A harmonikus terek néhány Geometriai jellemzése

Csikós Balázs
közös munka Horváth Mártonnal

Eötvös Loránd Tudományegyetem
Budapest

Szegedi Geometria Nap 2017. október 6.

Harmonic manifolds

Definition

A Riemannian manifold M is a (locally) harmonic manifold if the following equivalent definitions are fulfilled.

- Each point $p \in M$ has a neighborhood on which the equation $\Delta u=0$ has a non-constant solution of the form $u(q)=f(d(p, q))$, where $f:(0, a) \rightarrow \mathbb{R}$ is real analytic on $(0, a)$. [Ruse 1930].
- At each point $p \in M$, the volume density function $\theta_{p}=\sqrt{\operatorname{det}\left(g_{i j}\right)}$ written in normal coordinates centered at p is radial, i.e., $\theta_{p}(\mathbf{v})=\bar{\theta}(\|\mathbf{v}\|)$ for some function $\bar{\theta}$.
- Every sufficiently small geodesic sphere has constant mean curvature.
- Every sufficiently small geodesic sphere has constant scalar curvature. (if $\operatorname{dim} M>2$)
- If f is harmonic on a neighborhood of a sufficiently small geodesic ball $B(p, r)$, then

$$
f(p)=\frac{1}{\operatorname{Vol}(S(p, r))} \int_{S(p, r)} f \mathrm{~d} \sigma
$$

Examples of harmonic manifolds

Definition

A metric space (X, d) is called 2 point homogeneous if $\forall p, q, p^{\prime}, q^{\prime} \in X$ such that $d(p, q)=d\left(p^{\prime}, q^{\prime}\right) \Rightarrow$ there is an isometry $\Phi: X \rightarrow X$ such that $\Phi(p)=p^{\prime}$ and $\Phi(q)=q^{\prime}$.

Proposition

A connected Riemannian manifold is

- complete

2 point homogeneous \Longleftrightarrow its isometry group acts transitively on the bundle of unit tangent vectors
In particular, manifolds locally isometric to a 2 point homogeneous space are harmonic.

Theorem (J. Tits, H.C. Wang, Z.I. Szabó)

Connected 2 point homogeneous Riemannian manifolds are

- the Euclidean spaces \mathbf{E}^{n},
- the simply connected rank 1 symmetric spaces

$$
\mathbf{S}^{n}, \mathbb{C} \mathbf{P}^{n}, \mathbb{H} \mathbf{P}^{n}, \mathbb{O} \mathbf{P}^{2}, \quad \mathbf{H}^{n}, \mathbb{C} \mathbf{H}^{n}, \mathbb{H} \mathbf{H}^{n}, \mathbb{O} \mathbf{H}^{2}
$$

- the real projective spaces $\mathbb{R} \mathbf{P}^{n}$.

Examples of harmonic manifolds

Lichnerowicz Conjecture

Every harmonic manifold is locally isometric to a 2 point homogeneous space.

Theorem (Z.I. Szabó)

If a simply connected and connected harmonic manifold is compact, then it is a rank 1 symmetric space.

- In the non-compact case, the Lichnerowicz conjecture is false.

Theorem (E. Damek, F. Ricci)

There are many non-symmetric harmonic manifolds among solvable extensions of Heisenberg type 2-step nilpotent Lie groups equipped with left invariant Riemannian metrics.

Theorem (J. Heser)

Every homogeneous harmonic manifold is locally isometric to a 2 point homogeneous space or a Damek-Ricci space.

Tures about a curve

- M - connected Riemannian manifold;
- $\exp : \stackrel{\circ}{T} M \rightarrow M$ - its exponential map;
- $\gamma:[a, b] \rightarrow M$ - an injective regular curve;
- For $r>0$, set

$$
T(\gamma, r)=\bigcup_{t \in[a, b]}\left\{\mathbf{v} \in T_{\gamma(t)} M, \mathbf{v} \perp \gamma^{\prime}(t), \text { and }\|\mathbf{v}\| \leq r\right\}
$$

Definition

Assume that r is small enough to guarantee that the exponential map is defined and injective on $T(\gamma, r)$. Then we define the tube of radius r about γ by

$$
\mathcal{T}(\gamma, r)=\exp (T(\gamma, r))
$$

The Tuse Property

Theorem (Hotelling)

In the Euclidean and spherical spaces, the volume of $\mathcal{T}(\gamma, r)$ depends only on the length of γ and the radius r.

Theorem (H. Weyl)

The volume of a tube of radius r about a submanifold of \mathbf{E}^{n} or \mathbf{S}^{n} depends only on intrinsic invariants of the submanifold and on r.

Definition

- We say that a Riemannian manifold has the tube property if there is a function $V:[0, \infty) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\operatorname{Vol}(\mathcal{T}(\gamma, r))=V(r) l_{\gamma} \tag{1}
\end{equation*}
$$

for any smooth injective regular curve γ of length l_{γ} and any sufficiently small r.

- the manifold has the tube property for geodesics if (1) holds for any injective geodesic arc and any small radius r.

Theorem (A. Gray, L. Vanhecke, 1982)

Every rank 1 symmetric space has the tube property. (In these spaces, the volume of tubes were computed explicitly.)

Main Theorem

For a connected Riemannian manifold, the following properties are equivalent

- the manifold is harmonic;
- the manifold has the tube property;
- the manifold has the tube property for geodesic curves.

