Fully Invariant and Verbal Congruences

Clifford Bergman (Joint work with Joel Berman)

Iowa State University

June 2012

Verbal Congruences

A an algebra, Σ a set of equations

$$\lambda_{\Sigma}^{\mathbf{A}} = \mathbf{Cg}^{\mathbf{A}} \Big\{ \big(s(a_1, \dots, a_n), t(a_1, \dots, a_n) \big) : \\ (s \approx t) \in \Sigma, a_1, \dots, a_n \in \mathbf{A} \Big\}$$

 $\lambda_{\Sigma}^{\mathbf{A}}$ is the smallest congruence θ such that $\mathbf{A}/\theta \models \Sigma$ $\lambda_{\Sigma}^{\mathbf{A}}$ is the *verbal congruence induced by* Σ

Alternate definition

 $\begin{array}{l} \mathcal{V} \text{ a variety (same similarity type as A)} \\ \Lambda^{\mathbf{A}}_{\mathcal{V}} = \{ \, \theta \in \operatorname{Con}(\mathbf{A}) : \mathbf{A}/\theta \in \mathcal{V} \, \} \\ \lambda^{\mathbf{A}}_{\mathcal{V}} = \bigcap \Lambda^{\mathbf{A}}_{\mathcal{V}} \end{array}$

Easy to see:

- $\mathbf{A}/\lambda_{\mathcal{V}} \in \mathcal{V}$
- If $\mathcal{V} = Mod(\Sigma)$ then $\lambda_{\mathcal{V}} = \lambda_{\Sigma}$

Theorem

 θ is verbal on **A** iff

$$\mathbf{A}/\psi \in \mathsf{Var}(\mathbf{A}/\theta) \implies \psi \ge \theta.$$

Examples from Group Theory

Suppose
$$\Sigma = \{xy \approx yx\}$$

On any group
$$\mathbf{A}$$
, $\lambda_{\Sigma}^{\mathbf{A}} = \mathsf{Cg} \{ (ab, ba) : a, b \in A \}$
corresponds to $\mathbf{A}' = \mathsf{Nml} \{ [a, b] : a, b \in A \} = [A, A]$

 \mathbf{A}/\mathbf{A}' is the largest Abelian homomorphic image of \mathbf{A} .

 $\Theta_n = \{ \boldsymbol{x}^n \approx \boldsymbol{e} \}$

 $\lambda_{\Theta_n}^{\mathbf{A}}$ corresponds to Nml { $a^n : a \in A$ }

 $\mathbf{A}/\lambda_{\Theta_n}$ is the largest homomorphic image of \mathbf{A} of exponent *n*.

Note: $\lambda_{\Sigma} \leq \lambda_{\Theta_2}$ since every group of exponent 2 is Abelian

Fully Invariant Congruences

$End(\mathbf{A}) = endomorphism monoid of \mathbf{A}$

A congruence θ is *fully invariant* if $\forall f \in \text{End}(\mathbf{A}) \quad (a, b) \in \theta \implies (f(a), f(b)) \in \theta$

Theorem

Every verbal congruence is fully invariant

Converse is false

Example: Let *p* be prime, **A** the Abelian group $\langle a, b \mid pa = p^2b = 0 \rangle \cong \mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$. $S = \{ x \in A : px = 0 \} \supseteq T = \{ px : x \in A \}$ *S* is fully invariant but

 $A/S \in Var(A/T)$ so S not verbal

General Question

Find conditions under which

fully invariant \implies verbal

- for a congruence
- for an algebra
- for a variety.

An algebra is called *verbose* if every fully invariant congruence is verbal. A variety is *verbose* if every member is verbose.

The Monolith

Observation: The monolith of a finite s.i. is fully invariant

Is the monolith of a finite s.i. algebra verbal?

Let **A** be a finite s.i. with monolith μ . μ is verbal iff **A** \notin Var(**A**/ μ)

Theorem (Kovács and Newman, 1966)

The monolith of a finite s.i. group is verbal

Theorem (Kiss, 1992)

Let S be a finite set of finite s.i. algebras such that $HS(S)_{si} \subseteq S$. If $\mathcal{V} = Var(S)$ is congruence-modular then for every $\mathbf{A} \in \mathcal{V}_{si}$, $\mathbf{A}/\mu_{\mathbf{A}} \in Var \{ \mathbf{D}/\mu_{\mathbf{D}} : \mathbf{D} \in S \}$.

In a congruence-modular variety, the monolith of a finite *s.i.* algebra is verbal.

