The Valeriote Conjecture

Libor Barto

McMaster University and Charles University in Prague

Conference on Universal Algebra and Lattice Theory, Szeged, Hungary, June 25, 2012

Celebrating the 80th birthday of Béla Csákány

Conjecture (the Valeriote conjecture, or the Edinburgh conj.)

If a finite algebra A is finitely related and HSP(A) is congruence modular, then A has few subpowers.

Conjecture (the Valeriote conjecture, or the Edinburgh conj.)

If a finite algebra A is finitely related and HSP(A) is congruence modular, then A has few subpowers.

Theorem (Baaarto 12)

Matt was right.

Conjecture (the Valeriote conjecture, or the Edinburgh conj.)

If a finite algebra A is finitely related and HSP(A) is congruence modular, then A has few subpowers.

Theorem (Baaarto 12)

Matt was right.

- (1) Several relevant classes of algebras
- (2) Finitely related algebras
- ► (3) Collapses of Maltsev conditions, the Valeriote conjecture
- (4) Consequences
- ► (5) Proof

(1) Several classes of algebras

CP,CD,CM,FS,NU

$$\label{eq:alpha} \begin{split} \textbf{A} \in \mathsf{CP}/\mathsf{CD}/\mathsf{CM} \text{ if } \\ \mathsf{HSP}(\textbf{A}) \text{ is congruence permutable/distributive/modular} \end{split}$$

 $\textbf{A} \in \mathsf{NU} \text{ if }$

A has a near unanimity term... $f(x, \ldots, x, y, x, \ldots, x) \approx x$

 $\textbf{A} \in \mathsf{FS} \text{ if }$

A has few subpowers

A has few subpowers if $|R \leq \mathbf{A}^n| < 2^{p(n)}$, where p is a polynomial

A has few subpowers if $|R \leq \mathbf{A}^n| < 2^{p(n)}$, where p is a polynomial

 \Leftrightarrow every $R \leq \mathbf{A}^n$ has a generating set of size $\leq q(n)$, where q is a polynomial

A has few subpowers if $|R \leq \mathbf{A}^n| < 2^{p(n)}$, where p is a polynomial

 \Leftrightarrow every $R \leq \mathbf{A}^n$ has a generating set of size $\leq q(n)$, where q is a polynomial

 $\Leftrightarrow \textbf{A} \text{ satisfies a Maltsev condition of the form}$

 $f(x,?,?,\ldots,?) \approx y$ $f(?,x,?,\ldots,?) \approx y$ where each $? \in \{x,y\}$ \ldots $f(?,\ldots,?,x) \approx y$

A has few subpowers if $|R \leq \mathbf{A}^n| < 2^{p(n)}$, where p is a polynomial

 \Leftrightarrow every $R \leq \mathbf{A}^n$ has a generating set of size $\leq q(n)$, where q is a polynomial

 $\Leftrightarrow \textbf{A} \text{ satisfies a Maltsev condition of the form}$

 $f(x,?,?,\ldots,?) \approx y$ $f(?,x,?,\ldots,?) \approx y$ where each $? \in \{x,y\}$ \ldots $f(?,\ldots,?,x) \approx y$

Facts: $CP \Rightarrow FS \leftarrow NU$.

A has few subpowers if $|R \leq \mathbf{A}^n| < 2^{p(n)}$, where p is a polynomial

 \Leftrightarrow every $R \leq \mathbf{A}^n$ has a generating set of size $\leq q(n)$, where q is a polynomial

 $\Leftrightarrow \textbf{A} \text{ satisfies a Maltsev condition of the form}$

 $f(x,?,?,\ldots,?) \approx y$ $f(?,x,?,\ldots,?) \approx y$ where each $? \in \{x,y\}$ \ldots $f(?,\ldots,?,x) \approx y$

Facts: $CP \Rightarrow FS \leftarrow NU$. $FS \Rightarrow CM$. (BIIMVW)

A has few subpowers if $|R \leq \mathbf{A}^n| < 2^{p(n)}$, where p is a polynomial

 \Leftrightarrow every $R \leq \mathbf{A}^n$ has a generating set of size $\leq q(n)$, where q is a polynomial

