On chromatic indices of affine spaces

György Kiss

Dept. of Geometry and MTA-ELTE GAC Research Group
ELTE, Budapest

May 22, 2014, Szeged

Coauthors

Gabriela Araujo-Pardo, Christian Rubio-Montiel and Adrian Vázquez-Ávila

Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM)

Graph decomposition

Definition

A decomposition of a simple graph $G=(V(G), E(G))$ is a pair $[G, \mathcal{D}]$ where \mathcal{D} is a set of induced subgraphs of G, such that every edge of G belongs to exactly one subgraph in \mathcal{D}.

Graph decomposition

Definition

A decomposition of a simple graph $G=(V(G), E(G))$ is a pair $[G, \mathcal{D}]$ where \mathcal{D} is a set of induced subgraphs of G, such that every edge of G belongs to exactly one subgraph in \mathcal{D}.

Graph decomposition

Graph decomposition

Graph decomposition

Definition

A decomposition of a simple graph $G=(V(G), E(G))$ is a pair $[G, \mathcal{D}]$ where \mathcal{D} is a set of induced subgraphs of G, such that every edge of G belongs to exactly one subgraph in \mathcal{D}.

Coloring

Definition

A coloring of a decomposition [G, D] with k colors is a surjective function that assigns to edges of G a color from a k-set of colors, such that all edges of $H \in \mathcal{D}$ have the same color. A coloring of $[G, \mathcal{D}]$ with k colors is proper, if for all $H_{1}, H_{2} \in \mathcal{D}$ with $H_{1} \neq H_{2}$ and $V\left(H_{1}\right) \cap V\left(H_{2}\right) \neq \emptyset$, then $E\left(H_{1}\right)$ and $E\left(H_{2}\right)$ have different colors.

gyk

Coloring

Definition

The chromatic index $\chi^{\prime}([G, \mathcal{D})]$ of a decomposition is the smallest number k for which there exists a proper coloring of $[G, \mathcal{D}]$ with k colors.

Coloring

Definition

The chromatic index $\chi^{\prime}([G, \mathcal{D})]$ of a decomposition is the smallest number k for which there exists a proper coloring of $[G, \mathcal{D}]$ with k colors.

Coloring

Definition

A coloring of $[G, \mathcal{D}]$ with k colors is complete if each pair of colors appears on at least a vertex of G. The pseudoachromatic index $\psi^{\prime}([G, \mathcal{D}])$ of a decomposition is the largest number k for which there exist a complete coloring with k colors.

Coloring

Definition

A coloring of $[G, \mathcal{D}]$ with k colors is complete if each pair of colors appears on at least a vertex of G. The pseudoachromatic index $\psi^{\prime}([G, \mathcal{D}])$ of a decomposition is the largest number k for which there exist a complete coloring with k colors.

Coloring

Definition

The achromatic index $\alpha^{\prime}([G, \mathcal{D}])$ of a decomposition is the largest number k for which there exist a proper and complete coloring with k colors.

Coloring

Definition

The achromatic index $\alpha^{\prime}([G, \mathcal{D}])$ of a decomposition is the largest number k for which there exist a proper and complete coloring with k colors.

Coloring

If $\mathcal{D}=E(G)$ then $\chi^{\prime}([G, E]), \alpha^{\prime}([G, E])$ and $\psi^{\prime}([G, E])$ are the usual chromatic, achromatic and pseudoachromatic indices of G, respectively.

Coloring

If $\mathcal{D}=E(G)$ then $\chi^{\prime}([G, E]), \alpha^{\prime}([G, E])$ and $\psi^{\prime}([G, E])$ are the usual chromatic, achromatic and pseudoachromatic indices of G, respectively.

