About the Minkowski problem

Károly Böröczky
Alfréd Rényi Institute of Mathematics and CEU
joint with Ferenc Fodor

Szeged, October, 2017

Honoring the Department of Geometry, Szeged
Reconstruction of smooth closed convex surfaces from Gauss curvature

- X is a compact C^2_+ hypersurface in \mathbb{R}^n
- u_x is exterior unit normal at $x \in X$
- $\kappa_X(u_x) > 0$ is the Gauss curvature

Observation (Minkowski)

$$\int_{S^{n-1}} u \cdot \kappa_X(u)^{-1} \, du = o. \quad (1)$$
Reconstruction of smooth closed convex surfaces from Gauss curvature

- X is a compact C^2_+ hypersurface in \mathbb{R}^n
- u_x is exterior unit normal at $x \in X$
- $\kappa_X(u_x) > 0$ is the Gauss curvature

Observation (Minkowski)

$$\int_{S^{n-1}} u \cdot \kappa_X(u)^{-1} \, du = 0.$$ (1)

Minkowski problem (E.g. Inverse problem of short wave diffraction)

For continuous $\kappa : S^{n-1} \to \mathbb{R}_+$ satisfying (1), find C^2_+ hypersurface $X \subset \mathbb{R}^n$ such that $\kappa(u_x)$ is the Gauss curvature at $x \in X$.
Reconstruction of smooth closed convex surfaces from Gauss curvature

- X is a compact C^2_+ hypersurface in \mathbb{R}^n
- u_x is exterior unit normal at $x \in X$
- $\kappa_X(u_x) > 0$ is the Gauss curvature

Observation (Minkowski)

$$\int_{S^{n-1}} u \cdot \kappa_X(u)^{-1} \, du = 0. \tag{1}$$

Minkowski problem (E.g. Inverse problem of short wave diffraction)
For continuous $\kappa : S^{n-1} \to \mathbb{R}_+$ satisfying (1), find C^2_+ hypersurface $X \subset \mathbb{R}^n$ such that $\kappa(u_x)$ is the Gauss curvature at $x \in X$.

Monge-Ampere type differential equation on S^{n-1}:

$$\det(\nabla^2 h + h I) = \kappa^{-1}$$

where $h(u) = \max\{\langle u, x \rangle : x \in X\}$ is the support function.
Notation

- K, C - convex bodies in \mathbb{R}^n (convex compact with non-empty interior)
- $V(K)$ - volume (Lebesgue measure)
- \mathcal{H}^{n-1} - $(n - 1)$-Hausdorff measure
- h_K - support function of K
 \[h_K(u) = \max\{\langle u, x \rangle : x \in K\} \text{ for } u \in \mathbb{R}^n \]
- L - linear subspace, $L \neq \{o\}, \mathbb{R}^n$
- μ - non-trivial Borel measure on S^{n-1}
Surface area measure

S_K - surface area measure of K on S^{n-1}

$\nu_K(x) = \{u \in S^{n-1} : h_K(u) = \langle x, u \rangle \}$ for $x \in \partial K$
(all possible exterior unit normals at x)

For $\Xi \subset \partial K$, $S_K(\nu_K(\Xi)) = \mathcal{H}^{n-1}(\Xi)$
Surface area measure

\(S_K \) - surface area measure of \(K \) on \(S^{n-1} \)

\(\nabla_K(x) = \{ u \in S^{n-1} : h_K(u) = \langle x, u \rangle \} \) for \(x \in \partial K \)

(all possible exterior unit normals at \(x \))

\(\text{For } \Xi \subset \partial K, \ S_K(\nu_K(\Xi)) = \mathcal{H}^{n-1}(\Xi) \)

\(K \) polytope, \(F_1, \ldots, F_k \) facets, \(u_i \) exterior unit normal at \(F_i \)

\[S_K(\{u_i\}) = \mathcal{H}^{n-1}(F_i). \]
Surface area measure

S_K - surface area measure of K on S^{n-1}

- $\nu_K(x) = \{u \in S^{n-1} : h_K(u) = \langle x, u \rangle \}$ for $x \in \partial K$
 (all possible exterior unit normals at x)
- For $\Xi \subset \partial K$, $S_K(\nu_K(\Xi)) = \mathcal{H}^{n-1}(\Xi)$
- K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

 $$S_K(\{u_i\}) = \mathcal{H}^{n-1}(F_i).$$

"Minkowski problem" : Given μ, find K with $\mu = S_K$

Solution (Minkowski, Alexandrov, Nirenberg)

$$\int_{S^{n-1}} u \, dS_K(u) = 0$$

- Minimize $\int_{S^{n-1}} h_C \, d\mu$ under the condition $V(C) = 1$
L_p surface area measures

L_p surface area measures (Firey, Lutwak 1990) $p \in \mathbb{R}$

$$dS_{K,p} = h_K^{1-p} dS_K$$

Examples

- $S_{K,1} = S_K$
- $S_{K,0}$ "cone-volume measure"
- $S_{K,-n}$ related to the $\text{SL}(n)$ invariant curvature $\frac{\kappa_K(u)}{h_K(u)^{n+1}}$

Theorem (Chou-Wang (2005), Hug-LYZ (2006))

If $p > 1$, $p \neq n$, then any finite Borel measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu = S_{K,p}$.

Remark Possibly $o \in \partial K$ if $1 < p < n$
L_p surface area measures

L_p surface area measures (Firey, Lutwak 1990) $p \in \mathbb{R}$

$$dS_{K,p} = h_{K}^{1-p} dS_K$$

Examples

- $S_{K,1} = S_K$
- $S_{K,0}$ ”cone-volume measure”
- $S_{K,-n}$ related to the $SL(n)$ invariant curvature $\frac{\kappa_K(u)}{h_K(u)^{n+1}}$

Theorem (Chou-Wang (2005), Hug-LYZ (2006))

If $p > 1$, $p \neq n$, then any finite Borel measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu = S_{K,p}$.