 $\Leftrightarrow \textbf{A} \text{ satisfies a Maltsev condition of the form}$

 $f(x,?,?,\ldots,?) \approx y$ $f(?,x,?,\ldots,?) \approx y$ where each $? \in \{x,y\}$ \ldots $f(?,\ldots,?,x) \approx y$

Facts: $CP \Rightarrow FS \Leftarrow NU$. $FS \Rightarrow CM$. (BIIMVW) FS + CD \Rightarrow NU (Markovic, McKenzie'08)

(2) Finitely related algebras

\mathbb{A} ... relational structure on A

 $\mathsf{Pol}(\mathbb{A})$. . . clone of all operations compatible with \mathbb{A}

Theorem (Geiger, Bodnarčuk, Kalužnin, Kotov, Romov'68)

 \forall finite algebra **A** $\exists \mathbb{A}$ such that $Pol(\mathbb{A}) = Clo(\mathbf{A})$.

\mathbb{A} . . . relational structure on A

 $\mathsf{Pol}(\mathbb{A})$... clone of all operations compatible with \mathbb{A}

Theorem (Geiger, Bodnarčuk, Kalužnin, Kotov, Romov'68)

 \forall finite algebra **A** $\exists \mathbb{A}$ such that $Pol(\mathbb{A}) = Clo(\mathbf{A})$.

Definition

Finite **A** is finitely related, if $\exists \mathbb{A}$ with finitely many relations such that $Pol(\mathbb{A}) = Clo(\mathbf{A})$. (= $Clo(\mathbf{A})$ is co-compact)

\mathbb{A} . . . relational structure on A

 $\mathsf{Pol}(\mathbb{A})$. . . clone of all operations compatible with \mathbb{A}

Theorem (Geiger, Bodnarčuk, Kalužnin, Kotov, Romov'68)

 \forall finite algebra **A** $\exists \mathbb{A}$ such that $Pol(\mathbb{A}) = Clo(\mathbf{A})$.

Definition

Finite **A** is finitely related, if $\exists \mathbb{A}$ with finitely many relations such that $Pol(\mathbb{A}) = Clo(\mathbf{A})$. (= $Clo(\mathbf{A})$ is co-compact)

Examples:

• Most clones on 2 (exceptions: $(\{0,1\},\rightarrow),\ldots)$

\mathbb{A} ... relational structure on A

 $\mathsf{Pol}(\mathbb{A})$. . . clone of all operations compatible with \mathbb{A}

Theorem (Geiger, Bodnarčuk, Kalužnin, Kotov, Romov'68)

 \forall finite algebra **A** $\exists \mathbb{A}$ such that $Pol(\mathbb{A}) = Clo(\mathbf{A})$.

Definition

Finite **A** is finitely related, if $\exists \mathbb{A}$ with finitely many relations such that $Pol(\mathbb{A}) = Clo(\mathbf{A})$. (= $Clo(\mathbf{A})$ is co-compact)

Examples:

- Most clones on 2 (exceptions: $(\{0,1\},\rightarrow),\ldots)$
- Algebras with a near unanimity term (by Baker-Pixley)

\mathbb{A} ... relational structure on A

 $\mathsf{Pol}(\mathbb{A})$. . . clone of all operations compatible with \mathbb{A}

Theorem (Geiger, Bodnarčuk, Kalužnin, Kotov, Romov'68)

 \forall finite algebra **A** $\exists \mathbb{A}$ such that $Pol(\mathbb{A}) = Clo(\mathbf{A})$.

Definition

Finite **A** is finitely related, if $\exists \mathbb{A}$ with finitely many relations such that $Pol(\mathbb{A}) = Clo(\mathbf{A})$. (= $Clo(\mathbf{A})$ is co-compact)

Examples:

- Most clones on 2 (exceptions: $(\{0,1\},\rightarrow),\ldots)$
- Algebras with a near unanimity term (by Baker-Pixley)
- Finite relatedness not preserved by H, S, or P Davey, Jackson, Pikethly, Szabó

$\mathsf{FS} \Rightarrow \mathsf{finitely related}$

Theorem (Aichinger, Mayr, McKenzie 09)

Every finite algebra with few subpowers is finitely related.

Theorem (Aichinger, Mayr, McKenzie 09)

Every finite algebra with few subpowers is finitely related.

