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Verbal Congruences

A an algebra, Σ a set of equations

λA
Σ = CgA

{(
s(a1, . . . ,an), t(a1, . . . ,an)

)
:

(s ≈ t) ∈ Σ, a1, . . . ,an ∈ A
}

λA
Σ is the smallest congruence θ such that A/θ � Σ

λA
Σ is the verbal congruence induced by Σ
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Alternate definition
V a variety (same similarity type as A)
ΛA
V = { θ ∈ Con(A) : A/θ ∈ V }
λA
V =

⋂
ΛA
V

Easy to see:
• A/λV ∈ V
• If V = Mod(Σ) then λV = λΣ

Theorem
θ is verbal on A iff

A/ψ ∈ Var(A/θ) =⇒ ψ ≥ θ.
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Examples from Group Theory

Suppose Σ = {xy ≈ yx}

On any group A, λA
Σ = Cg { (ab,ba) : a,b ∈ A }

corresponds to A′ = Nml { [a,b] : a,b ∈ A } = [A,A]

A/A′ is the largest Abelian homomorphic image of A.
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Θn = {xn ≈ e}

λA
Θn

corresponds to Nml {an : a ∈ A }

A/λΘn is the largest homomorphic image of A of
exponent n.

Note: λΣ ≤ λΘ2 since every group of exponent 2 is Abelian
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Fully Invariant Congruences

End(A) = endomorphism monoid of A

A congruence θ is fully invariant if
∀f ∈ End(A) (a,b) ∈ θ =⇒

(
f (a), f (b)

)
∈ θ

Theorem
Every verbal congruence is fully invariant

Converse is false
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Example: Let p be prime,
A the Abelian group 〈a,b | pa = p2b = 0〉 ∼= Zp ⊕ Zp2.

S = { x ∈ A : px = 0 } ) T = {px : x ∈ A }

S is fully invariant but
A/S ∈ Var(A/T ) so S not verbal
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General Question

Find conditions under which

fully invariant =⇒ verbal

for a congruence
for an algebra
for a variety.

An algebra is called verbose if every fully invariant
congruence is verbal.
A variety is verbose if every member is verbose.
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The Monolith

Observation: The monolith of a finite s.i. is fully invariant

Is the monolith of a finite s.i. algebra verbal?

Let A be a finite s.i. with monolith µ.
µ is verbal iff A /∈ Var(A/µ)
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Theorem (Kovács and Newman, 1966)
The monolith of a finite s.i. group is verbal

Theorem (Kiss, 1992)
Let S be a finite set of finite s.i. algebras such that
HS(S)si ⊆ S. If V = Var(S) is congruence-modular then
for every A ∈ Vsi, A/µA ∈ Var {D/µD : D ∈ S }.
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Theorem
In a congruence-modular variety, the monolith of a finite
s.i. algebra is verbal.

This fails for infinite algebras
Every congruence on the group Z(p∞) is fully invariant.

Sub
(
Z(p∞)

)
=
〈

0
〉
⊂
〈1

p

〉
⊂
〈 1

p2

〉
⊂ · · · ⊂

〈
1
〉

Only the first and the last are verbal since
Z(p∞)/

〈
1
pk

〉 ∼= Z(p∞)
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Example (Bergman-McKenzie)
There is a 3-element algebra A, generating an
equationally complete variety, V.
V contains a 5-element algebra, B, that is s.i. but not
simple. Thus

B ∈ V = Var(B/µB)

So µB is not verbal.
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Theorem
Every free algebra is verbose.

In fact
Every projective algebra is verbose.
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Verbose Varieties

Theorem
A variety of Abelian groups is verbose if and only if it is of
square-free exponent.
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Lemma
Let r : A→ B be a retraction,
s : A→ B any homomorphism,
θ fully invariant on A.
Then θ ⊆ ker(r) =⇒ θ ⊆ ker(s).

Bj

��

A
r

??

s
��

B

id

OO
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Theorem
Let V be finitely generated, congruence-distributive and
Vsi ⊆ Vproj. Then V is verbose.

Example
Which small varieties of lattices are verbose?

1

D

M3

M3,3M4

M5

N5

N5 ∨M3

N5 ∨M4
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Var(M3,3), is not verbose

Fully invariant congruence that is not verbose
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Theorem
Suppose V contains exactly one s.i. algebra, P, which is
finite. Then V is verbose.

Corollary
If V is finitely generated, congruence-modular and
minimal, then V is verbose.
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Theorem
Let A be a finite simple algebra generating a
congruence-modular, Abelian variety, V. Then V is
verbose.
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Theorem
Every 2-element algebra generates a verbose variety
except 〈2, r〉, 〈2, r ,0〉, 〈2, r ,1〉, and 〈2, r ,0,1〉, where
r(x) = 1− x.
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Theorem
Let V be a finitely generated discriminator variety. Then
Vfin is verbose.

Proof.
A ∈ Vfin =⇒ A ∼= A1 × · · · × An all simple.
ηi = ker(A� Ai).
Suppose θ ∈ Con(A) not verbal. Then

∃i , j θ ≤ ηi , θ � ηj , Aj
h
� Ai

Define e(x) = (x1, . . . , xi−1,h(xj), xi+1, . . . , xn).
Then e ∈ End(A) but
(a,b) ∈ θ − ηj =⇒

(
e(a),e(b)

)
/∈ θ.
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Can this argument be extended to infinite algebras?

Need a representation that is “almost as good” as direct
product

Answer: NU-duality
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Assume V = Var(M), M subalgebra-primal

A ∈ V =⇒ A 〈X ,T ,S〉, T a Boolean Topology on X .

Instead of constructing endomorphism A e−→ A
build continuous map X ê←− X
Thus V is verbose

Should be true for finitely generated discriminator variety.

In fact should be true if Var(M) = QVar(M) is semisimple
arithmetical.
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