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semi — inner — product

The{ . o . on a complex vector space V is a complex
inde finite — inner — product P P P

'9]-5 '923 -93, 154
i1,i2,i3, i

function [z,y] : V x V — C with the properties {
sl=il: [z + v, 2] = [z,2] + [y, 2] (additivity of the first argument)

§2=i2: [Ax.y] = A[z,y] for every X € C (homogeneity of the first argument)
§3: [z,z] >0 when =z # 0 (positivity)

i3: [z,y] =[y,z] for every z,y €V (antisymmetry)

s4: |[z,y]|? < [z,2][y,y] (Cauchy-Schwartz inequality)

i4: [z,y] =0 forevery y eV then x=0. (nondegeneracy)




History of these concepts
Semi-inner-product

raised by G.Lumer in 1961, in 1967 J.R. Giles prove that the property
sb: [z, \y] = Az, y] for all complex X (homogeneity in the second argument)

can be imposed.
Indefinite-inner-product

first used by Minkowski, Lorentz, Einstein at the beginning of the twentieth
century in the theoretical physics, the first application in mathematics (to the
theory of zones of stability for canonical differential equations with periodic
coefficients) were obtained by M.G.Krein in 1964,

[.M.Gelfand, N.Levinson, I.Gohberg,...




Definition 1 The semi-indefinite inner product (s.i.1.p.) on a complex vector
space V' is a complex function [z,y] : V xV — C with the following properties:

[z +y,z] =[z,2] + [y, 2] (additivity in the first variable),

[Az,y] = Az, y] for every A € C (homogeneity in the first variable),

[z, Ay] = Az, y] for every X € C (homogeneity in the second variable),

—

[z,z] €R for every x €V (the corresponding quadratic form is real-valued),

if either [z,y] =0 for every y €V or[y,2] =0 forally €V, thenz =10
(nondegeneracy),
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[z, 1] r,z][y,y] holds on non-positive and non-negative subspaces of 1
respectively. (the Cauchy-Schwartz inequality 1s valid on positive and neg-
ative subspaces, respectively).

A vector space V with a s.i.1.p. 15 called an s..0.p. space.




Examples

C is the unit sphere of a normed linear space, P(C') = C/ ~.
By the Hahn-Banach theorem there exists at least one
continuous linear functional, and we choose exactly one such
that ||7*]| =1 and @*(v) =1 for v € C.

Consider a sign function =(v) with value £1 on P(C),
and if «([v]) = 1 denote by v* =v*
and if £([v]) = -1 define v* = =%,
homogeneously extend it to V' the mapping v — v* by the
equality (\o)* = ™,

For the duality mapping
v v* the equalities v*(v) := e([vo]) v]|? and [[v]| = ||v* are
hold.

IR ] satisfies 1-5.

o]l = o)) = S < ol = [l




Definition 2 ([7]) Let (V.|-,:]) be an s.i.i.p. space. Let ST <V be posi-
twe and negatwe subspaces, where 1" 1s a direct complement of S with respect

to V. Define a product on'V by the equality [u,v]™ = [s1 4+ t1,50 + to] T =
51, 89] + [t1,ta], where s; € S and t; € T, respectively. Then we say that the
pair (V, [, <]7) is o generalized Minkowski space with Minkowski product [+, |

We also say that V' s a real generalized Minkowskr space if 1t 1s a real vector
space and the s.1...p. is a real valued function.




