Linear codes from Hermitian curves

Korchmáros Gábor

Università degli Studi della Basilicata, Olaszország

közös munka Pietro Speziali doktorandusszal

Kerékjártó Béla szeminárium

2015 szeptember 9 Bolyai Intézet Szeged

1-point Hermitian code from Hermitian Curve

- \mathcal{X} := Hermitian curve of genus $g = \frac{1}{2}(q^2 q)$ and with (affine) equation $H(X, Y) = Y^q + Y X^{q+1} = 0$, defined over \mathbb{F}_{q^2} .
- $\mathcal{X}(\mathbb{F}_{q^2})$:= set of all points of \mathcal{X} on $PG(2, q^2)$.
- $|\mathcal{X}(\mathbb{F}_{q^2})| = q^3 + 1$, \mathcal{X} has exactly one point at infinity, P_{∞} ;

• D :=
$$\mathcal{X}(\mathbb{F}_{q^2}) \setminus \{P_\infty\}$$
; D = $\{Q_1, Q_2, \dots, Q_n\}$ with $n = q^3$.

- Fix an integer m such that $1 \le m \le q$;
- $\Phi_m := \{f | f \in \mathbb{F}_{q^2}[X, Y], \deg f \leq m\}; \Phi_m \text{ is an } \mathbb{F}_{q^2}\text{-vector space of dimension } m+1.$
- The evaluation map

$$\mathrm{ev} = egin{cases} \Phi_m \mapsto V(n,q^2), \ f \in \Phi_m \mapsto (f(Q_1),\ldots,f(Q_n)) \in V(n,q^2), \end{cases}$$

- is injective. $ev(\Phi_m)$ is an m + 1-dimensional subspace $C_{\mathcal{L}}(\mathbb{D}, mP_{\infty})$ of $V(n, q^2)$.
- In coding theory terms: C_L(D, P_∞) is a functional (or evaluation) code, and its codewords are the vectors in C_L(D, P_∞);

1-point Hermitian code

- weight of a codeword ω(ev(f)) := number of the non-zero coordinates of (ev(f));
- $\omega(\operatorname{ev}(f)) \ge n m(q+1)$ and "=" is attained;
- In coding theory terms: minimum distance of $C_{\mathcal{L}}(D, mP_{\infty}) = n m(q+1) = q^3 m(q+1);$
- $C_{\mathcal{L}}(D, mP_{\infty})$ is the 1-point Hermitian code;
- How to generalize this construction?
- Replace the (unique) point P_∞ of X at infinity by a subset Ω of points in X(F_{q²}), and
- Consider not only polynomials but also rational functions defined on D = X(F_{q²}) \ Ω.

Functional Goppa codes from Hermitian curve

- $\mathbb{F}_{q^2}(\mathcal{X})$:= function field of \mathcal{X} over \mathbb{F}_{q^2} ;
- Divisor:= a finite (formal) sum of places of $\mathbb{F}_{q^2}(\mathcal{X})$;
- Principal divisor:= $Div(f) = \sum n_P P$ where
- $n_P > 0$ if f has a zero of multiplicity n_p at P, $n_p < 0$ if f has a pole of multiplicity $-n_P$,
- G:= divisor of $\mathbb{F}_{q^2}(\mathcal{X})$; $\Omega := \operatorname{supp}(G)$;
- $D:=\mathbb{F}_{q^2}(\mathcal{X})\setminus\Omega$, n:=|D|;
- $\mathcal{L}(G) := \{ f \mid \operatorname{Div}(f) \succeq -G, f \in \mathbb{F}_{q^2}(\mathcal{X}) \} \cup \{ 0 \}$, RR space;
- Functional code:

 $C_{\mathcal{L}}(\mathtt{D},\mathtt{G}) := \{(f(Q_1),\ldots,f(Q_n))| f \in \mathcal{L}(\mathtt{G})\},\$

- length $(C_{\mathcal{L}}(D,G)) = n$,
- dim $C_{\mathcal{L}}(\mathsf{D},\mathsf{G}) \ge \deg(\mathsf{G}) g + 1 = \deg(\mathsf{G}) \frac{1}{2}(q^2 q + 2).$
- minimum distance of $C_{\mathcal{L}}(D,G) \ge \delta$ with $\delta := n \deg(G)$,
- ($\delta :=$ Goppa designed minimum distance)

The geometry of the Riemann-Roch space

- Divisor: formal sum of points on \mathcal{X} : $U = \sum n_Q Q \ n_Q \in \mathbb{Z}$.
- $U \succeq V$ if $n_Q(U) \ge n_Q(V)$ for every $Q \in \mathcal{X}$.
- Intersection multiplicity of \mathcal{X} and a curve C at a point Q: $I(\mathcal{X} \cap C, Q)$.
- Intersection divisor: If \mathcal{X} is not a component of C then $\mathcal{X} \cap C = \{R_1, \dots, R_m\}$ and

$$\mathcal{X} \cdot C = \sum_{i=1}^m I(\mathcal{X} \cap C, Q_i)Q_i.$$

• Bézout's theorem: If $\mathcal X$ is not a component of C then

$$(q+1)\deg C = \sum_{i=1}^m I(\mathcal{X} \cap C, Q_i).$$

• Nöther AB+FD theorem:

$$\mathcal{G} := G(X, Y) = 0, \mathcal{T} := T(X, Y) = 0. \text{ If } \mathcal{X} \cdot \mathcal{T} \succeq \mathcal{X} \cdot \mathcal{G} \text{ then}$$
$$T(X, Y) = A(X, Y)H(X, Y) + B(X, Y)G(X, Y).$$

