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Reconstruction of smooth closed convex surfaces from
Gauss curvature

I X is a compact C 2
+ hypersurface in Rn

I ux is exterior unit normal at x ∈ X

I κX (ux) > 0 is the Gauss curvature

Observation (Minkowski)∫
Sn−1

u · κX (u)−1 du = o. (1)

Minkowski problem (E.g. Inverse problem of short wave diffraction)
For continuous κ : Sn−1 → R+ satisfying (1), find C 2

+ hypersurface
X ⊂ Rn such that κ(ux) is the Gauss curvature at x ∈ X .
Monge-Ampere type differential equation on Sn−1:

det(∇2h + h I ) = κ−1

where h(u) = max{〈u, x〉 : x ∈ X} is the support function.
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Notation

I K ,C - convex bodies in Rn

(convex compact with non-empty interior)

I V (K ) - volume (Lebesgue measure)

I Hn−1 - (n − 1)-Hausdorff measure

I hK - support function of K
hK (u) = max{〈u, x〉 : x ∈ K} for u ∈ Rn

I L - linear subspace, L 6= {o},Rn

I µ - non-trivial Borel measure on Sn−1



Surface area measure

SK - surface area measure of K on Sn−1

I νK (x) = {u ∈ Sn−1 : hK (u) = 〈x , u〉} for x ∈ ∂K
(all possible exterior unit normals at x)

I For Ξ ⊂ ∂K , SK (νK (Ξ)) = Hn−1(Ξ)

I ∂K is C 2
+ and κ(ux) Gauss curvature at x ∈ ∂K , ux = νK (x),

SK (ω) =

∫
ω
κ−1(u) du for ω ⊂ Sn−1.

I K polytope, F1, . . . ,Fk facets, ui exterior unit normal at Fi

SK ({ui}) = Hn−1(Fi ).

Properties

I SK (Sn−1) =surface area of K

I V (K ) = 1
n

∫
Sn−1 hK dSK
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Minkowski problem

”Minkowski problem” (Minkowski, Alexandrov, Nirenberg)
µ = SK for some unique convex body K (up to translation) iff

1. µ(L ∩ Sn−1) < µ(Sn−1) for any L with dim L = n − 1

2.
∫
Sn−1 u dµ(u) = o

If µ is even, then the first condition is enough

To solve the Minkowski problem,

I Minimize
∫
Sn−1 hC dµ under the condition V (C ) = 1

I Uniqueness comes from uniqueness in the Minkowski
inequality
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Brunn-Minkowski inequality

αK + βC = {αx + βy : x ∈ K , y ∈ C}
= {x ∈ Rn : 〈u, x〉 ≤ αhK (u) + βhC (u) ∀u ∈ Sn−1}

Brunn-Minkowski inequality α, β > 0

V (αK + β C )
1
n ≥ αV (K )

1
n + β V (C )

1
n

with equality iff K and C are homothetic.
Remark Yields the isoperimetric inequality if C is the unit ball

Minkowski inequality If V (K ) = V (C ), then∫
Sn−1

hC dSK ≥
∫
Sn−1

hK dSK ,

with equality iff K and C are translates.
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Logarithmic Minkowski problem - Cone volume measure

dVK= 1
n hKdSK - cone volume measure on Sn−1 if o ∈ intK

(Gromov, Milman, 1986)

I K polytope, F1, . . . ,Fk facets, ui exterior unit normal at Fi

VK ({ui}) =
hK (ui )Hn−1(Fi )

n
= V (conv{o,Fi}).

I ω ⊂ Sn−1

VK (ω) =

∫
ω

hK (u)

n
dSK (u).

I VK (Sn−1) = V (K ).

Monge-Ampere type differential equation on Sn−1 for h = hK if µ
has a density function f :

h det(∇2h + h I ) = f
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Even cone volume measures

Theorem (B, Lutwak, Yang, Zhang)

Let µ be an even Borel measure on Sn−1.
µ = VK for some o-symmetric convex body K iff

(i) µ(L ∩ Sn−1) ≤ dim L
n µ(Sn−1) for any L 6= {o},Rn

(ii) If equality holds for some L, then suppµ ⊂ L ∪ L′ for
some complementary L′

Necessity for polytopes: Henk-Schuermann-Wills, He-Leng, Xiong
Idea for sufficiency: Minimize

∫
Sn−1 log hC dµ assuming V (C ) = 1

Conjecture (Uniqueness)

VK = VC for o-symmetric convex bodies K and C with
V (K ) = V (C ) iff K and C have dilated direct summands; namely,
K = K1 ⊕ . . .⊕ Km and C = C1 ⊕ . . .⊕ Cm with Ki = λiCi for
λ1, . . . , λm > 0.
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Cone volume measure for certain non-centrally symmetric
bodies

Theorem (B, Henk, Linke)

If the centroid of K is the origin, then

(i) VK (L ∩ Sn−1) ≤ dim L
n · V (K ) for any L 6= {o},Rn

(ii) If equality holds for some L, then K = M + M ′ where
M ⊂ L⊥, dimM = dimL⊥, dimM ′ = dimL

Remark (i) and (ii) does not charactherize VK if the centroid of K
is the origin

Theorem (Zhu)

If µ is a discrete Borel measure on Sn−1 such that any different
u1, . . . , un ∈ suppµ are independent, then µ = VK for some
polytope K
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Isotropic position of a measure on Sn−1

Theorem (BLYZ)