Clearly we have that

$$
\chi^{\prime}([G, \mathcal{D}]) \leq \alpha^{\prime}([G, \mathcal{D}]) \leq \psi^{\prime}([G, \mathcal{D}])
$$

The Erdős-Faber-Lovász Conjecture

Conjecture

For any decomposition \mathcal{D} of K_{v}, given by complete graphs, satisfies the inequality

$$
\chi^{\prime}\left(\left[K_{v}, \mathcal{D}\right]\right) \leq v .
$$

Decompositions of complete graphs and designs

Designs define decompositions of the corresponding complete graphs in the natural way. Identify the points of a (v, κ)-design $D=(\mathcal{V}, \mathcal{B})$ with the set of vertices of the complete graph K_{v}. Then the set of points of each block of D induces in K_{v} a subgraph isomorphic to K_{κ} and these subgraphs give a decomposition of K_{v}.

Known results

The EFL Conjecture is open even for the ($v, 3$)-designs (Steiner triple systems $S T S(v)$).

Theorem (Colbourn, C. J. - Colbourn, M. J.)

If \mathcal{D} is a (v, κ)-design, then

$$
\chi^{\prime}(\mathcal{D})<\frac{\kappa v}{\kappa-1} .
$$

Theorem (Colbourn, C. J. - Colbourn, M. J.)

If $\mathcal{D}=\left(\mathbb{Z}_{v}, \mathcal{B}\right)$ is a cyclic designs (that is the mapping $i \mapsto i+1$ is an automorphism), then

$$
\chi^{\prime}(\mathcal{D}) \leq v,
$$

the EFL Conjecture is true for cyclic designs.

Known results

The finite projective space $\operatorname{PG}(n, q)$ can be regarded as a $\left(\frac{q^{n+1}-1}{q-1}, q+1\right)$-design, where the set of blocks are the set of lines of $\mathrm{PG}(n, q)$

Theorem (Beutelspacher, A. - Jungnickel, D. - Vanstone, S.A.)
If \mathcal{D} is the n-dimensional finite projective space, then

$$
\chi^{\prime}(\mathcal{D}) \leq v,
$$

the EFL Conjecture is true for finite projective spaces.

Projective planes

Let Π_{q} be any finite projective plane of order q. Then
$v=q^{2}+q+1$ is the number of points in Π_{q}. It is not hard to see that

$$
\chi^{\prime}\left(\Pi_{q}\right)=\alpha^{\prime}\left(\Pi_{q}\right)=\psi^{\prime}\left(\Pi_{q}\right)=v
$$

Achromatic index

Theorem (Bouchet, A)
 If q is an odd number and $v=q^{2}+q+1$ then a projective plane of order q exists if and only if $\alpha^{\prime}\left(\left[K_{v}, E\right]\right)=q v$.

As a corollary of this theorem we get that $\alpha^{\prime}\left(K_{v}\right)$ grows asymtotically, like $v^{3 / 2}$.

Achromatic index

The achromatic index of $S T S(v)$ has been studied before.

Theorem (Colbourn, C. J. - Colbourn, M. J.)

For any $S T S(v), \alpha^{\prime}(S T S(v)) \leq c v^{3 / 2}$ for c is a fixed constant.

Theorem (Colbourn, C. J. - Colbourn, M. J.)

For infinitely many v, there exists an $\operatorname{STS}(v)$, such that

$$
\alpha^{\prime}(S T S(v)) \geq c^{\prime} v^{3 / 2}
$$

for some fixed constant c^{\prime}.

Achromatic index

Theorem (A-P, K, R-M, V-A)

$\alpha^{\prime}(\operatorname{PG}(5, q)) \geq c \frac{v^{1.5}}{\kappa-1}$, where $v=\frac{q^{6}-1}{q-1}$, and c a fixed constant

Pseudoachromatic index

Theorem (A-P, K, R-M, V-A)

Let \mathcal{D} be a (v, κ)-design. Then

$$
\psi^{\prime}(\mathcal{D}) \leq \frac{\sqrt{v}(v-1)}{\kappa-1}<\frac{v^{1.5}}{\kappa-1}
$$

In the case $\kappa=3$ this theorem improves Theorem 5.

