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Result and outline

Conjecture (the Valeriote conjecture, or the Edinburgh conj.)

If a finite algebra A is finitely related and HSP(A) is congruence
modular, then A has few subpowers.

Theorem (Baaarto 12)

Matt was right.

I (1) Several relevant classes of algebras

I (2) Finitely related algebras

I (3) Collapses of Maltsev conditions, the Valeriote conjecture

I (4) Consequences

I (5) Proof
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(1)
Several classes of algebras



CP,CD,CM,FS,NU

CM
(modular)

↗ ↖
FS CD

(few subpowers) (distributive)

↗ ↖ ↗
CP NU

(permutable) (near unanimity)

A ∈ CP/CD/CM if
HSP(A) is congruence permutable/distributive/modular

A ∈ NU if
A has a near unanimity term...f (x , . . . , x , y , x , . . . , x) ≈ x

A ∈ FS if
A has few subpowers



Few subpowers

very natural class; discovered recently (∼ 2005) by
Berman, Idziak, Marković, McKenzie, Valeriote, Willard
(based on Bulatov, Dalmau and Dalmau)

A has few subpowers if |R ≤ An| < 2p(n), where p is a polynomial

⇔ every R ≤ An has a generating set of size ≤ q(n), where q is a
polynomial

⇔ A satisfies a Maltsev condition of the form

f (x , ?, ?, . . . , ?) ≈ y
f (?, x , ?, . . . , ?) ≈ y where each ? ∈ {x , y}
. . .
f (?, . . . , ?, x) ≈ y

Facts: CP ⇒ FS ⇐ NU. FS ⇒ CM. (BIIMVW)
FS + CD ⇒ NU (Markovic, McKenzie’08)
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(2)
Finitely related algebras



Pol-Inv again

A . . . relational structure on A
Pol(A) . . . clone of all operations compatible with A

Theorem (Geiger, Bodnarčuk, Kalužnin, Kotov, Romov’68)

∀ finite algebra A ∃A such that Pol(A) = Clo(A).

Definition

Finite A is finitely related, if ∃A with finitely many relations such
that Pol(A) = Clo(A). (= Clo(A) is co-compact)

Examples:

I Most clones on 2 (exceptions: ({0, 1},→), . . . )

I Algebras with a near unanimity term (by Baker-Pixley)

I Finite relatedness not preserved by H, S, or P Davey, Jackson,
Pikethly, Szabó
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FS ⇒ finitely related

Theorem (Aichinger, Mayr, McKenzie 09)

Every finite algebra with few subpowers is finitely related.

I Corollary: On a finite set, there is countably many clones
with few subpowers
(in particular, there is countably many Maltsev clones. This
was open even for expansions of Z8.)

I Bonus: idempotent A ∈ FS iff every idempotent expansion
is finitely related

CM
(modular)

↗ ↖
FS CD

(few subpowers) (distributive) always finitely related
↗ ↖ ↗

CP NU
(permutable) (near unanimity)
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(3)
Collapses of Maltsev conditions



Collapses for finite algebras

Interesting collapses of Maltsev conditions for finite algebras:

I any nontrivial idempotent Maltsev condition (Taylor term) ⇒
weak near unanimity term (Maróti, McKenzie 06)
f (y , x , . . . , x) ≈ f (x , y , x , . . . ) ≈ · · · ≈ f (x , . . . , x , y)

I Taylor term ⇒ cyclic term (Barto, Kozik 09)
f (x1, . . . , xn) ≈ f (x2, . . . , xn, x1)

I Taylor term ⇒ Siggers term (Siggers; Kearnes, Marković,
McKenzie 09)
f (x , y , z , x) ≈ f (y , z , x , z)

I . . .