Let µ be a Borel probability measure on Sn−1. There exists
A ∈ GL(n) such that∫

Sn−1

Au

‖Au‖
⊗ Au

‖Au‖
dµ(u) = 1

n Idn

iff

(i) µ(L ∩ Sn−1) ≤ dim L
n for any L 6= {o},Rn

(ii) If equality holds for some L, then suppµ ⊂ L ∪ L′ for
some complementary L′

I Sufficiency if µ(L ∩ Sn−1) < dim L
n is due to Klartag

(supergaussian marginals of probability measures on Rn)

I Discrete case is due to Carlen-Lieb-Loss (extremals for the
Brascamp-Lieb inequality). See also
Benneth&Carbery&Christ&Tao, Carlen&Cordero-Erausquin
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Logarithmic Brunn-Minkowski inequality
α ∈ [0, 1], o ∈ intK , intC

αK +0 (1− α)C = {x ∈ Rn : 〈u, x〉 ≤ hK (u)αhC (u)1−α ∀u ∈ Sn−1}

αK +0 (1− α)C ⊂ αK + (1− α)C

Conjecture (Logarithmic Brunn-Minkowski conjecture)

α ∈ (0, 1), K , C are o-symmetric

V (αK +0 (1− α)C ) ≥ V (K )αV (C )1−α

with equality iff K and C have dilated direct summands.

Conjecture (Logarithmic Minkowski conjecture)

For o-symmetric K, C , if V (K ) = V (C ), then∫
Sn−1

log hC dVK ≥
∫
Sn−1

log hK dVK ,

with equality iff K and C have dilated direct summands.
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About the logarithmic Brunn-Minkowski conjecture

I Interesting for any log-concave measure (like Gaussian)
instead of volume

I n = 2 for volume (BLYZ)

I K and C are unconditional for any log-concave measure -
follows directly from Prékopa-Leindler (Bollobás&Leader and
Cordero-Erausquin&Fradelizi&Maurey on coordinatewise
product)

I K and C are dilates for the Gaussian measure
(Cordero-Erausquin&Fradelizi&Maurey on B-conjecture)

I Holds for the volume in R2n = Cn if K and C are complex
convex bodies (Rotem)

I If it holds for the volume, it does hold for any log-concave
measure (Saroglou)
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Alexandrov’s problem
Alexandrov’s Integral Curvature, 1940
For o ∈ intK and ω ⊂ Sn−1,

CK (ω) = Hn−1(νK ◦ rK (ω))

where for u ∈ Sn−1, rK (u) = %K (u)u ∈ ∂K for %K (u) > 0.

Theorem (Alexandrov)

For a finite Borel measure µ on Sn−1, µ = CK if and only if

I µ(Sn−1) = Hn−1(Sn−1),

I for any proper closed convex ω ⊂ Sn−1, we have

µ(Sn−1\ω) > Hn−1(ω∗).

Theorem (B,Yiming, Zhang, 2016)

There is a proof where one minimizes∫
Sn−1

log hK (u) dµ(u)−
∫
Sn−1

log %K (u) du.
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Sn−1

log hK (u) dµ(u)−
∫
Sn−1

log %K (u) du.



Lp surface area measures
Lp surface area measures (Firey, Lutwak 1990) p ∈ R

dSK ,p = h1−p
K dSK = nh−pK dVK

Examples

I SK ,1 = SK

I SK ,0 = nVK

I SK ,−n related to the SL(n) invariant curvature κK (u)
hK (u)n+1

Theorem (Chou-Wang (2005), Hug-LYZ (2006))

If p > 1, p 6= n, then any finite Borel measure µ on Sn−1 not
concentrated on any closed hemisphere is of the form µ = SK ,p.

Theorem (Zhu (2015))

If p < 1, then any discrete measure µ on Sn−1 not concentrated
on any closed hemisphere whose support is in general position is of
the form µ = SK ,p.



Differential equation for Lp surface area measures

h1−p det(∇2h + hI ) = f

Theorem (Chou-Wang (2005))

If −n < p < 1, f is bounded and its infimum is positive, then
f dHn−1 = SK ,p.

Remak There must be conditions on f if p = −n

Theorem (B-Trinh (2017))

If n = 2, 0 < p < 1, and f is bounded, then f dHn−1 = SK ,p.

General Ideas to solve Lp-Minkowski problem for given p > 1, µ

I Minimize
∫
Sn−1 hp

K dµ under the condition V (K ) = 1

I Weak approximation by discrete measures (polytopes)
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Dual curvature measures
Dual curvature measures
Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

C̃K ,q(νK ◦ rK (ω)) =

∫
ω
%q(u) du for ω ⊂ Sn−1

Most interesting if q ∈ [0, n]
Examples

I C̃K ,0 = CK∗ (Alexandrov’s Integral Curvature)

I C̃K ,n = nVK (cone volume measure)

Theorem (Zhao (2016), B-Henk-Hassen (2016))

0 < q < n, and µ is finite even non-trival Borel measure on Sn−1.
Then µ = C̃K ,q for o-symmetric K iff for every non-trivial L,

µ(L ∩ Sn−1) <
dim L

q
· µ(Sn−1).
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Lp Dual curvature measures

Lutwak, Yang, Zhang, 2016 (manuscript), p, q ∈ R

dC̃K ,p,q = h−pK dC̃K ,q

Examples

I C̃K ,p,n = SK ,p

I C̃K ,0,q = C̃K ,q

Dual Intrinsic Volume q > 0

Vq(K ) =
1

n

∫
Sn−1

%qK dHn−1

An idea to solve Lp-dual Minkowski problem for p, q > 1, µ

I Minimize
∫
Sn−1 hp

K dµ under the condition Vq(K ) = 1

I Weak approximation by discrete measures (polytopes)
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