A \in \mathcal{V}$ and $K \leq A$ we denote by ρ_K the smallest congruence of A which contains $K \times 0$.

- The map Sub(A) → Cong(A), K → ρ_K, is a homomorphism of lattices.
- Conversely, if $\rho \in \text{Cong}(A)$, $\rho \mapsto \rho \langle 0 \rangle \in \text{Sub}(A)$.

• $\rho_{\rho\langle 0\rangle} \subseteq \rho$ and $K \subseteq \rho_K \langle 0 \rangle$.

If $A \in \mathcal{V}$ and $K \leq A$ we denote by ρ_K the smallest congruence of A which contains $K \times 0$.

- The map Sub(A) → Cong(A), K → ρ_K, is a homomorphism of lattices.
- Conversely, if $\rho \in \text{Cong}(A)$, $\rho \mapsto \rho \langle 0 \rangle \in \text{Sub}(A)$.
- $\rho_{\rho\langle 0\rangle} \subseteq \rho$ and $K \subseteq \rho_K \langle 0 \rangle$.

(日) (周) (日) (日)

We have the following result:

Theorem

The following are equivalent for a pointed universal algebra $A \in \mathcal{V}$:

- A is small;
- If (ρ_n)_{n∈N} is a family of congruences such that ρ_n⟨0⟩ is an increasing chain of subalgebras such that ∪_{n∈N}ρ_n⟨0⟩ = A then there is n such that ρ_n⟨0⟩ = A;
- If $(\rho_n)_{n \in \mathbb{N}}$ is an increasing chain of congruences such that $\bigcup_{n \in \mathbb{N}} \rho_n = A \times A$ then there is *n* such that $\rho_n = A \times A$.

(D) (B) (E) (E)

We have the following result:

Theorem

The following are equivalent for a pointed universal algebra $A \in \mathcal{V}$:

- A is small;
- If (ρ_n)_{n∈ℕ} is a family of congruences such that ρ_n⟨0⟩ is an increasing chain of subalgebras such that ∪_{n∈ℕ}ρ_n⟨0⟩ = A then there is n such that ρ_n⟨0⟩ = A;
- If $(\rho_n)_{n \in \mathbb{N}}$ is an increasing chain of congruences such that $\bigcup_{n \in \mathbb{N}} \rho_n = A \times A$ then there is *n* such that $\rho_n = A \times A$.

(D) (B) (E) (E)

We have the following result:

Theorem

The following are equivalent for a pointed universal algebra $A \in \mathcal{V}$:

- A is small;
- If (ρ_n)_{n∈ℕ} is a family of congruences such that ρ_n⟨0⟩ is an increasing chain of subalgebras such that ∪_{n∈ℕ}ρ_n⟨0⟩ = A then there is n such that ρ_n⟨0⟩ = A;
- If $(\rho_n)_{n\in\mathbb{N}}$ is an increasing chain of congruences such that $\bigcup_{n\in\mathbb{N}}\rho_n = A \times A$ then there is *n* such that $\rho_n = A \times A$.

We have the following result:

Theorem

The following are equivalent for a pointed universal algebra $A \in \mathcal{V}$:

- A is small;
- If (ρ_n)_{n∈ℕ} is a family of congruences such that ρ_n⟨0⟩ is an increasing chain of subalgebras such that ∪_{n∈ℕ}ρ_n⟨0⟩ = A then there is n such that ρ_n⟨0⟩ = A;
- If $(\rho_n)_{n\in\mathbb{N}}$ is an increasing chain of congruences such that $\bigcup_{n\in\mathbb{N}}\rho_n = A \times A$ then there is *n* such that $\rho_n = A \times A$.

Let G be a group. We consider the category of (left) G-sets, i.e. sets X together with a left action $G \times X \to X$ which is compatible with the monoid structure of G:

- (gh)x = g(hx) and 1x = x for all $g, h \in G$ and $x \in X$.
- If we look at G as a G set then the congruences of G are the left congruences of the monoid G. There is a lattice isomorphism Cong(_GG) ≅ Sub(G) (G. Bergman).

Let G be a group. We consider the category of (left) G-sets, i.e. sets X together with a left action $G \times X \to X$ which is compatible with the monoid structure of G:

- (gh)x = g(hx) and 1x = x for all $g, h \in G$ and $x \in X$.
- If we look at G as a G set then the congruences of G are the left congruences of the monoid G. There is a lattice isomorphism Cong(GG) ≅ Sub(G) (G. Bergman).

(日) (周) (日) (日)

Let G be a group. We consider the category of (left) G-sets, i.e. sets X together with a left action $G \times X \to X$ which is compatible with the monoid structure of G:

- (gh)x = g(hx) and 1x = x for all $g, h \in G$ and $x \in X$.
- If we look at G as a G set then the congruences of G are the left congruences of the monoid G. There is a lattice isomorphism Cong(_GG) ≅ Sub(G) (G. Bergman).

(日) (周) (日) (日)

- The groups with the property: "If (H_n)_{n∈ℕ} is an increasing chain of subgroups such that ∪_{n∈ℕ}H_n = G then there is n such that H_n = A" are studied by many authors (cf. G. Bergman, Bull. LMS, 2006).
- These groups are characterized by a commuting property of the functor X → X^G = {x ∈ X | gx = x} with respect direct limits (G. Bergman, J. Alg., 2005).

Open question

 Can we characterize this property by a commuting property of a Hom-functor?

(□) (□) (□) (□) (□)

- The groups with the property: "If (H_n)_{n∈ℕ} is an increasing chain of subgroups such that ∪_{n∈ℕ}H_n = G then there is n such that H_n = A" are studied by many authors (cf. G. Bergman, Bull. LMS, 2006).
- These groups are characterized by a commuting property of the functor X → X^G = {x ∈ X | gx = x} with respect direct limits (G. Bergman, J. Alg., 2005).

Open question

 Can we characterize this property by a commuting property of a Hom-functor?

(D) (D) (D) (D)

- The groups with the property: "If (H_n)_{n∈ℕ} is an increasing chain of subgroups such that ∪_{n∈ℕ}H_n = G then there is n such that H_n = A" are studied by many authors (cf. G. Bergman, Bull. LMS, 2006).
- These groups are characterized by a commuting property of the functor X → X^G = {x ∈ X | gx = x} with respect direct limits (G. Bergman, J. Alg., 2005).

Open question

• Can we characterize this property by a commuting property of a Hom-functor?

logo

(□) (□) (□) (□) (□)

- The groups with the property: "If (H_n)_{n∈ℕ} is an increasing chain of subgroups such that ∪_{n∈ℕ}H_n = G then there is n such that H_n = A" are studied by many authors (cf. G. Bergman, Bull. LMS, 2006).
- These groups are characterized by a commuting property of the functor X → X^G = {x ∈ X | gx = x} with respect direct limits (G. Bergman, J. Alg., 2005).

Open question

• Can we characterize this property by a commuting property of a Hom-functor?

logo

(□) (□) (□) (□) (□)