I Jónsson terms ⇒ directed Jónsson terms (Kozik)

I Gumm terms ⇒ directed Gumm terms (Kozik)
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f (y , x , . . . , x) ≈ f (x , y , x , . . . ) ≈ · · · ≈ f (x , . . . , x , y)

I Taylor term ⇒ cyclic term (Barto, Kozik 09)
f (x1, . . . , xn) ≈ f (x2, . . . , xn, x1)

I Taylor term ⇒ Siggers term (Siggers; Kearnes, Marković,
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Collapses for finitely related algebras

Even more collapses of Maltsev conditions for finitely related
algebras:

I CD ⇒ NU (Barto)
I This is the Zádori conjecture

I For posets conjectured in McKenzie 90, Davey 90, proved in
Larose, Zádori’97

I For reflexive graphs proved in Larose, Loten, Zádori 05
I Consequence: Pol(A) ∈ NU is decidable

(algebraic version by Maróti 09)
I Consequence independently proved by D. Zhuk.

His technique essential for our result

I CM ⇒ FS (Barto)

I This is the Valeriote conjecture
(= the Edinburgh conjecture)

I Generalizes the Zádori conjecture
I Proved Maróti, Zádori’12 for reflexive digraphs
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Picture for finitely related algebras
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FS CD
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(4)
Consequences



Deciding FS

Corollary

Pol(A) ∈ FS is decidable

I Open problem: What is the complexity of this question?
I Polynomial algorithms for deciding Pol(A) ∈ NU for

I posets Kun, Szabó 01
I reflexive graphs Larose, Loten, Zádori 05
I reflexive digraphs Maróti, Zádori 12

I Polynomial algorithm for deciding Pol(A) ∈ FS for
I reflexive digraphs Maróti, Zádori 12

I Algebraic version is decidable by Horowitz’08
for idempotent algebras and fixed |A| it is in P
Marković, Maróti, McKenzie

I More on algebraic problems of this sort in Freese, Valeriote 09
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I Polynomial algorithm for deciding Pol(A) ∈ FS for
I reflexive digraphs Maróti, Zádori 12
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I Polynomial algorithm for deciding Pol(A) ∈ FS for
I reflexive digraphs Maróti, Zádori 12
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CSP

Corollary

If A has finitely many relations and Pol(A) ∈ CM then CSP(A) is
in P.

Open problem (!): What if A has infinitely many relations?



pp-formula comparison

Fix A, A = Pol(A)

INPUT: Two positive primitive formulas (∃,∧,=) α, β over A
PPEQ(A): Do they define the same relation?
PPCON(A): Is the relation defined by α contained in the relation
defined by β?

Bova, Chen, Valeriote 11: P / coNP-complete / Πp
2-complete

trichotomy modulo the Valeriote conjecture and the CSP
dichotomy conjecture

I A not Taylor ⇒ Πp
2-complete

I A Taylor and the CSP dichotomy holds ⇒ in coNP

I A not CM ⇒ coNP-complete

I A FS ⇒ P

I Corollary: now the P/coNP-complete part is done
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The strategy

I We have A, A = Pol(A)

I Want to show A ∈ CM (resp. CD) ⇒ A ∈ FS (resp. NU)

I WLOG A contains only unary and binary relations

I Assume A ∈ CD and A 6∈ NU

I By Baker-Pixley, ∀n ∃R ≤ An which is essential
(= not determined by projections on n − 1 coordinates)

I By THE Galois correspondence, subpowers of A can be
pp-defined from A

I (pp-definition can be drawn as a labeled digraph [pic])

The strategy is

1. find a tree definition of an essential relation of a large arity n

2. find a comb definition of an essential relation of a (still) large
arity (roughly log n)

3. use it to obtain a configuration (some subpowers of A) which
contradict A ∈ CD
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More on the strategy for CD ⇒ NU

1. Find a tree definition of an essential relation of a large arity

This can be done in two ways
I Easy way: Use our result with Kozik about CSPs
I Harder way: Use Zhuk’s technique

2. Find a comb definition of an essential relation of a large arity
I Easy: Find a long path, take it, shake the tree, fix some

elements

3. Obtain an impossible configuration
I Not too hard
I Easiest impossible configuration: {(c , a, a), (c , b, b), (d , a, b)}
I Directed Jónsson terms (Kozik) simplify the proof of

impossibility

4. Celebrate



More on the strategy for CM ⇒ FS

1. Find a tree definition of a bad relation of a large arity

I cannot do it in two ways
I Easy way: ???????
I Harder way: Use Zhuk’s technique

