Linear codes from Hermitian curves

Korchmáros Gábor
Università degli Studi della Basilicata, Olaszország
közös munka Pietro Speziali doktorandusszal
Kerékjártó Béla szeminárium

2015 szeptember 9
Bolyai Intézet Szeged

1-point Hermitian code from Hermitian Curve

- $\mathcal{X}:=$ Hermitian curve of genus $g=\frac{1}{2}\left(q^{2}-q\right)$ and with (affine) equation $H(X, Y)=Y^{q}+Y-X^{q+1}=0$, defined over $\mathbb{F}_{q^{2}}$.
- $\mathcal{X}\left(\mathbb{F}_{q^{2}}\right):=$ set of all points of \mathcal{X} on $P G\left(2, q^{2}\right)$.
- $\left|\mathcal{X}\left(\mathbb{F}_{q^{2}}\right)\right|=q^{3}+1, \mathcal{X}$ has exactly one point at infinity, P_{∞};
- $\mathrm{D}:=\mathcal{X}\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{\infty}\right\} ; \mathrm{D}=\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$ with $n=q^{3}$.
- Fix an integer m such that $1 \leq m \leq q$;
- $\Phi_{m}:=\left\{f \mid f \in \mathbb{F}_{q^{2}}[X, Y]\right.$, $\left.\operatorname{deg} f \leq m\right\} ; \Phi_{m}$ is an $\mathbb{F}_{q^{2}}$-vector space of dimension $m+1$.
- The evaluation map

$$
\mathrm{ev}=\left\{\begin{array}{l}
\Phi_{m} \mapsto V\left(n, q^{2}\right) \\
f \in \Phi_{m} \mapsto\left(f\left(Q_{1}\right), \ldots, f\left(Q_{n}\right)\right) \in V\left(n, q^{2}\right)
\end{array}\right.
$$

- is injective. $\operatorname{ev}\left(\Phi_{\mathrm{m}}\right)$ is an $m+1$-dimensional subspace $C_{\mathcal{L}}\left(\mathrm{D}, m P_{\infty}\right)$ of $V\left(n, q^{2}\right)$.
- In coding theory terms: $C_{\mathcal{L}}\left(\mathrm{D}, P_{\infty}\right)$ is a functional (or evaluation) code, and its codewords are the vectors in $C_{\mathcal{L}}\left(\mathrm{D}, P_{\infty}\right) ;$

1-point Hermitian code

- weight of a codeword $\omega(\operatorname{ev}(f)):=$ number of the non-zero coordinates of $(e v(f))$;
- $\omega(\operatorname{ev}(f)) \geq n-m(q+1)$ and " $=$ " is attained;
- In coding theory terms: minimum distance of $C_{\mathcal{L}}\left(D, m P_{\infty}\right)=n-m(q+1)=q^{3}-m(q+1) ;$
- $C_{\mathcal{L}}\left(\mathrm{D}, m P_{\infty}\right)$ is the 1-point Hermitian code;
- How to generalize this construction?
- Replace the (unique) point P_{∞} of \mathcal{X} at infinity by a subset Ω of points in $\mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$, and
- Consider not only polynomials but also rational functions defined on $\mathrm{D}=\mathcal{X}\left(\mathbb{F}_{q^{2}}\right) \backslash \Omega$.
- $\mathbb{F}_{q^{2}}(\mathcal{X}):=$ function field of \mathcal{X} over $\mathbb{F}_{q^{2}}$;
- Divisor: $=$ a finite (formal) sum of places of $\mathbb{F}_{q^{2}}(\mathcal{X})$;
- Principal divisor: $=\operatorname{Div}(f)=\sum n_{P} P$ where
- $n_{P}>0$ if f has a zero of multiplicity n_{p} at $P, n_{p}<0$ if f has a pole of multiplicity $-n_{P}$,
- $\mathrm{G}:=$ divisor of $\mathbb{F}_{q^{2}}(\mathcal{X}) ; \Omega:=\operatorname{supp}(\mathrm{G})$;
- $\mathrm{D}:=\mathbb{F}_{q^{2}}(\mathcal{X}) \backslash \Omega, n:=|\mathrm{D}| ;$
- $\mathcal{L}(\mathrm{G}):=\left\{f \mid \operatorname{Div}(f) \succeq-\mathrm{G}, f \in \mathbb{F}_{q^{2}}(\mathcal{X})\right\} \cup\{0\}, R R$ space;
- Functional code:

$$
C_{\mathcal{L}}(\mathrm{D}, \mathrm{G}):=\left\{\left(f\left(Q_{1}\right), \ldots, f\left(Q_{n}\right)\right) \mid f \in \mathcal{L}(\mathrm{G})\right\},
$$