Goppe codes from Baer subconic, q odd

- C_2 : parabola with equation $y = \frac{1}{2}x^2$,
- $C_2 \cap \mathcal{X} = \{P_1, \dots, P_{q+1}\}$ where P_1, \dots, P_{q+1} are the points of \mathcal{X} (and C_2) over \mathbb{F}_q ,
- $\Omega = C_2 \cap \mathcal{H}$ is a Baer subconic,
- $\mathtt{G}:=m\mathtt{P}$ with $\mathtt{P}=P_1+\ldots+P_{q+1}$ and $m\geq 1$,
- $D := \mathcal{X}(\mathbb{F}_{q^2}) \setminus \Omega$, $Length(C_{\mathcal{L}}(D, mP)) = q^3 q$,
- $C_{\mathcal{L}}(\mathbb{D}, m\mathbb{P})/\mathbb{F}_{q^2} \cong PG(r-1, q^2)$ with $r = \dim C_{\mathcal{L}}(\mathbb{D}, m\mathbb{P})$,
- Choose a curve \mathcal{F} such that $\mathcal{F} \cdot \mathcal{X} \succeq mP$. Let $t = \deg \mathcal{F}$.
- S_t:= linear system of all degree t plane algebraic curves (possible singular, or reducible) defined over 𝔽_{q²} which do not have X as a component.
- $\Sigma_t :=$ subset of S_t consisting of all curves \mathcal{H} such that $\mathcal{H} \cdot \mathcal{X} \succeq \mathcal{F} \cdot \mathcal{X} mP$.

The minimum distance problem for $C_{\mathcal{L}}(D, mP)$ is equivalent to the problem of determining the maximum number N of common points of D and \mathcal{H} with \mathcal{H} ranging over Σ_t .

 $C_{\mathcal{L}}({ extsf{D}},m{ extsf{P}})$ has length $n=q^3-q$ and, for $m\leq q^2-q$, has dimension k=

$$\begin{cases} \frac{1}{2}m(m+3)+1; \text{ if } m \text{ even, } m \leq q-2; \\ \frac{1}{2}(m-1)(m-2)+1; \text{ if } m \text{ odd, } 0 < m \leq \frac{1}{2}(q-1); \\ \frac{1}{2}(m-1)(m-2)+1+2(m+1)-q; m \text{ odd, } \frac{1}{2}(q-1) < m \leq q-2; \\ m(q+1)+\frac{1}{2}q(q-1)+1; \text{ if } q-2 < m < q^2-q. \end{cases}$$

If $q^2 - q < m \leq q^2 - 3$, a bound for k is
 $q^3 - q + \frac{1}{2}q(q-1) + 1 \leq k \leq m(q+1) - \frac{1}{2}(q^2 - q) - \frac{1}{2}r(r+3),$
where $t = m$ or $t = m+1$ according as m is even or odd, and $r = t - (q^2 - q + 1).$

★ 문 → < 문 → </p>

3

Minimum distance of $C_{\mathcal{L}}(D, mP)$

 $\mathcal{C}_{\mathcal{L}}(\mathtt{D},m\mathtt{P})$ has, for $m\leq q-2$, minimum distance d equal to

$$\begin{cases} (q+1)(q^2 - q - m) = \delta, \text{ if } m \text{ even and, } m \le q - 2; \\ (q+1)(q^2 - q - m) = \delta, \text{ if } m \text{ odd, } m \le \frac{1}{2}(q-1); \\ (q+1)(q^2 - q - m + 1) = \delta + q + 1; \text{ if } m \text{ odd, } \frac{1}{2}(q-1) < m \le q - 2 \end{cases}$$

If $q - 2 < m \le q^2 - q$, a lower bound for d is

$$d \ge (q+1)(q^2-q-m)$$

and equality holds if either *m* is odd, or *m* is even and $m \le q^2 - \frac{1}{2}(3q+1)$. If $q^2 - q < m \le q^2 - 3$, a lower bound for *d* is

$$d \geq q-1$$
.

Automorphisms of $C_{\mathcal{L}}(D, mP)$

Permutation automorphism is (α, β) where α is an injective map on $\mathcal{L}(mP)$ and β is a permutation on D, s.t.

$$lpha(f)(Q)=f(eta(Q))$$
 for all $f\in\mathcal{L}(m\mathtt{P})\;,Q\in\mathtt{D}.$

Theorem

Every automorphism of \mathcal{X} fixing Ω defines a permutation automorphism of $C_{\mathcal{L}}(D, mP)$;

Remark

This holds true for every Goppa-code.

Theorem

The permutation automorphism group of $C_{\mathcal{L}}(D, mP)$ is isomorphic to the projective linear group PGL(2, q).

Monomial automorphism is (α, β, γ) where α is an injective map on $\mathcal{L}(mP)$, β is permutations on D and γ is a map from D into \mathbb{F}_{q^2} such that

$$\alpha(f)(P) = \gamma(P)f(\beta(P)) \text{ for all } f \in \mathcal{L}(mP), \ P \in D.$$
(1)

Theorem

The group generated by the permutation, monomial and semilinear automorphisms of $C_{\mathcal{L}}(D, mP)$ is isomorphic to the semidirect product of $P\Gamma L(2, q)$ by a cyclic group of order $q^2 - 1$.

In the literature, the concept of an automorphism of Goppa codes (and any linear codes) is confined to the above three types.

(most general) automorphism of a linear code $[n, k, d]_q$ is a Hamming-distance preserving permutation of vectors which takes codeword to codeword.

If an automorphism is linear then it is monomial.

Open problem Does $C_{\mathcal{L}}(D, mP)$ have any automorphism other than the linear and semilinear ones ?