About the Minkowski problem

Károly Böröczky
Alfréd Rényi Institute of Mathematics and CEU joint with Ferenc Fodor

Szeged, October, 2017

Honoring the Department of Geometry, Szeged

Reconstruction of smooth closed convex surfaces from

 Gauss curvature- X is a compact C_{+}^{2} hypersurface in \mathbb{R}^{n}
- u_{x} is exterior unit normal at $x \in X$
- $\kappa_{X}\left(u_{x}\right)>0$ is the Gauss curvature

Observation (Minkowski)

$$
\begin{equation*}
\int_{S^{n-1}} u \cdot \kappa_{X}(u)^{-1} d u=0 \tag{1}
\end{equation*}
$$

Reconstruction of smooth closed convex surfaces from

Gauss curvature

- X is a compact C_{+}^{2} hypersurface in \mathbb{R}^{n}
- u_{x} is exterior unit normal at $x \in X$
- $\kappa_{X}\left(u_{x}\right)>0$ is the Gauss curvature

Observation (Minkowski)

$$
\begin{equation*}
\int_{S^{n-1}} u \cdot \kappa_{X}(u)^{-1} d u=o \tag{1}
\end{equation*}
$$

Minkowski problem (E.g. Inverse problem of short wave diffraction) For continuous $\kappa: S^{n-1} \rightarrow \mathbb{R}_{+}$satisfying (1), find C_{+}^{2} hypersurface $X \subset \mathbb{R}^{n}$ such that $\kappa\left(u_{x}\right)$ is the Gauss curvature at $x \in X$.

Reconstruction of smooth closed convex surfaces from Gauss curvature

- X is a compact C_{+}^{2} hypersurface in \mathbb{R}^{n}
- u_{x} is exterior unit normal at $x \in X$
- $\kappa_{X}\left(u_{x}\right)>0$ is the Gauss curvature

Observation (Minkowski)

$$
\begin{equation*}
\int_{S^{n-1}} u \cdot \kappa_{X}(u)^{-1} d u=0 \tag{1}
\end{equation*}
$$

Minkowski problem (E.g. Inverse problem of short wave diffraction) For continuous $\kappa: S^{n-1} \rightarrow \mathbb{R}_{+}$satisfying (1), find C_{+}^{2} hypersurface $X \subset \mathbb{R}^{n}$ such that $\kappa\left(u_{x}\right)$ is the Gauss curvature at $x \in X$. Monge-Ampere type differential equation on S^{n-1} :

$$
\operatorname{det}\left(\nabla^{2} h+h l\right)=\kappa^{-1}
$$

where $h(u)=\max \{\langle u, x\rangle: x \in X\}$ is the support function.

Notation

- K, C - convex bodies in \mathbb{R}^{n}
(convex compact with non-empty interior)
- $V(K)$ - volume (Lebesgue measure)
- $\mathcal{H}^{n-1}-(n-1)$-Hausdorff measure
- h_{K} - support function of K
$h_{K}(u)=\max \{\langle u, x\rangle: x \in K\}$ for $u \in \mathbb{R}^{n}$
- L - linear subspace, $L \neq\{o\}, \mathbb{R}^{n}$
- μ - non-trivial Borel measure on S^{n-1}

Surface area measure

S_{K} - surface area measure of K on S^{n-1}

- $\nu_{K}(x)=\left\{u \in S^{n-1}: h_{K}(u)=\langle x, u\rangle\right\}$ for $x \in \partial K$ (all possible exterior unit normals at x)
- For $\equiv \subset \partial K, S_{K}\left(\nu_{K}(\equiv)\right)=\mathcal{H}^{n-1}(\equiv)$

Surface area measure

S_{K} - surface area measure of K on S^{n-1}

- $\nu_{K}(x)=\left\{u \in S^{n-1}: h_{K}(u)=\langle x, u\rangle\right\}$ for $x \in \partial K$ (all possible exterior unit normals at x)
- For $\equiv \subset \partial K, S_{K}\left(\nu_{K}(\equiv)\right)=\mathcal{H}^{n-1}(\equiv)$
- K polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
S_{K}\left(\left\{u_{i}\right\}\right)=\mathcal{H}^{n-1}\left(F_{i}\right)
$$