Generalized Minkowski spaces generated by L, norms

[u:r U]-l_ = [5]: 52]5 o [tl'.l EE]T

- / t1]t2P2sgn (6)dv

| [t =
& leallp " Jr

[u, v]” = [s1,82]s +[t1, 21




24 Definition 3 ([7]) Let V be a generalized Minkowski space. Then we call o B SSiEEeEeiais
s vector space-like, light-like, or time-like if its scalar square is positive, zero, or EEEEEE
_ o ' negative, respectively. Let S, L and T denote the sets of the space-like, light-like, 5 : ;
deEasiaan and time-like vectors, respectively. A 5
e feeisy  In a finite dimensional, real generalized Minkowski space with dimT" = 1 SSSEes |
S ssnt i we can geometrically characterize these sets of vectors. Such a space is called FESSEE ~
generalized space-time model. In this case T is a union of its two parts, namely ot :
s T=THUT, 2% TR
S 2 where with respect a basis with time-like vector e, € T et e
e TT ={s+t€T|wheret= e, for A >0} and ._ |
T~ ={s+t€eT| where t = Ae, for A <0}. '
St i [t can be proved that T is an open double cone with boundary £, and the ESSESESEEEEss SE
positive part T (resp. negative part T~) of T is convex. TR :




The Minkowski space-time




Unit spheres in space-time

[s,s]H[t,{]=-1

AT

[s,s]+[t,{]=1




Prehyperbolic space in generalized

space-time

The set H := {v € V|jv,v]" = =1} is called the umaginary unit sphere of the
generalized space-time model. HT is the connected part of H defined by the
function

h:8—- 1+[.&:..&':.

The geometric properties of H™, using the differential geometry of a gener-
alized space-time model, can be listed as follows:

o Let S be a continuously differentiable s.ip. space, then (HT,ds?) is a
Minkowski-Finsler space (see this concept in [7]).

o H7 is always convex. It is strictly convex if and only if the s.1.p. space S
is a strictly convex space.([8])

o If S is a continuously differentiable s.i.p. space then H* has constant
negative curvature.(|§))

We can regard H™ as a natural generalization of the usual hyperbolic space.
Thus we can say that H is a premanifold with constant negative curvature and




Presphere

g(s) = s+ g(s)en,

where

o(s) = /=1 +][s, s for [s,s] > 1.
The results on GT are the following:

o G and its tangent hyperplanes are intersecting, consequently there is no
point at which G would be convex.([8])

o The de Sitter sphere G has constant positive curvature 1f S 1s a continu-
ously differentiable s.i.p space.(|8])

On the basis of this theorem we can tell about G as a premanifold of constant
positive curvature and we may say that 1t 1s a presphere.




Light cone

Z(“’) =S+ [H.H](’n

o The light cone L™ has zero curvatures if S is a continuously differentiable
s.1.p space.(|8])

Hence L is a premanifold with zero sectional, Ricci and scalar curvatures,




he unit sphere of the embedding
S.1.p. space

k(s) = s+ (s)en,

where
t(s) = \/1—[' s| for [s,s] < 1.

The basic properties of K™

o KT is convex. If S is a strictly convex space, then KT is also strictly
Convex.

¢ The fundamental forms are

2
- ([fff{f)-t’(f):+[E‘-’(ffl{i:ﬂ}.(c(f))) R (f)]
[=1e¢ - . =[¢,¢] -
41 - [e(t), c(t)]) 1 —[e(t),e(t)]
B 1 R, ol le(t), e(t)]? )_
N e o ( A 33 )




L . - o -.--'7- 1 .-' .-- ‘I = 1 - e B/ Ir- '-.- § VI &l - -.' ..’l ¥ i
e 0 T s il & o ey . N L T el

e The principal, sectional, Riccl and scalar curvatures at a pomt &

1

Pmax(t,0) = Pmin(u,v) = NSTS ORI

(1, v) = [1°(c(t), " (e(E)] (2, V) mae (1, )i =

("3)

Bt g(eqey(u,v) = —1 4 2[elt), c(t)]

respectively.

Finally we remark that at the points of K™ having the equality

2eft), elt) =1

all of the curvatures can be defined as i the case of the light cone and
can be regarded as zero.







" These are :
e K(7) 1s a centrally symmetric, convex, compact, C? body of volume B Sias
vol(Bg).

e For each pairs of points ¢, s” the function

K : R-l_ U {U} — K;U LT+ [{(T) £ .- : =
holds the property that [s',s"]” : 7 = [s',s"]" is a C*-function. .3-::;':%': S

-+ Definition 10 We say that a generalized space-time model endowed with a __:: Fiipene

= Ay

function K (1) holding the above properties is a deterministic time-space model.




