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Graph decomposition

Definition

A decomposition of a simple graph G = (V(G), E(G)) is a pair
[G, D] where D is a set of induced subgraphs of G, such that every
edge of G belongs to exactly one subgraph in D.
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Graph decomposition

Definition

A decomposition of a simple graph G = (V(G), E(G)) is a pair
[G, D] where D is a set of induced subgraphs of G, such that every
edge of G belongs to exactly one subgraph in D.
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Graph decomposition
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Graph decomposition

Definition

A decomposition of a simple graph G = (V(G), E(G)) is a pair
[G, D] where D is a set of induced subgraphs of G, such that every
edge of G belongs to exactly one subgraph in D.
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Coloring

Definition

A coloring of a decomposition [G, D] with k colors is a surjective
function that assigns to edges of G a color from a k-set of colors,
such that all edges of H € D have the same color. A coloring of
[G, D] with k colors is proper, if for all Hy, H» € D with Hy # Ha
and V(H1) N V(H2) # 0, then E(H1) and E(H.) have different
colors.
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Definition

The chromatic index X'([G, D)] of a decomposition is the smallest
number k for which there exists a proper coloring of [G, D] with k
colors.
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Coloring

Definition

The chromatic index X'([G, D)] of a decomposition is the smallest
number k for which there exists a proper coloring of [G, D] with k
colors.

J//

X'(K¢,D) =5
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Definition

A coloring of [G, D] with k colors is complete if each pair of colors
appears on at least a vertex of G. The pseudoachromatic index
Y'([G, D)) of a decomposition is the largest number k for which
there exist a complete coloring with k colors.
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Coloring

Definition

A coloring of [G, D] with k colors is complete if each pair of colors
appears on at least a vertex of G. The pseudoachromatic index
Y'([G, D)) of a decomposition is the largest number k for which
there exist a complete coloring with k colors.

W/ (K¢, D) = 6
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Definition

The achromatic index o/ ([G, D)) of a decomposition is the largest
number k for which there exist a proper and complete coloring
with k colors.
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Coloring

Definition

The achromatic index o/ ([G, D)) of a decomposition is the largest
number k for which there exist a proper and complete coloring
with k colors.

J//

o/(Kg,D) =5
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If D= E(G) then X/([G, E]), &/([G, E]) and ¢'([G, E]) are the
usual chromatic, achromatic and pseudoachromatic indices of G,
respectively.
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If D= E(G) then X/([G, E]), &/([G, E]) and ¢'([G, E]) are the
usual chromatic, achromatic and pseudoachromatic indices of G,
respectively.

Clearly we have that

X'([6,D]) < o/([G, D)) < ¥/([G, D]).
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The Erd6s-Faber-Lovasz Conjecture

For any decomposition D of K,, given by complete graphs,
satisfies the inequality

X'([Kv, D]) < v.

gyk On chromatic indices of affine spaces



Decompositions of complete graphs and designs

Designs define decompositions of the corresponding complete
graphs in the natural way. Identify the points of a (v, x)-design

D = (V, B) with the set of vertices of the complete graph K, .
Then the set of points of each block of D induces in K, a subgraph
isomorphic to K, and these subgraphs give a decomposition of K, .
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Known results

The EFL Conjecture is open even for the (v, 3)—designs (Steiner
triple systems STS(v)).

Theorem (Colbourn, C. J. = Colbourn, M. J.)

If D is a (v, k)—design, then

KV
k—1"

X'(D) <

Theorem (Colbourn, C. J. — Colbourn, M. J.)

If D= (Z,,B) is a cyclic designs (that is the mapping i — i+ 1 is
an automorphism), then

X'(D) < v,

the EFL Conjecture is true for cyclic designs.
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Known results

The finite projective space PG(n, q) can be regarded as a

(qntlfl, q + 1)—design, where the set of blocks are the set of lines

of PG(n, q)

Theorem (Beutelspacher, A. — Jungnickel, D. — Vanstone, S.A.)

If D is the n-dimensional finite projective space, then
X' (D) <v,

the EFL Conjecture is true for finite projective spaces.
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Projective planes

Let Mg be any finite projective plane of order g. Then
v = g°+ q+ 1 is the number of points in Mg. It is not hard to see
that

X' (Mg) =o' (Mg) =¢'(Ng) = v.
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Achromatic index

Theorem (Bouchet, A)

If g is an odd number and v = q*> + q + 1 then a projective plane
of order q exists if and only if o/ ([K,, E]) = qv.

As a corollary of this theorem we get that o/(K,) grows
asymtotically, like v3/2,
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Achromatic index

The achromatic index of STS(v) has been studied before.

Theorem (Colbourn, C. J. — Colbourn, M. J.)

For any STS(v), o/(STS(v)) < cv3/? for c is a fixed constant.

Theorem (Colbourn, C. J. = Colbourn, M. J.)

For infinitely many v, there exists an STS(v), such that
o/(STS(v)) > /v3/2,

for some fixed constant c’.
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Achromatic index

Theorem (A-P, K, R-M, V-A)

_1 , and c¢ a fixed constant
q R

gyk On chromatic indices of affine spaces



Pseudoachromatic index

Theorem (A-P, K, R-M, V-A)

Let D be a (v, k)—design. Then

S\/V(V_l)< v1.5

k—1 K—1

V(D)

In the case Kk = 3 this theorem improves Theorem 5.
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Affine spaces, chromatic index

The finite affine space AG(n, g) can be regarded as a
(g", g)—design, where the set of blocks are the set of lines of
AG(n, q)
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Affine spaces, chromatic index

The finite affine space AG(n, g) can be regarded as a

(g", g)—design, where the set of blocks are the set of lines of
AG(n, q)
It is not hard to see that

e Y (AG(n,q)) = % <v,
o o/(Ag) = q+1,if Ay is any affine plane of order q.
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Affine planes

Theorem (A-P, K, R-M, V-A)

Let Aq be any affine plane of order q. Then

wl(Aq) = L%J :
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Affine planes

Theorem (A-P, K, R-M, V-A)

Let Aq be any affine plane of order q. Then

wl(Aq) = L%J :

The upper estimate follows from the pigeonhole principle, the
lower estimate is an easy constructions.
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3-dimensional affine space

Theorem (A-P, K, R-M, V-A)

Let AG(3, q) be the 3-dimensional affine space of order q. Then
2
o (TG < o/(AG(3,9)) < |(¢ +¢° + )v/d — 347
° ¢*+1<¢/(AG(3,9)) < |(¢*+ *+9)va—34°].
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3-dimensional affine space

Theorem (A-P, K, R-M, V-A)

Let AG(3, q) be the 3-dimensional affine space of order q. Then
2
o (TG < o/(AG(3,9)) < |(¢ +¢° + )v/d — 347
° ¢*+1<¢/(AG(3,9)) < |(¢*+ *+9)va—34°].

The upper estimate follows from a refinement of Theorem 7, the
lower estimates are a bit difficult constructions.
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Higher dimensional affine spaces

Theorem (A-P, K, R-M, V-A)

Let AG(4, q) be the 4-dimensional affine space of order q. Then

(@P+1)(@P+d*+q) _ G
. < ¢ (AG(4,q)) < {(q - 1)\/qf1J
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Higher dimensional affine spaces

Theorem (A-P, K, R-M, V-A)

Let AG(4, q) be the 4-dimensional affine space of order q. Then

(@P+1)(@P+d*+q) _ G
. < ¢ (AG(4,q)) < {(q - 1)\/qf1J

Let AG(n, q) be the n-dimensional affine space of order q. Then

¢'(AG(n, q)) = q".
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