Remark Possibly $o \in \partial K$ if $1 < p < n$

Theorem (Zhu (2015))

If $p < 1$, then any ”general” discrete measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu = S_{K,p}$.
Differential equation for L_p surface area measures

$$h^{1-p} \det(\nabla^2 h + hI) = f$$

Theorem

There is a solution K with $o \in K$ and $f \, d\mathcal{H}^{n-1} = dS_{K,p}$ provided

- $0 \leq p < 1$ and f is in L^1 \textit{(Chen, Li, Zhu)}
- $-n < p < 0$ and f is in $L^{\frac{n}{n+p}}$ \textit{(Bianchi, B, Colesanti)}
Differential equation for L_p surface area measures

\[h^{1-p} \det(\nabla^2 h + hl) = f \]

Theorem

There is a solution K with $o \in K$ and $f \, d\mathcal{H}^{n-1} = dS_{K,p}$ provided

- $0 \leq p < 1$ and f is in L^1 (Chen, Li, Zhu)
- $-n < p < 0$ and f is in $L^{\frac{n}{n+p}}$ (Bianchi, B, Colesanti)

Theorem

$0 < \inf f \leq \sup f < \infty$

- If $p \leq 2 - n$, then $o \in \text{int}K$, and hence K is smooth and strictly convex (Chou, Wang)
- If $p \leq 4 - n$, then K is smooth (Bianchi, B, Colesanti)
- If $o \in \text{int}K$ and f is C^α, then ∂K is $C^{2,\alpha}$ (Caffarelli)
Ideas to solve L_p-Minkowski problem for given μ

$p > 1$

- Minimize $\int_{S^{n-1}} h_K^p \, d\mu$ under the condition $V(K) = 1$
- Weak approximation by discrete measures (polytopes)
Ideas to solve L_p-Minkowski problem for given μ

$p > 1$

- Minimize $\int_{S^{n-1}} h_K^p \, d\mu$ under the condition $V(K) = 1$
- Weak approximation by discrete measures (polytopes)

$p < 1$

$$\varphi(t) = \begin{cases}
 t^p & \text{if } 0 < p < 1 \\
 \log t & \text{if } p = 0 \\
 -t^p & \text{if } p < 0
\end{cases}$$

For $\mathcal{K} = \{\text{convex body } K: \ o \in K \text{ and } V(K) = 1\}$, find

$$\inf_{K \in \mathcal{K}} \sup_{\xi \in \text{int} K} \int_{S^{d-1}} \varphi \circ h_{K-\xi} \, d\mu$$
Dual curvature measures

Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

\[\tilde{C}_{K,q}(\nu_K \circ r_K(\omega)) = \int_{\omega} \varrho^q_K(u) \, du \quad \text{for } \omega \subset S^{n-1} \]

\[u \in S^{n-1} \implies r_K(u) = \varrho_K(u)u \in \partial K, \quad \varrho_K(u) \geq 0 \]

Example

\[\tilde{C}_{K,n} = S_{0,K} \iff d\tilde{C}_{K,n} = h_K dS_K \]
Dual curvature measures

Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

\[\tilde{C}_{K,q} (\nu_K \circ r_K (\omega)) = \int_{\omega} \varphi_K^q (u) \, du \quad \text{for} \; \omega \subset S^{n-1} \]

\[u \in S^{n-1} \implies r_K (u) = \varphi_K (u) \quad u \in \partial K, \; \varphi_K (u) \geq 0 \]

Example

\[\tilde{C}_{K,n} = S_{0,K} \iff d\tilde{C}_{K,n} = h_K dS_K \]

Theorem (Zhao (2016), B-Henk-Pollehn (2016))

0 < q < n, and \(\mu \) is finite even non-trivial Borel measure on \(S^{n-1} \). Then \(\mu = \tilde{C}_{K,q} \) for \(o \)-symmetric \(K \) iff for every non-trivial \(L \),

\[\mu (L \cap S^{n-1}) < \frac{\dim L}{q} \cdot \mu (S^{n-1}). \]
L_p dual curvature measures

Lutwak, Yang, Zhang (2016) $p, q \in \mathbb{R}$

$$d\tilde{C}_{K,p,q} = h_K^{-p} d\tilde{C}_{K,q}$$

Examples

- $\tilde{C}_{K,p,n} = S_{K,p}$
- $\tilde{C}_{K,0,q} = \tilde{C}_{K,q}$
\(L_p \) dual curvature measures

Lutwak, Yang, Zhang (2016) \(p, q \in \mathbb{R} \)

\[
d\tilde{C}_{K,p,q} = h_{K}^{-p} \, d\tilde{C}_{K,q}
\]

Examples

\[\tilde{C}_{K,p,n} = S_{K,p} \]

\[\tilde{C}_{K,0,q} = \tilde{C}_{K,q} \]

Theorem

\(\mu = \tilde{C}_{K,p,n} \iff \mu \) is not contrated on a great subsphere and

\[p > 1 \text{ and } q > 0, \ p \neq q \ (B, \ Fodor) \]

\[p > 0 \text{ and } q < 0 \ (Huang, \ Zhao) \]

Idea to solve \(L_p \)-dual Minkowski problem for \(p > 1, \ q > 0, \ \mu \)

Minimize \(\int_{S^{n-1}} h_K^p \, d\mu \) under the condition \(V_q(K) = \frac{1}{n} \int_{S^{n-1}} q^q_K = 1 \)