(K, , 7 > 0) be a random function defined as an element of

L the K olmogorov’s extension (TIKy, P) of the probability space (Ko, P). We say

that the generalized space-time model with the random function

tisa random time-space model. Here ag(K) is a random variable with truncated
‘normal distribution and thus (ag(K;) , T > 0) is a stationary Gaussian process.
' We call it the shape process of the random time-space model.

L g

el L e




The probability measure P (|

5*(C,D) =

—y||¢ for C,D € K.

> — /|, max min
zeC yeD yeD r;(“

K} == {K € Ko | "(K, Bg) = 1)

To this (following Hoffmann's paper) we introduced the orbits of a body K about the special orthogonal

group SO(n) by [K]. These are compact subsets of Kjtl}. and if we consider an open subset of KZj then the

union of the corvesponding orbits is also open. Hence there exists a measurable mapping s : ;'Cl — K
- . T o e - . - - =

such that s(K) = s(K') if and only if K and K" are on the same orbit. Let Kj := {K € kl ,S(K) = fx}

gy of Kb Finally let ®5_ k(} X

which is measurable subset of K. We equip it with the induced topol
S0(n) — 4"\,{) is the mapping :1[‘|]I][‘t] by the equality:

bl (K,0) = OK.
46| Hoffmann, L. M.: Measures on the space of convex bodies. Adv. Geom. 10 (2010), 477 486.

Our notation is analogous with the notation of |46/. It was proved in [46] (Lemma 2) that a non-trivial
o-finite measure pg on Ky is invariant under rotations (meaning that for © € S0(n) we have pg(A) =
1(0A) for all Borel sets A of Ky) if and only if there exists a o-linite measure pg on Ky such tha
1o = D9o (110 ® v,), where v, is the Haar measure on SO(n). It is obvious that in the case of Kj there
is a similar result by our mapping ®5_(K,©) which is the restriction of Hoffmann's map ®9,(K,0) onto

the sel h{l)




The probability measure P (Il

First we chose a countable system of hodies Ky, to define a probability measure on K:g}. Without loss

of generality we may assume that each of the bodies of Kl has a common diameter of length 4 denoted
by d, whi ol

axe ol coordinates (hence 1t is the convex hull of the points {2(.’n.—2f.°n}fl.
Consider the set of diadic rational numbers in (0,2]. We can write them as follows:

m(n, k) = = where n. =0, --

r

.00 and for a fixed n, 0 < k < 2"+

Define the body Kok as the convex hull of the union of the segment d and the ball around the origin
with radius m(n, k). For each n we have 2+ such bodies, thus the definition

.2'1

p,,, = lim

J’t—:"!c 2 Km(n.k)

deline a probability measure on K",{l).

—t

The pushforward measure w(K )~ {,[{13:] has uniform distribution on the interval (0,4].
(w(K) means J’.hr: width of the body K. )

Lemma 3.8 ||




d(K)

Lemma 3.7 ( K € K} and ag := ag(K) is the thinness of K then we have

2001 if ag < @
2a+1-22 if 0<a<ag.

0
ap

5" (oK, Bg) = {

by density funclion dyg = ﬁgd}tﬂ. Th
ﬂg(fi’)‘l (tI:%a (y[ll ® y.n))

is a probability measure with wniform distribution on [1,1).




The probability measure P (V)

——

1 {71 .
Let denote by v the measure ®g, ©® Un
AR 0

We identified Ko with K x [0,00), and introduced @4 as the mapping by (K, 0) = ak.

Lemma 3.9. From the image K' = ®4(K) we can determine uniquely the body K and the constant a.

@) (K') = ((®77), (K), (@), (K")

vy=y(vf @v). where v is a o-finite measure on (0,00).