2. Find a comb definition of a bad relation of a large arity
I Easy: Find a long path, take it, shake the tree, fix some

elements

3. Obtain an impossible configuration
I Not too hard
I Easiest impossible configuration: {(c , a, a), (c , b, b), (d , a, b)}
I Directed Gumm terms (Kozik) simplify the proof of

impossibility

4. Celebrate more!



My hero (Dmitriy Zhuk)



Bad relations – cube term blockers

Definition

A cube-term blocker in A is a pair I < B ≤ A such that
∀t ∈ Clo(A) ∃i so that t(B,B, . . . ,B, I ,B, . . . ,B) ⊆ I
(I is at the i-th position)

I Denote O = B \ I

I I,B is a blocker iff (Bn \ On) ≤ An for each n

Theorem (Marković, Maróti, McKenzie)

A finite idempotent. TFAE

(i) A ∈ FS

(ii) A has no cube-term blockers

bad relation ≈ Bn \ On for minimal B
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Directed Jónsson terms

Theorem (Jónsson 68)

(Possibly infinite) algebra A is in CD iff ∃ p1, p2 · · · ∈ Clo(A)

pi (x , y , x) ≈ x

x ≈ p1(x , x , y)

p1(x , y , y) ≈ p2(x , y , y)

p2(x , x , y) ≈ p3(x , x , y)

. . .

pn(x , y , y) ≈ y

I F = F ({x , y}), Q = 〈(x , x , x), (x , y , y), (y , x , y)〉 ≤ F 3

I R = {(b, c) ∈ Q : ∃ a (a, b, c) ∈ Q ′} (dashed)
I S = {(b, c) ∈ Q : (x , b, c)} (solid)
I solid /j dashed
I Jónsson terms = x , y connected in S



Directed Jónsson terms

Theorem (Kozik)

Finite algebra A is in CD iff ∃ p1, p2 · · · ∈ Clo(A)

pi (x , y , x) ≈ x

x ≈ p1(x , x , y)

p1(x , y , y) ≈ p2(x , x , y)

p2(x , y , y) ≈ p3(x , x , y)

. . .

pn(x , y , y) ≈ y

I F = F ({x , y}), Q = 〈(x , x , x), (x , y , y), (y , x , y)〉 ≤ F 3

I R = {(b, c) ∈ Q : ∃ a (a, b, c) ∈ Q ′} (dashed)
I S = {(b, c) ∈ Q : (x , b, c)} (solid)
I solid /j dashed
I directed Jónsson terms = directed path from x to y



Directed Gumm terms

Theorem (Kozik)

Finite algebra A in CM iff ∃ p1, p2 · · · ∈ Clo(A)

pi (x , y , x) ≈ x

x ≈ p1(x , x , y)

p1(x , y , y) ≈ p2(x , x , y)

p2(x , y , y) ≈ p3(x , x , y)

. . .

pn(x , y , y) ≈ q(x , y , y)

q(x , x , y) ≈ y

Question: Jónsson (resp. Gumm) terms ⇒ directed Jónsson
(resp. Gumm) terms for infinite algebras?



Zhuk’s surgery (finding a tree definition)

I Start with a pp-definition

I Disconnect one edge between bound variables and add an
equality constraint

I Remove it, add some unary constraints, make a couple of
copies and glue some vertices

I Disconnect bound variables
I The obtained pp-definition still defines a bad relation:

I In CD case use Jónsson absorption + Smooth Theorem
I In CM case use Gumm absorption + work + Smooth Theorem

I The obtained pp-definition is closer to a tree (if the edge was
chosen well):

I Exercise in graph theory, see Zhuk or Maróti, Zádori
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Jónsson and Gumm absorption

Jónsson absorption:

I vertex absorption preserves connectivity

I edge absorption preserves connectivity

Gumm absorption:

I vertex absorption preserves connectivity

I edge absorption does not, but q is Maltsev modulo
components



Thank you!


