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Károly Böröczky
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Reconstruction of smooth closed convex surfaces from
Gauss curvature

I X is a compact C 2
+ hypersurface in Rn

I ux is exterior unit normal at x ∈ X

I κX (ux) > 0 is the Gauss curvature

Observation (Minkowski)∫
Sn−1

u · κX (u)−1 du = o. (1)

Minkowski problem (E.g. Inverse problem of short wave diffraction)
For continuous κ : Sn−1 → R+ satisfying (1), find C 2

+ hypersurface
X ⊂ Rn such that κ(ux) is the Gauss curvature at x ∈ X .
Monge-Ampere type differential equation on Sn−1:

det(∇2h + h I ) = κ−1

where h(u) = max{〈u, x〉 : x ∈ X} is the support function.
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Notation

I K ,C - convex bodies in Rn

(convex compact with non-empty interior)

I V (K ) - volume (Lebesgue measure)

I Hn−1 - (n − 1)-Hausdorff measure

I hK - support function of K
hK (u) = max{〈u, x〉 : x ∈ K} for u ∈ Rn

I L - linear subspace, L 6= {o},Rn

I µ - non-trivial Borel measure on Sn−1



Surface area measure

SK - surface area measure of K on Sn−1

I νK (x) = {u ∈ Sn−1 : hK (u) = 〈x , u〉} for x ∈ ∂K
(all possible exterior unit normals at x)

I For Ξ ⊂ ∂K , SK (νK (Ξ)) = Hn−1(Ξ)

I K polytope, F1, . . . ,Fk facets, ui exterior unit normal at Fi

SK ({ui}) = Hn−1(Fi ).

”Minkowski problem” : Given µ, find K with µ = SK

Solution (Minkowski, Alexandrov, Nirenberg)∫
Sn−1

u dSK (u) = o

I Minimize
∫
Sn−1 hC dµ under the condition V (C ) = 1
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Lp surface area measures
Lp surface area measures (Firey, Lutwak 1990) p ∈ R

dSK ,p = h1−p
K dSK

Examples

I SK ,1 = SK

I SK ,0 ”cone-volume meaure”

I SK ,−n related to the SL(n) invariant curvature κK (u)
hK (u)n+1

Theorem (Chou-Wang (2005), Hug-LYZ (2006))

If p > 1, p 6= n, then any finite Borel measure µ on Sn−1 not
concentrated on any closed hemisphere is of the form µ = SK ,p.

Remark Possibly o ∈ ∂K if 1 < p < n

Theorem (Zhu (2015))

If p < 1, then any ”general” discrete measure µ on Sn−1 not
concentrated on any closed hemisphere is of the form µ = SK ,p.
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Differential equation for Lp surface area measures

h1−p det(∇2h + hI ) = f

Theorem
There is a solution K with o ∈ K and f dHn−1 = dSK ,p provided

I 0 ≤ p < 1 and f is in L1 (Chen, Li, Zhu)

I −n < p < 0 and f is in L
n

n+p (Bianchi, B, Colesanti)

Theorem
0 < inf f ≤ sup f <∞

I If p ≤ 2− n, then o ∈ intK , and hence K is smooth and
strictly convex (Chou, Wang)

I If p ≤ 4− n, then K is smooth (Bianchi, B, Colesanti)

I If o ∈ intK and f is Cα, then ∂K is C 2,α (Caffarelli)
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Ideas to solve Lp-Minkowski problem for given µ

p > 1

I Minimize
∫
Sn−1 hp

K dµ under the condition V (K ) = 1

I Weak approximation by discrete measures (polytopes)

p < 1

ϕ(t) =


tp = if 0 < p < 1

log t = if p = 0
−tp = if p < 0

For K = {convex body K: o ∈ K and V (K ) = 1}, find

inf
K∈K

sup
ξ∈intK

∫
Sd−1

ϕ ◦ hK−ξ dµ
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Dual curvature measures

Dual curvature measures
Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

C̃K ,q(νK ◦ rK (ω)) =

∫
ω
%qK (u) du for ω ⊂ Sn−1

u ∈ Sn−1=⇒rK (u) = %K (u)u ∈ ∂K , %K (u) ≥ 0
Example

I C̃K ,n = S0,K ⇐⇒ dC̃K ,n = hKdSK

Theorem (Zhao (2016), B-Henk-Pollehn (2016))

0 < q < n, and µ is finite even non-trival Borel measure on Sn−1.
Then µ = C̃K ,q for o-symmetric K iff for every non-trivial L,

µ(L ∩ Sn−1) <
dim L

q
· µ(Sn−1).
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Lp dual curvature measures

Lutwak, Yang, Zhang (2016) p, q ∈ R

dC̃K ,p,q = h−pK dC̃K ,q

Examples

I C̃K ,p,n = SK ,p

I C̃K ,0,q = C̃K ,q

Theorem
µ = C̃K ,p,n ⇐⇒ µ is not contrated on a great subsphere and

I p > 1 and q > 0, p 6= q (B, Fodor)

I p > 0 and q < 0 (Huang, Zhao)

Idea to solve Lp-dual Minkowski problem for p > 1, q > 0, µ

Minimize
∫
Sn−1 hp

K dµ under the condition Vq(K ) = 1
n

∫
Sn−1 %

q
K = 1
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