Corollary: On a finite set, there is countably many clones with few subpowers

 (in particular, there is countably many Maltsev clones. This was open even for expansions of Z₈.)

Theorem (Aichinger, Mayr, McKenzie 09)

Every finite algebra with few subpowers is finitely related.

- Corollary: On a finite set, there is countably many clones with few subpowers (in particular, there is countably many Maltsev clones. This was open even for expansions of \mathbb{Z}_8 .)
- **Bonus:** idempotent $\mathbf{A} \in FS$ iff every idempotent expansion is finitely related

(3) Collapses of Maltsev conditions

Interesting collapses of Maltsev conditions for finite algebras:

Interesting collapses of Maltsev conditions for finite algebras:

- ► any nontrivial idempotent Maltsev condition (Taylor term) ⇒ weak near unanimity term (Maróti, McKenzie 06) f(y, x,...,x) ≈ f(x, y, x,...) ≈ ··· ≈ f(x,...,x,y)
- ► Taylor term \Rightarrow cyclic term (Barto, Kozik 09) $f(x_1, \ldots, x_n) \approx f(x_2, \ldots, x_n, x_1)$
- ► Taylor term ⇒ Siggers term (Siggers; Kearnes, Marković, McKenzie 09) f(x, y, z, x) ≈ f(y, z, x, z)
- ▶ ...
- ► Jónsson terms ⇒ directed Jónsson terms (Kozik)
- ► Gumm terms ⇒ directed Gumm terms (Kozik)

Collapses for finitely related algebras

- ► CD ⇒ NU (Barto)
 - ► This is the Zádori conjecture

Collapses for finitely related algebras

- ► $CD \Rightarrow NU$ (Barto)
 - This is the Zádori conjecture
 - For posets conjectured in McKenzie 90, Davey 90, proved in Larose, Zádori'97
 - ► For reflexive graphs proved in Larose, Loten, Zádori 05

- ► $CD \Rightarrow NU$ (Barto)
 - This is the Zádori conjecture
 - For posets conjectured in McKenzie 90, Davey 90, proved in Larose, Zádori'97
 - ► For reflexive graphs proved in Larose, Loten, Zádori 05
 - Consequence: Pol(A) ∈ NU is decidable (algebraic version by Maróti 09)

- ► $CD \Rightarrow NU$ (Barto)
 - This is the Zádori conjecture
 - For posets conjectured in McKenzie 90, Davey 90, proved in Larose, Zádori'97
 - ► For reflexive graphs proved in Larose, Loten, Zádori 05
 - Consequence: Pol(A) ∈ NU is decidable (algebraic version by Maróti 09)
 - Consequence independently proved by D. Zhuk. His technique essential for our result

- ► $CD \Rightarrow NU$ (Barto)
 - This is the Zádori conjecture
 - For posets conjectured in McKenzie 90, Davey 90, proved in Larose, Zádori'97
 - ► For reflexive graphs proved in Larose, Loten, Zádori 05
 - Consequence: Pol(A) ∈ NU is decidable (algebraic version by Maróti 09)
 - Consequence independently proved by D. Zhuk. His technique essential for our result
- $CM \Rightarrow FS$ (Barto)
 - This is the Valeriote conjecture
 (= the Edinburgh conjecture)
 - Generalizes the Zádori conjecture

- ► $CD \Rightarrow NU$ (Barto)
 - This is the Zádori conjecture
 - For posets conjectured in McKenzie 90, Davey 90, proved in Larose, Zádori'97
 - ► For reflexive graphs proved in Larose, Loten, Zádori 05
 - Consequence: Pol(A) ∈ NU is decidable (algebraic version by Maróti 09)
 - Consequence independently proved by D. Zhuk. His technique essential for our result
- $CM \Rightarrow FS$ (Barto)
 - This is the Valeriote conjecture
 (= the Edinburgh conjecture)
 - Generalizes the Zádori conjecture
 - Proved Maróti, Zádori'12 for reflexive digraphs

Deciding FS

Corollary

 $\mathsf{Pol}(\mathbb{A}) \in FS$ is decidable

Deciding FS

Corollary

 $\mathsf{Pol}(\mathbb{A}) \in FS$ is decidable

• Open problem: What is the complexity of this question?
Corollary

- **Open problem:** What is the complexity of this question?
- ▶ Polynomial algorithms for deciding $Pol(A) \in NU$ for
 - posets Kun, Szabó 01
 - reflexive graphs Larose, Loten, Zádori 05
 - reflexive digraphs Maróti, Zádori 12