- length $\left(C_{\mathcal{L}}(\mathrm{D}, \mathrm{G})\right)=n$,
- $\operatorname{dim} C_{\mathcal{L}}(\mathrm{D}, \mathrm{G}) \geq \operatorname{deg}(\mathrm{G})-g+1=\operatorname{deg}(\mathrm{G})-\frac{1}{2}\left(q^{2}-q+2\right)$.
- minimum distance of $C_{\mathcal{L}}(\mathrm{D}, \mathrm{G}) \geq \delta$ with $\delta:=n-\operatorname{deg}(\mathrm{G})$,
- ($\delta:=$ Goppa designed minimum distance)

The geometry of the Riemann-Roch space

- Divisor: formal sum of points on $\mathcal{X}: U=\sum n_{Q} Q n_{Q} \in \mathbb{Z}$.
- $U \succeq V$ if $n_{Q}(U) \geq n_{Q}(V)$ for every $Q \in \mathcal{X}$.
- Intersection multiplicity of \mathcal{X} and a curve C at a point Q : $I(\mathcal{X} \cap C, Q)$.
- Intersection divisor: If \mathcal{X} is not a component of C then $\mathcal{X} \cap C=\left\{R_{1}, \ldots, R_{m}\right\}$ and

$$
\mathcal{X} \cdot C=\sum_{i=1}^{m} I\left(\mathcal{X} \cap C, Q_{i}\right) Q_{i} .
$$

- Bézout's theorem: If \mathcal{X} is not a component of C then

$$
(q+1) \operatorname{deg} C=\sum_{i=1}^{m} I\left(\mathcal{X} \cap C, Q_{i}\right)
$$

- Nöther $\mathrm{AB}+\mathrm{FD}$ theorem:

$$
\begin{gathered}
\mathcal{G}:=G(X, Y)=0, \mathcal{T}:=T(X, Y)=0 . \text { If } \mathcal{X} \cdot \mathcal{T} \succeq \mathcal{X} \cdot \mathcal{G} \text { then } \\
T(X, Y)=A(X, Y) H(X, Y)+B(X, Y) G(X, Y) .
\end{gathered}
$$

Goppe codes from Baer subconic, q odd

- C_{2} : parabola with equation $y=\frac{1}{2} x^{2}$,
- $C_{2} \cap \mathcal{X}=\left\{P_{1}, \ldots, P_{q+1}\right\}$ where P_{1}, \ldots, P_{q+1} are the points of \mathcal{X} (and C_{2}) over \mathbb{F}_{q},
- $\Omega=C_{2} \cap \mathcal{H}$ is a Baer subconic,
- $\mathrm{G}:=m \mathrm{P}$ with $\mathrm{P}=P_{1}+\ldots+P_{q+1}$ and $m \geq 1$,
- $\mathrm{D}:=\mathcal{X}\left(\mathbb{F}_{q^{2}}\right) \backslash \Omega$, Length $\left(C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})\right)=q^{3}-q$,
- $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P}) / \mathbb{F}_{q^{2}} \cong P G\left(r-1, q^{2}\right)$ with $r=\operatorname{dim} C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$,
- Choose a curve \mathcal{F} such that $\mathcal{F} \cdot \mathcal{X} \succeq m P$. Let $t=\operatorname{deg} \mathcal{F}$.
- $\mathbf{S}_{t}:=$ linear system of all degree t plane algebraic curves (possible singular, or reducible) defined over $\mathbb{F}_{q^{2}}$ which do not have \mathcal{X} as a component.
- $\boldsymbol{\Sigma}_{t}:=$ subset of \mathbf{S}_{t} consisting of all curves \mathcal{H} such that $\mathcal{H} \cdot \mathcal{X} \succeq \mathcal{F} \cdot \mathcal{X}-m P$.