Surface area measure

S_{K} - surface area measure of K on S^{n-1}

- $\nu_{K}(x)=\left\{u \in S^{n-1}: h_{K}(u)=\langle x, u\rangle\right\}$ for $x \in \partial K$ (all possible exterior unit normals at x)
- For $\equiv \subset \partial K, S_{K}\left(\nu_{K}(\equiv)\right)=\mathcal{H}^{n-1}(\equiv)$
- K polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
S_{K}\left(\left\{u_{i}\right\}\right)=\mathcal{H}^{n-1}\left(F_{i}\right)
$$

"Minkowski problem" : Given μ, find K with $\mu=S_{K}$ Solution (Minkowski, Alexandrov, Nirenberg)

$$
\int_{S^{n-1}} u d S_{K}(u)=0
$$

- Minimize $\int_{S^{n-1}} h_{C} d \mu$ under the condition $V(C)=1$

L_{p} surface area measures

L_{p} surface area measures (Firey, Lutwak 1990) $p \in \mathbb{R}$

$$
d S_{K, p}=h_{K}^{1-p} d S_{K}
$$

Examples

- $S_{K, 1}=S_{K}$
- $S_{K, 0}$ "cone-volume meaure"
- $S_{K,-n}$ related to the $\operatorname{SL}(n)$ invariant curvature $\frac{\kappa_{K}(u)}{h_{K}(u)^{n+1}}$

Theorem (Chou-Wang (2005), Hug-LYZ (2006))
If $p>1, p \neq n$, then any finite Borel measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu=S_{K, p}$.
Remark Possibly $o \in \partial K$ if $1<p<n$

L_{p} surface area measures

L_{p} surface area measures (Firey, Lutwak 1990) $p \in \mathbb{R}$

$$
d S_{K, p}=h_{K}^{1-p} d S_{K}
$$

Examples

- $S_{K, 1}=S_{K}$
- $S_{K, 0}$ "cone-volume meaure"
- $S_{K,-n}$ related to the $\operatorname{SL}(n)$ invariant curvature $\frac{\kappa_{K}(u)}{h_{K}(u)^{n+1}}$

Theorem (Chou-Wang (2005), Hug-LYZ (2006))
If $p>1, p \neq n$, then any finite Borel measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu=S_{K, p}$.
Remark Possibly $o \in \partial K$ if $1<p<n$
Theorem (Zhu (2015))
If $p<1$, then any "general" discrete measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu=S_{K, p}$.

Differential equation for L_{p} surface area measures

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h l\right)=f
$$

Theorem
There is a solution K with $o \in K$ and $f d \mathcal{H}^{n-1}=d S_{K, p}$ provided

- $0 \leq p<1$ and f is in L^{1} (Chen, Li, Zhu)
- $-n<p<0$ and f is in $L^{\frac{n}{n+p}}$ (Bianchi, B, Colesanti)

Differential equation for L_{p} surface area measures

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h l\right)=f
$$

Theorem
There is a solution K with $o \in K$ and $f d \mathcal{H}^{n-1}=d S_{K, p}$ provided

- $0 \leq p<1$ and f is in L^{1} (Chen, Li, Zhu)
- $-n<p<0$ and f is in $L^{\frac{n}{n+p}}$ (Bianchi, B, Colesanti)

Theorem
$0<\inf f \leq \sup f<\infty$

- If $p \leq 2-n$, then $o \in \operatorname{int} K$, and hence K is smooth and strictly convex (Chou, Wang)
- If $p \leq 4-n$, then K is smooth (Bianchi, B, Colesanti)
- If $o \in \operatorname{int} K$ and f is C^{α}, then ∂K is $C^{2, \alpha}$ (Caffarelli)

Ideas to solve L_{p}-Minkowski problem for given μ

$p>1$

- Minimize $\int_{S^{n-1}} h_{K}^{p} d \mu$ under the condition $V(K)=1$
- Weak approximation by discrete measures (polytopes)