Corollary

- Open problem: What is the complexity of this question?
- ▶ Polynomial algorithms for deciding $Pol(A) \in NU$ for
 - posets Kun, Szabó 01
 - reflexive graphs Larose, Loten, Zádori 05
 - reflexive digraphs Maróti, Zádori 12
- ▶ Polynomial algorithm for deciding $Pol(A) \in FS$ for
 - reflexive digraphs Maróti, Zádori 12

Corollary

- Open problem: What is the complexity of this question?
- ▶ Polynomial algorithms for deciding $Pol(A) \in NU$ for
 - posets Kun, Szabó 01
 - reflexive graphs Larose, Loten, Zádori 05
 - reflexive digraphs Maróti, Zádori 12
- ▶ Polynomial algorithm for deciding $Pol(A) \in FS$ for
 - reflexive digraphs Maróti, Zádori 12
- Algebraic version is decidable by Horowitz'08 for idempotent algebras and fixed |A| it is in P Marković, Maróti, McKenzie

Corollary

- Open problem: What is the complexity of this question?
- ▶ Polynomial algorithms for deciding $Pol(A) \in NU$ for
 - posets Kun, Szabó 01
 - reflexive graphs Larose, Loten, Zádori 05
 - reflexive digraphs Maróti, Zádori 12
- ▶ Polynomial algorithm for deciding $Pol(A) \in FS$ for
 - reflexive digraphs Maróti, Zádori 12
- Algebraic version is decidable by Horowitz'08 for idempotent algebras and fixed |A| it is in P Marković, Maróti, McKenzie
- More on algebraic problems of this sort in Freese, Valeriote 09

Corollary

If A has finitely many relations and $Pol(A) \in CM$ then CSP(A) is in P.

Open problem (!): What if \mathbb{A} has infinitely many relations?

pp-formula comparison

Fix \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$

pp-formula comparison

Fix \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$

INPUT: Two positive primitive formulas $(\exists, \land, =) \alpha, \beta$ over \mathbb{A}

INPUT: Two positive primitive formulas $(\exists, \land, =) \alpha, \beta$ over \mathbb{A} **PPEQ(A):** Do they define the same relation?

INPUT: Two positive primitive formulas $(\exists, \land, =) \alpha, \beta$ over \mathbb{A} **PPEQ(A):** Do they define the same relation? **PPCON(A):** Is the relation defined by α contained in the relation defined by β ?

INPUT: Two positive primitive formulas $(\exists, \land, =) \alpha, \beta$ over \mathbb{A} **PPEQ(A):** Do they define the same relation? **PPCON(A):** Is the relation defined by α contained in the relation defined by β ?

INPUT: Two positive primitive formulas $(\exists, \land, =) \alpha, \beta$ over \mathbb{A} **PPEQ(A):** Do they define the same relation? **PPCON(A):** Is the relation defined by α contained in the relation defined by β ?

Bova, Chen, Valeriote 11: P / coNP-complete / Π_2^p -complete trichotomy **modulo** the Valeriote conjecture and the CSP dichotomy conjecture

• A not Taylor $\Rightarrow \Pi_2^p$ -complete

INPUT: Two positive primitive formulas $(\exists, \land, =) \alpha, \beta$ over \mathbb{A} **PPEQ(A):** Do they define the same relation? **PPCON(A):** Is the relation defined by α contained in the relation defined by β ?

- **A** not Taylor $\Rightarrow \Pi_2^p$ -complete
- A Taylor and the CSP dichotomy holds \Rightarrow in coNP

INPUT: Two positive primitive formulas $(\exists, \land, =) \alpha, \beta$ over \mathbb{A} **PPEQ(A):** Do they define the same relation? **PPCON(A):** Is the relation defined by α contained in the relation defined by β ?

- **A** not Taylor $\Rightarrow \Pi_2^p$ -complete
- A Taylor and the CSP dichotomy holds \Rightarrow in coNP
- A not $CM \Rightarrow coNP$ -complete

INPUT: Two positive primitive formulas $(\exists, \land, =) \alpha, \beta$ over \mathbb{A} **PPEQ(A):** Do they define the same relation? **PPCON(A):** Is the relation defined by α contained in the relation defined by β ?