In a harmonic manifold, the volume of a tube of radius r about a curve of length l_{γ} is

$$
\omega_{n-1} r^{n-1} \bar{\theta}(r) l_{\gamma}=\frac{\omega_{n-1}}{n \omega_{n}} \operatorname{Vol}_{n-1}\left(S_{r}\right) l_{\gamma},
$$

where

- S_{r} is a geodesic sphere of radius r
- ω_{n-1} denotes the $(n-1)$-dimensional volume of the unit sphere in the Euclidean space \mathbb{E}^{n}.

Some tools of the proof

- For $\mathbf{0} \neq \mathbf{u} \in T_{p} M$ set

$$
B_{r}^{n-1}(\mathbf{u})=\left\{\mathbf{w} \in T_{p} M: \mathbf{w} \perp \mathbf{u},\|\mathbf{w}\| \leq r\right\}
$$

- For $\mathbf{0} \neq \mathbf{u} \in T_{p} M$ and $\mathbf{0} \neq \mathbf{w} \in B_{r}^{n-1}(\mathbf{u})$, let $J_{\mathbf{u}}^{\mathbf{w}}$ be the Jacobi field along the geodesic $t \mapsto \exp (t \mathbf{w})$ defined by

$$
J_{\mathbf{u}}^{\mathbf{w}}(0)=\mathbf{u} \quad \text { and } \quad J_{\mathbf{u}}^{\mathbf{w}}(1)=\mathbf{0}
$$

Theorem

The volume of the tube of radius r about the unit speed curve $\gamma:[a, b] \rightarrow M$ equals

$$
-\int_{a}^{b} \int_{B_{r}^{n-1}\left(\gamma^{\prime}(t)\right)}\left(\left\langle J_{\gamma^{\prime}(t)}^{\mathbf{w}}{ }^{\prime}(0), \gamma^{\prime}(t)\right\rangle+\left\langle\gamma^{\prime \prime}(t), \mathbf{w}\right\rangle\right) \theta(\mathbf{w}) \mathrm{d} \mathbf{w} \mathrm{~d} t .
$$

Some tools of the proof

Definition

The Funk transform $\mathcal{F}: \mathcal{C}^{\infty}\left(\mathbf{S}^{n}\right) \rightarrow \mathcal{C}^{\infty}\left(\mathbf{S}^{n}\right)$ is the integral transform defined by

$$
(\mathcal{F}(f))(\mathbf{u})=\int_{\mathbf{S}^{n} \cap \mathbf{u}^{\perp}} f(\mathbf{w}) \mathrm{d} \mathbf{w} .
$$

Definition
The cosine transform is the integral transform $\mathcal{F}_{C}: \mathcal{C}^{\infty}\left(\mathbf{S}^{n}\right) \rightarrow \mathcal{C}^{\infty}\left(\mathbf{S}^{n}\right)$ defined by

$$
\left(\mathcal{F}_{C}(f)\right)(\mathbf{u})=\int_{\mathbf{S}^{n}}|\langle\mathbf{u}, \mathbf{v}\rangle| f(\mathbf{v}) \mathrm{d} \mathbf{v}
$$

Theorem

$$
\begin{aligned}
\mathcal{F}(f) & =0 \\
\mathcal{F}_{C}(f) & =0
\end{aligned} \Longleftrightarrow f \text { is odd. }
$$

Some tools of the proof

Observation

Harmonic spaces are D'Atri spaces, thus, to check the tube property for a harmonic space, it is enough to check the tube property for geodesics.

Theorem (Z.I. Szabó)

The volume of the intersection of two geodesic balls in a harmonic manifold depends only on the distance between the centers and the radii.
\Longrightarrow The volume of small geodesic balls depends only on the radius.
\Longrightarrow The volume of small geodesic half-balls depends only on the radius.
\Longrightarrow The volume of the union of two geodesic balls depends only on the distance between the centers and the radii.

A Steiner-type formula

Theorem (E. Abbena, A. Gray, and L. Vanhecke)

$$
\begin{aligned}
V_{\gamma}(r+\Delta)= & V_{\gamma}(r)+A_{\gamma}(r) \Delta-\left(\int_{\mathcal{P}(\gamma, r)} \mu^{P}(p) \mathrm{d} p\right) \frac{\Delta^{2}}{2} \\
& +\left(\int_{\mathcal{P}(\gamma, r)}\left(\rho(N(p))+\tau^{P}(p)-\tau(p)\right) \mathrm{d} p\right) \frac{\Delta^{3}}{6}+O\left(\Delta^{4}\right),
\end{aligned}
$$

where

- $V_{\gamma}(r)$ is the volume of the tube of radius r about γ;
- $\mathcal{P}(\gamma, r)$ is the tubular hypersurface of radius r about γ;
- $A_{\gamma}(r)$ is the $(n-1)$-dimensional volume of the hypersurface $\mathcal{P}(\gamma, r)$;
- μ^{P} is the sum of the principal curvatures of $\mathcal{P}(\gamma, r)$ with respect to the outer unit normal N;
- $\rho(N(p))=\operatorname{Ric}(N(p), N(p))$ is the Ricci curvature of M in the direction $N(p)$;
$\checkmark \tau$ and τ^{P} are the scalar curvatures of M and $\mathcal{P}(\gamma, r)$, respectively.

Corollary

For a connected Riemannian manifold M, the following properties are equivalent:

- M is harmonic.
- For any (geodesic) curve γ, the volume of the tubular hypersurface $\mathcal{P}(\gamma, r)$ depends only on r and the length l_{γ} of γ.
- For any (geodesic) curve γ, the total mean curvature of $\mathcal{P}(\gamma, r)$ depends only on r and l_{γ}.
- For any (geodesic) curve γ, the total scalar curvature of $\mathcal{P}(\gamma, r)$ depends only on r and l_{γ} (if $\operatorname{dim} M \geq 4$).

Köszönöm a figyelmet!