Ideas to solve L_{p}-Minkowski problem for given μ

$p>1$

- Minimize $\int_{S^{n-1}} h_{K}^{p} d \mu$ under the condition $V(K)=1$
- Weak approximation by discrete measures (polytopes)
$p<1$

$$
\varphi(t)=\left\{\begin{aligned}
& t^{p}= \\
& \text { if } 0<p<1 \\
& \log t= \\
&-i f^{p} p=0 \\
&-t^{p}= \\
& \text { if } p<0
\end{aligned}\right.
$$

For $\mathcal{K}=\{$ convex body $\mathrm{K}: ~ o \in K$ and $V(K)=1\}$, find

$$
\inf _{K \in \mathcal{K}} \sup _{\xi \in \operatorname{int} K} \int_{S^{d-1}} \varphi \circ h_{K-\xi} d \mu
$$

Dual curvature measures

Dual curvature measures Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

$$
\widetilde{C}_{K, q}\left(\nu_{K} \circ r_{K}(\omega)\right)=\int_{\omega} \varrho_{K}^{q}(u) d u \quad \text { for } \omega \subset S^{n-1}
$$

$u \in S^{n-1} \Longrightarrow r_{K}(u)=\varrho_{K}(u) u \in \partial K, \varrho_{K}(u) \geq 0$
Example

- $\widetilde{C}_{K, n}=S_{0, K} \Longleftrightarrow d \widetilde{C}_{K, n}=h_{K} d S_{K}$

Dual curvature measures

Dual curvature measures
Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

$$
\widetilde{C}_{K, q}\left(\nu_{K} \circ r_{K}(\omega)\right)=\int_{\omega} \varrho_{K}^{q}(u) d u \quad \text { for } \omega \subset S^{n-1}
$$

$u \in S^{n-1} \Longrightarrow r_{K}(u)=\varrho_{K}(u) u \in \partial K, \varrho_{K}(u) \geq 0$
Example

- $\widetilde{C}_{K, n}=S_{0, K} \Longleftrightarrow d \widetilde{C}_{K, n}=h_{K} d S_{K}$

Theorem (Zhao (2016), B-Henk-Pollehn (2016))
$0<q<n$, and μ is finite even non-trival Borel measure on S^{n-1}.
Then $\mu=\widetilde{C}_{K, q}$ for o-symmetric K iff for every non-trivial L,

$$
\mu\left(L \cap S^{n-1}\right)<\frac{\operatorname{dim} L}{q} \cdot \mu\left(S^{n-1}\right)
$$

L_{p} dual curvature measures

Lutwak, Yang, Zhang (2016) $p, q \in \mathbb{R}$

$$
d \widetilde{C}_{K, p, q}=h_{K}^{-p} d \widetilde{C}_{K, q}
$$

Examples

- $\widetilde{C}_{K, p, n}=S_{K, p}$
- $\widetilde{C}_{K, 0, q}=\widetilde{C}_{K, q}$

L_{p} dual curvature measures

Lutwak, Yang, Zhang (2016) p, q $\in \mathbb{R}$

$$
d \widetilde{C}_{K, p, q}=h_{K}^{-p} d \widetilde{C}_{K, q}
$$

Examples

- $\widetilde{C}_{K, p, n}=S_{K, p}$
- $\widetilde{C}_{K, 0, q}=\widetilde{C}_{K, q}$

Theorem
$\mu=\widetilde{C}_{K, p, n} \Longleftrightarrow \mu$ is not contrated on a great subsphere and

- $p>1$ and $q>0, p \neq q$ (B, Fodor)
- $p>0$ and $q<0$ (Huang, Zhao)

Idea to solve L_{p}-dual Minkowski problem for $p>1, q>0, \mu$
Minimize $\int_{S^{n-1}} h_{K}^{p} d \mu$ under the condition $V_{q}(K)=\frac{1}{n} \int_{S^{n-1}} \varrho_{K}^{q}=1$