- **A** not Taylor $\Rightarrow \Pi_2^p$ -complete
- A Taylor and the CSP dichotomy holds \Rightarrow in coNP
- A not CM \Rightarrow coNP-complete
- A FS \Rightarrow P

INPUT: Two positive primitive formulas $(\exists, \land, =) \alpha, \beta$ over \mathbb{A} **PPEQ(A):** Do they define the same relation? **PPCON(A):** Is the relation defined by α contained in the relation defined by β ?

- **A** not Taylor $\Rightarrow \Pi_2^p$ -complete
- A Taylor and the CSP dichotomy holds \Rightarrow in coNP
- A not CM \Rightarrow coNP-complete
- A FS \Rightarrow P
- ► Corollary: now the P/coNP-complete part is done

(5) Proof

Audience

▶ We have \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$

- We have \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$
- ▶ Want to show $\mathbf{A} \in CM$ (resp. CD) $\Rightarrow \mathbf{A} \in FS$ (resp. NU)

- We have \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$
- ▶ Want to show $\mathbf{A} \in CM$ (resp. CD) $\Rightarrow \mathbf{A} \in FS$ (resp. NU)
- \blacktriangleright WLOG \mathbbm{A} contains only unary and binary relations

- We have \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$
- ▶ Want to show $\mathbf{A} \in CM$ (resp. CD) $\Rightarrow \mathbf{A} \in FS$ (resp. NU)
- \blacktriangleright WLOG \mathbbm{A} contains only unary and binary relations
- Assume $\mathbf{A} \in CD$ and $\mathbf{A} \notin NU$

- We have \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$
- ▶ Want to show $\mathbf{A} \in CM$ (resp. CD) $\Rightarrow \mathbf{A} \in FS$ (resp. NU)
- \blacktriangleright WLOG \mathbbm{A} contains only unary and binary relations

• Assume $\mathbf{A} \in CD$ and $\mathbf{A} \notin NU$

By Baker-Pixley, ∀n ∃R ≤ Aⁿ which is essential (= not determined by projections on n − 1 coordinates)

- We have \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$
- ▶ Want to show $\mathbf{A} \in CM$ (resp. CD) $\Rightarrow \mathbf{A} \in FS$ (resp. NU)
- \blacktriangleright WLOG \mathbbm{A} contains only unary and binary relations
- ▶ Assume $\mathbf{A} \in CD$ and $\mathbf{A} \notin NU$
- By Baker-Pixley, ∀n ∃R ≤ Aⁿ which is essential (= not determined by projections on n − 1 coordinates)
- ► By THE Galois correspondence, subpowers of A can be pp-defined from A
- (pp-definition can be drawn as a labeled digraph [pic])

- We have \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$
- ▶ Want to show $\mathbf{A} \in CM$ (resp. CD) $\Rightarrow \mathbf{A} \in FS$ (resp. NU)
- \blacktriangleright WLOG \mathbbm{A} contains only unary and binary relations
- ▶ Assume $\mathbf{A} \in CD$ and $\mathbf{A} \notin NU$
- By Baker-Pixley, ∀n ∃R ≤ Aⁿ which is essential (= not determined by projections on n − 1 coordinates)
- ► By THE Galois correspondence, subpowers of A can be pp-defined from A
- (pp-definition can be drawn as a labeled digraph [pic])

The strategy is

1. find a tree definition of an essential relation of a large arity n

- We have \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$
- ▶ Want to show $\mathbf{A} \in CM$ (resp. CD) $\Rightarrow \mathbf{A} \in FS$ (resp. NU)
- \blacktriangleright WLOG \mathbbm{A} contains only unary and binary relations
- ▶ Assume $\mathbf{A} \in CD$ and $\mathbf{A} \notin NU$
- By Baker-Pixley, ∀n ∃R ≤ Aⁿ which is essential (= not determined by projections on n − 1 coordinates)
- ► By THE Galois correspondence, subpowers of A can be pp-defined from A
- (pp-definition can be drawn as a labeled digraph [pic])

The strategy is

- 1. find a tree definition of an essential relation of a large arity n
- find a comb definition of an essential relation of a (still) large arity (roughly log n)