.
1 (5"(“45'%}6])




The probability measure P (V)

Theorem 3.11 (|9]). If v} is such a probability measure on Ki for which a (J")‘ (v ) !me uniform
distribution, vy = ®4(vi @v) where v is a probability measure on (0 00) and © is the probability function
of the standard normal distribution then

; . \ 4 2
o (H 20 o
4 b &7 (K')g
— LY x
(-: r

(@(3)-20)Var? ]

is a probability measure on Ko. Moreover ag(K)™Y(P) has truncated normal distribution on the interval
s
[§= ), (with mean % and variance (f) ), 80

1 b=
ap(K J_I(ID] ({3 t < C}) =P{{KekKy|w(K)<c})= ( =




The probability measure P (VI

=0
For a fixed r € N consider a sequence (al) of positive numbers which holds the property ) af = 1.
i=1

I Thus it is a convex hull

Let L(1) be the i element of the r-th subset of the above partition of Hein k)

. . - . . a - ' . . . f.'t!-.
of exactly 7 copies of bodies from S (f\{ ) We give it the weight o,

m(n.k)

o0
). Choose a sequence of positive numbers By with again the property Y B = 1.
=1

Definition 3.19 (|9

—
—

Define o measure p by the equality:

Then we proved the theorem:

Theorem 3.12 (|9)). On the space of norms there is a probability measure P with the following properties:

o The neighborhoods has posilive measure.
o The sel of polylopes has zero measure.
o The sel of smooth bodies has measure 1.

o The pushforward ag(K)=YP) of P has truncated normal distribution on the interval [% 1).




damental theorem on
)roximation

It 1s clear that a deterministic time-space model 1s a special trajectory of the
random time-space model. The following theorem 1s essential.

Theorem 1 For a trajectory L(t) of the random time-space model, for a finite
set 0 <1 <o <15 of moments and for a € > 0 there is a deterministic
time-space model defined by the function K (1) for which

sup{pn (L(ri), K ()} <e.




he product in a deterministic
time-space

Definition 12 For two vectors sy + 71 and s + 79 of the deterministic time-
space model define their product with the equality

' I . 1T | [
51 T T1, 52 + TQP_' = [.‘-;1. Hg_ﬁ T |71,

— {Hl..&'g]m — T179.

Here |s;,s9|™ means the s.i.p defined by the norm | - |[™. This product is
not a Minkowski product, as there 1s no homogeneity property m the second
variable. On the other hand the additivity and homogeneity properties of the
first variable, the properties on non-degeneracy of the product are again hold,
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e e K (2.7): (S, |- |g)xT = (S, |z) &
e g (z,7) is homogeneous in its first variable and continuously differentiable in its second one,
o K({e,e9,e3},7) is an Auerbach basis of (S, - ||7) for every 7, 7 i
4 o K (Bg,7) = K(r)
‘ S Definition 3.25 ([10(). The frame {f1(7), fo(7), fa(7),0(7)} moves with constant velocity with respect FEESEs e
W8 10 the time-space if for every pairs T, 7 in TT we have e
fir) =K (fi(r'),7) forall i with1<i<3

and there are two vectors O = 01e1 + 09e9 +09e3 € S and v = v1e1 + 19eg +vaeg € S that for all values

'.":: -I‘ :'I of T we have
. : . 0(r) =K(0,7) +7K(v,7).

= Ay

S A frame is at vest with respect to the time-space if the vector v is the zero vector of S.

st Definition 3.26 (|10]). The time-axis of the time-space model is the world-line O(T) of such o parti- SEEEEE

as e cle which moves with constant velocily with respect to the time-space and starls from the origin. More SSSETras:
USSR precisely, for the world-line (O(7),7) we have K(O,7) =0 and hence with a given vector v € S, P
et O(r) =1K(v,7). SRR e oy




Lorentz transzformacio

A fény terjedési sebessége vakuumban konstans.

| 7
S\

Inerciarendszerek kozotti transzformacio a fizikai torvények alakjat nem befolyas

A

™~

e




On the formulas of special
relativity

Axiom 3.1. The laws of physics are mvariant under transformations between frames. The laws of physics
will be the same whether you arve testing them i frame "al rest”, or a frame moving with o constant
velocity relative to the "rest” frame.

Axiom 3.2, The speed of lighl i a vacuum 1s measured fo be the same by all observers i frames.