This fails for infinite algebras

Every congruence on the group $\mathbb{Z}(p^{\infty})$ is fully invariant.

$$\mathsf{Sub}ig(\mathbb{Z}(p^\infty)ig) = \Big\langle 0 \Big\rangle \subset \Big\langle rac{1}{p} \Big\rangle \subset \Big\langle rac{1}{p^2} \Big\rangle \subset \cdots \subset \Big\langle 1 \Big
angle$$

Only the first and the last are verbal since $\mathbb{Z}(p^{\infty})/\langle \frac{1}{p^{k}} \rangle \cong \mathbb{Z}(p^{\infty})$

Example (Bergman-McKenzie)

There is a 3-element algebra **A**, generating an equationally complete variety, \mathcal{V} . \mathcal{V} contains a 5-element algebra, **B**, that is s.i. but not simple. Thus

$$\mathbf{B} \in \mathcal{V} = \mathsf{Var}(\mathbf{B}/\mu_{\mathbf{B}})$$

So $\mu_{\mathbf{B}}$ is not verbal.

Every free algebra is verbose.

In fact

Every projective algebra is verbose.

Verbose Algebras

Verbose Varieties

Arithmetical Varieties

Verbose Varieties

Theorem

A variety of Abelian groups is verbose if and only if it is of square-free exponent.

Lemma

Let $r : \mathbf{A} \to \mathbf{B}$ be a retraction, $s : \mathbf{A} \to \mathbf{B}$ any homomorphism, θ fully invariant on \mathbf{A} . Then $\theta \subseteq \ker(r) \implies \theta \subseteq \ker(s)$.

Let \mathcal{V} be finitely generated, congruence-distributive and $\mathcal{V}_{si} \subseteq \mathcal{V}_{proj}$. Then \mathcal{V} is verbose.

Example

Which small varieties of lattices are verbose?

$Var(\mathbf{M}_{3,3})$, is not verbose

Fully invariant congruence that is not verbose

Suppose V contains exactly one s.i. algebra, **P**, which is finite. Then V is verbose.

Corollary

If \mathcal{V} is finitely generated, congruence-modular and minimal, then \mathcal{V} is verbose.

Let **A** be a finite simple algebra generating a congruence-modular, Abelian variety, V. Then V is verbose.

Every 2-element algebra generates a verbose variety except $\langle 2, r \rangle$, $\langle 2, r, 0 \rangle$, $\langle 2, r, 1 \rangle$, and $\langle 2, r, 0, 1 \rangle$, where r(x) = 1 - x.

Let \mathcal{V} be a finitely generated discriminator variety. Then \mathcal{V}_{fin} is verbose.

Proof.

$$\begin{array}{l} \mathbf{A} \in \mathcal{V}_{\mathsf{fin}} \implies \mathbf{A} \cong \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \text{ all simple.} \\ \eta_i = \mathsf{ker}(\mathbf{A} \twoheadrightarrow \mathbf{A}_i). \\ \\ \text{Suppose } \theta \in \mathsf{Con}(\mathbf{A}) \text{ not verbal. Then} \\ \\ \exists i, j \ \theta \leq \eta_i, \ \theta \nleq \eta_j, \ \mathbf{A}_j \xrightarrow{h} \mathbf{A}_i \\ \\ \text{Define } \mathbf{e}(\mathbf{x}) = (x_1, \dots, x_{i-1}, h(x_j), x_{i+1}, \dots, x_n). \\ \\ \\ \text{Then } \mathbf{e} \in \mathsf{End}(\mathbf{A}) \text{ but} \\ (\mathbf{a}, \mathbf{b}) \in \theta - \eta_j \implies (\mathbf{e}(\mathbf{a}), \mathbf{e}(\mathbf{b})) \notin \theta. \end{array}$$

Can this argument be extended to infinite algebras?

Need a representation that is "almost as good" as direct product

Answer: NU-duality

Assume $\mathcal{V} = Var(\mathbf{M})$, **M** subalgebra-primal

 $\mathbf{A} \in \mathcal{V} \implies \mathbf{A} \rightsquigarrow \langle X, T, S \rangle, T$ a Boolean Topology on X.

Instead of constructing endomorphism $\mathbf{A} \xrightarrow{e} \mathbf{A}$ build continuous map $X \xleftarrow{\hat{e}} X$ Thus \mathcal{V} is verbose

Should be true for finitely generated discriminator variety. In fact should be true if $Var(\mathbf{M}) = QVar(\mathbf{M})$ is semisimple arithmetical.