- We have \mathbb{A} , $\mathbf{A} = \mathsf{Pol}(\mathbb{A})$
- ▶ Want to show $\mathbf{A} \in CM$ (resp. CD) $\Rightarrow \mathbf{A} \in FS$ (resp. NU)
- \blacktriangleright WLOG \mathbbm{A} contains only unary and binary relations
- ▶ Assume $\mathbf{A} \in CD$ and $\mathbf{A} \notin NU$
- By Baker-Pixley, ∀n ∃R ≤ Aⁿ which is essential (= not determined by projections on n − 1 coordinates)
- ► By THE Galois correspondence, subpowers of A can be pp-defined from A
- (pp-definition can be drawn as a labeled digraph [pic])

The strategy is

- 1. find a tree definition of an essential relation of a large arity n
- 2. find a comb definition of an essential relation of a (still) large arity (roughly log *n*)
- 3. use it to obtain a configuration (some subpowers of **A**) which contradict $\mathbf{A} \in CD$

1. Find a tree definition of an essential relation of a large arity

This can be done in two ways

- Easy way: Use our result with Kozik about CSPs
- Harder way: Use Zhuk's technique
- 2. Find a comb definition of an essential relation of a large arity
 - Easy: Find a long path, take it, shake the tree, fix some elements
- 3. Obtain an impossible configuration
 - Not too hard
 - ► Easiest impossible configuration: {(*c*, *a*, *a*), (*c*, *b*, *b*), (*d*, *a*, *b*)}
 - Directed Jónsson terms (Kozik) simplify the proof of impossibility
- 4. Celebrate

More on the strategy for $\ \mbox{CM} \Rightarrow \mbox{FS}$

1. Find a tree definition of a bad relation of a large arity

I cannot do it in two ways

- Easy way: ???????
- Harder way: Use Zhuk's technique
- 2. Find a comb definition of a bad relation of a large arity
 - Easy: Find a long path, take it, shake the tree, fix some elements
- 3. Obtain an impossible configuration
 - Not too hard
 - ► Easiest impossible configuration: {(*c*, *a*, *a*), (*c*, *b*, *b*), (*d*, *a*, *b*)}
 - Directed Gumm terms (Kozik) simplify the proof of impossibility
- 4. Celebrate more!

My hero (Dmitriy Zhuk)

A cube-term blocker in **A** is a pair $I < B \le A$ such that $\forall t \in Clo(A) \exists i \text{ so that } t(B, B, \dots, B, I, B, \dots, B) \subseteq I$ (*I* is at the *i*-th position)

A cube-term blocker in **A** is a pair $I < B \le A$ such that $\forall t \in Clo(A) \exists i \text{ so that } t(B, B, \dots, B, I, B, \dots, B) \subseteq I$ (*I* is at the *i*-th position)

• Denote
$$O = B \setminus I$$

▶ **I**, **B** is a blocker iff $(B^n \setminus O^n) \leq \mathbf{A}^n$ for each *n*

A cube-term blocker in **A** is a pair $I < B \le A$ such that $\forall t \in Clo(A) \exists i \text{ so that } t(B, B, \dots, B, I, B, \dots, B) \subseteq I$ (*I* is at the *i*-th position)

• Denote
$$O = B \setminus I$$

▶
$$I, B$$
 is a blocker iff $(B^n \setminus O^n) \leq A^n$ for each n

Theorem (Marković, Maróti, McKenzie)

A finite idempotent. TFAE

(i) $\mathbf{A} \in FS$

(ii) A has no cube-term blockers

A cube-term blocker in **A** is a pair $I < B \le A$ such that $\forall t \in Clo(A) \exists i \text{ so that } t(B, B, \dots, B, I, B, \dots, B) \subseteq I$ (*I* is at the *i*-th position)

• Denote
$$O = B \setminus I$$

▶
$$I, B$$
 is a blocker iff $(B^n \setminus O^n) \leq A^n$ for each n

Theorem (Marković, Maróti, McKenzie)

A finite idempotent. TFAE (i) $\mathbf{A} \in FS$

(ii) A has no cube-term blockers

bad relation $\approx B^n \setminus O^n$ for minimal B

Theorem (Jónsson 68)