Affine spaces, chromatic index

The finite affine space $\mathrm{AG}(n, q)$ can be regarded as a (q^{n}, q)-design, where the set of blocks are the set of lines of $\operatorname{AG}(n, q)$

Affine spaces, chromatic index

The finite affine space $\mathrm{AG}(n, q)$ can be regarded as a (q^{n}, q)-design, where the set of blocks are the set of lines of $\operatorname{AG}(n, q)$
It is not hard to see that

- $\chi^{\prime}(\operatorname{AG}(n, q))=\frac{q^{n}-1}{q-1}<v$,
- $\alpha^{\prime}\left(\mathrm{A}_{q}\right)=q+1$, if A_{q} is any affine plane of order q.

Affine planes

Theorem (A-P, K, R-M, V-A)

Let A_{q} be any affine plane of order q. Then

$$
\psi^{\prime}\left(\mathrm{A}_{q}\right)=\left\lfloor\frac{(q+1)^{2}}{2}\right\rfloor .
$$

Affine planes

Theorem (A-P, K, R-M, V-A)

Let A_{q} be any affine plane of order q. Then

$$
\psi^{\prime}\left(\mathrm{A}_{q}\right)=\left\lfloor\frac{(q+1)^{2}}{2}\right\rfloor .
$$

The upper estimate follows from the pigeonhole principle, the lower estimate is an easy constructions.

3-dimensional affine space

Theorem (A-P, K, R-M, V-A)

Let $\operatorname{AG}(3, q)$ be the 3-dimensional affine space of order q. Then

- $\frac{\left(q^{2}+q\right)(q+1)+2}{2} \leq \alpha^{\prime}(\operatorname{AG}(3, q)) \leq\left\lfloor\left(q^{3}+q^{2}+q\right) \sqrt{q}-\frac{1}{2} q^{3}\right\rfloor$,
- $q^{3}+1 \leq \psi^{\prime}(\operatorname{AG}(3, q)) \leq\left\lfloor\left(q^{3}+q^{2}+q\right) \sqrt{q}-\frac{1}{2} q^{3}\right\rfloor$.

3-dimensional affine space

Theorem (A-P, K, R-M, V-A)

Let $\operatorname{AG}(3, q)$ be the 3-dimensional affine space of order q. Then

- $\frac{\left(q^{2}+q\right)(q+1)+2}{2} \leq \alpha^{\prime}(\operatorname{AG}(3, q)) \leq\left\lfloor\left(q^{3}+q^{2}+q\right) \sqrt{q}-\frac{1}{2} q^{3}\right\rfloor$,
- $q^{3}+1 \leq \psi^{\prime}(\operatorname{AG}(3, q)) \leq\left\lfloor\left(q^{3}+q^{2}+q\right) \sqrt{q}-\frac{1}{2} q^{3}\right\rfloor$.

The upper estimate follows from a refinement of Theorem 7, the lower estimates are a bit difficult constructions.

Higher dimensional affine spaces

Theorem (A-P, K, R-M, V-A)

Let $\mathrm{AG}(4, q)$ be the 4-dimensional affine space of order q. Then

$$
\frac{\left(q^{2}+1\right)\left(q^{3}+q^{2}+q\right)}{2} \leq \psi^{\prime}(\operatorname{AG}(4, q)) \leq\left\lfloor\frac{q^{6} \sqrt{q}}{(q-1) \sqrt{q-1}}\right\rfloor
$$

Higher dimensional affine spaces

Theorem (A-P, K, R-M, V-A)

Let $\operatorname{AG}(4, q)$ be the 4-dimensional affine space of order q. Then

$$
\frac{\left(q^{2}+1\right)\left(q^{3}+q^{2}+q\right)}{2} \leq \psi^{\prime}(\operatorname{AG}(4, q)) \leq\left\lfloor\frac{q^{6} \sqrt{q}}{(q-1) \sqrt{q-1}}\right\rfloor
$$

Conjecture

Let $\operatorname{AG}(n, q)$ be the n-dimensional affine space of order q. Then

$$
\psi^{\prime}(\operatorname{AG}(n, q)) \approx q^{n+1}
$$