The minimum distance problem for $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$ is equivalent to the problem of determining the maximum number N of common points of D and \mathcal{H} with \mathcal{H} ranging over $\boldsymbol{\Sigma}_{t}$.

Parameters of $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$

$C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$ has length $n=q^{3}-q$ and, for $m \leq q^{2}-q$, has dimension $k=$
$\frac{1}{2} m(m+3)+1$; if m even, $m \leq q-2$;
$\left\{\frac{1}{2}(m-1)(m-2)+1\right.$; if m odd, $0<m \leq \frac{1}{2}(q-1)$;
$\frac{1}{2}(m-1)(m-2)+1+2(m+1)-q ; m$ odd, $\frac{1}{2}(q-1)<m \leq q-2$;
$m(q+1)+\frac{1}{2} q(q-1)+1$; if $q-2<m<q^{2}-q$.
If $q^{2}-q<m \leq q^{2}-3$, a bound for k is
$q^{3}-q+\frac{1}{2} q(q-1)+1 \leq k \leq m(q+1)-\frac{1}{2}\left(q^{2}-q\right)-\frac{1}{2} r(r+3)$,
where $t=m$ or $t=m+1$ according as m is even or odd, and $r=t-\left(q^{2}-q+1\right)$.

Minimum distance of $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$

$C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$ has, for $m \leq q-2$, minimum distance d equal to

$$
\left\{\begin{array}{l}
(q+1)\left(q^{2}-q-m\right)=\delta, \text { if } m \text { even and, } m \leq q-2 ; \\
(q+1)\left(q^{2}-q-m\right)=\delta, \text { if } m \text { odd, } m \leq \frac{1}{2}(q-1) ; \\
(q+1)\left(q^{2}-q-m+1\right)=\delta+q+1 ; \text { if } m \text { odd, } \frac{1}{2}(q-1)<m \leq q-2
\end{array}\right.
$$

If $q-2<m \leq q^{2}-q$, a lower bound for d is

$$
d \geq(q+1)\left(q^{2}-q-m\right)
$$

and equality holds if either m is odd, or m is even and $m \leq q^{2}-\frac{1}{2}(3 q+1)$. If $q^{2}-q<m \leq q^{2}-3$, a lower bound for d is

$$
d \geq q-1
$$

Automorphisms of $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$

Permutation automorphism is (α, β) where α is an injective map on $\mathcal{L}(m \mathrm{P})$ and β is a permutation on D , s.t.

$$
\alpha(f)(Q)=f(\beta(Q)) \text { for all } f \in \mathcal{L}(m \mathrm{P}), Q \in \mathrm{D}
$$

Theorem

Every automorphism of \mathcal{X} fixing Ω defines a permutation automorphism of $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$;

Remark

This holds true for every Goppa-code.

Theorem

The permutation automorphism group of $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$ is isomorphic to the projective linear group $\operatorname{PGL}(2, q)$.

Automorphisms of $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$, cont.

Monomial automorphism is (α, β, γ) where α is an injective map on $\mathcal{L}(m \mathrm{P}), \beta$ is permutations on D and γ is a map from D into $\mathbb{F}_{q^{2}}$ such that

$$
\begin{equation*}
\alpha(f)(P)=\gamma(P) f(\beta(P)) \text { for all } f \in \mathcal{L}(m \mathrm{P}), P \in \mathrm{D} \tag{1}
\end{equation*}
$$

Theorem

The group generated by the permutation, monomial and semilinear automorphisms of $C_{\mathcal{L}}(\mathrm{D}, \mathrm{mP})$ is isomorphic to the semidirect product of $P \Gamma L(2, q)$ by a cyclic group of order $q^{2}-1$.

Automorphisms of $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$ cont.

In the literature, the concept of an automorphism of Goppa codes (and any linear codes) is confined to the above three types.
(most general) automorphism of a linear code $[n, k, d]_{q}$ is a Hamming-distance preserving permutation of vectors which takes codeword to codeword.

If an automorphism is linear then it is monomial.
Open problem Does $C_{\mathcal{L}}(\mathrm{D}, m \mathrm{P})$ have any automorphism other than the linear and semilinear ones ?