(Possibly infinite) algebra **A** is in CD iff $\exists p_1, p_2 \dots \in Clo(\mathbf{A})$

```
p_i(x, y, x) \approx x
x \approx p_1(x, x, y)
p_1(x, y, y) \approx p_2(x, y, y)
p_2(x, x, y) \approx p_3(x, x, y)
...
```

 $p_n(x, y, y) \approx y$

- ► $F = F(\{x, y\}), Q = \langle (x, x, x), (x, y, y), (y, x, y) \rangle \le F^3$
- ▶ $R = \{(b, c) \in Q : \exists a (a, b, c) \in Q'\}$ (dashed)
- $S = \{(b, c) \in Q : (x, b, c)\}$ (solid)
- ▶ solid ⊲_i dashed
- Jónsson terms = x, y connected in S

Directed Jónsson terms

Theorem (Kozik)

Finite algebra **A** is in CD iff $\exists p_1, p_2 \dots \in Clo(\mathbf{A})$

 $p_i(x, y, x) \approx x$ $x \approx p_1(x, x, y)$ $p_1(x, y, y) \approx p_2(x, x, y)$ $p_2(x, y, y) \approx p_3(x, x, y)$

 $p_n(x, y, y) \approx y$

- ► $F = F(\{x, y\}), Q = \langle (x, x, x), (x, y, y), (y, x, y) \rangle \le F^3$
- $\blacktriangleright R = \{(b,c) \in Q : \exists a (a,b,c) \in Q'\} \text{ (dashed)}$
- $S = \{(b, c) \in Q : (x, b, c)\}$ (solid)
- ▶ solid ⊲_j dashed
- directed Jónsson terms = directed path from x to y

Directed Gumm terms

Theorem (Kozik)

Finite algebra **A** in CM iff $\exists p_1, p_2 \dots \in Clo(\mathbf{A})$

```
p_i(x, y, x) \approx x
x \approx p_1(x, x, y)
p_1(x, y, y) \approx p_2(x, x, y)
p_2(x, y, y) \approx p_3(x, x, y)
...
p_n(x, y, y) \approx q(x, y, y)
q(x, x, y) \approx y
```

Question: Jónsson (resp. Gumm) terms \Rightarrow directed Jónsson (resp. Gumm) terms for infinite algebras?
Start with a pp-definition

- Start with a pp-definition
- Disconnect one edge between bound variables and add an equality constraint

- Start with a pp-definition
- Disconnect one edge between bound variables and add an equality constraint
- Remove it, add some unary constraints, make a couple of copies and glue some vertices

- Start with a pp-definition
- Disconnect one edge between bound variables and add an equality constraint
- Remove it, add some unary constraints, make a couple of copies and glue some vertices
- Disconnect bound variables

- Start with a pp-definition
- Disconnect one edge between bound variables and add an equality constraint
- Remove it, add some unary constraints, make a couple of copies and glue some vertices
- Disconnect bound variables
- The obtained pp-definition still defines a bad relation:
 - ► In CD case use Jónsson absorption + Smooth Theorem
 - In CM case use Gumm absorption + work + Smooth Theorem

- Start with a pp-definition
- Disconnect one edge between bound variables and add an equality constraint
- Remove it, add some unary constraints, make a couple of copies and glue some vertices
- Disconnect bound variables
- The obtained pp-definition still defines a bad relation:
 - ► In CD case use Jónsson absorption + Smooth Theorem
 - In CM case use Gumm absorption + work + Smooth Theorem
- The obtained pp-definition is closer to a tree (if the edge was chosen well):

- Start with a pp-definition
- Disconnect one edge between bound variables and add an equality constraint
- Remove it, add some unary constraints, make a couple of copies and glue some vertices
- Disconnect bound variables
- The obtained pp-definition still defines a bad relation:
 - ► In CD case use Jónsson absorption + Smooth Theorem
 - In CM case use Gumm absorption + work + Smooth Theorem
- The obtained pp-definition is closer to a tree (if the edge was chosen well):
 - Exercise in graph theory, see Zhuk or Maróti, Zádori

Jónsson absorption:

- vertex absorption preserves connectivity
- edge absorption preserves connectivity

Gumm absorption:

- vertex absorption preserves connectivity
- edge absorption does not, but q is Maltsev modulo components

Thank you!