\ ‘ | L
K, Kol =py e - 11 s [ |-
; —
s K_(sm’:;’] =+ (K(s,7) - K(v,7)7) K¢, 1) = K(s,7)=7(K(,7)+ K, )




Einstein egyenlet (I)

This gives us the equation for a free particle, or the GEODESIC' EQUATION:

d2g y drtdz”
- _I_ -
dr? W dr dr

where I is the AFFINE CONNECTION:

P

= 0

o0 e
pr O]Ea OV gk

Note that I' 1s symmetric in its lower indices, and, for future reference, it is not a tensor.

]_"A

Lokalis inercia rendszerekben a specialis relativitas elmélet formulai érvényesek.
Further note that the proper time interval can be written in terms of dz*:

00 o
T dEP = 1o (fldx#) (ﬂda:")

Adr?

Orh dz?

= ddr? = gydatda”

where gy, is the METRIC TENSOR (note it is symmetric):

ag* o¢P

Juv = F M'ﬁaﬁ




Einstein egyenlet (l1)

I — 1 va 59#? + Ug)w 3 Ug;m oV — 0 0z’ v = 0z 9VY  Orf 0% s
M 29 o i W 9z Az 92" APz
oo avr o 92

Oz O Oxp  Ox'A OxPOrv

ayu K y . s
o TR ovarians derivalt
V=5tV

Gorbuleti tenzor Ricci tenzor Ricci skalar vagy skalar gorbilet
R&U.ﬂﬁ = Fa,‘dcr_p - I‘Qpcr.ﬁ + rapyrpaﬁ B r&ﬁprucrp Rayg = R“Q#ﬁ R = Ra&

(Vannak szimmetriai de nem szimmetrik(sgimmetrikus)

GFW = R;w _ EQ'HUR (Einstein

" (Energia-momentum teiA\z¢Kpzmoldgiai konstans)
2 tenzor)




General relativity theory
(embedded metrics)

Minkowski-Lorentz metric.

ds® = —*dt* + dz* + dy* + d2’ K (v,7)=v

Friedmann-Lemaitre- Robertson- Walker metrics

R
L+ tk(z? + 97+ 22)

ds® = —dt* +

1+ Tl
K(v,7)= R v

(d;r:.:2 +dy? + dzz) )




General relativity theory
(visualization)

3.2. Three-dimensional visualization of a metric in a four-time-space. The sec-
ond method 1s when we consider a four-dimensional time-space and a three-dimensional
sub-manifold in it with the property that the metric of the time-space at the points of the
sub-manifold can be corresponded to the given one. This method gives a good visualiza-
tion of the solution in a case when the examined metric has some speciality e.g. there is
no dependence on time or (and) the metric has a spherical symmetry. The examples of

Schwarzschild metric.

ds’ (1 - w) aila (1 - H) dr® + r*d(?

c2r c2r

T:t—%ﬁln(tﬂ—E)JrC §(r) =t

! 9
K(o1)= o= ( e ))

Bertotti- Robinson metric

-

ds? = QQ( dt* +dz* +dy* + d ) K(v.7):= fv
= Yt az T =elnr =0




Homogeneous time-space-
manifold (I)

Definition 3.28 ([11]). Let S be the set of linear mappings K(v,7) : E* xR — E* holding the properties
of a linear shape-function given in Definition 7. Giving for it the natural topology we say thal § is the
space of shape-functions. If we have a pair of a four-dimensional topological manifold M and a smooth
(C™) mapping K : M — S with the property that al the point P € M the tangent space is the lime-
space defined by K(P) = KP(S.T) €8 we say that it is a time-space-manifold. The fime-space manifold
is homogeneous if the mapping K is a constant function.

Axiom 3.3. (Equivalence Principle) Al any point i a homogeneous Lime-space manifold it 1s possible

to choose a locally-inertial frame in which the laws of physics are the same as the special relativity of the
corresponding fime-space.

) — K(elr) 7) L7 d(K(s(t),7 :
S(7) = K(s(7),7) + Teq V(r) =“;‘(T}( ( (ZSJ ) -|—€4) =7(7) (K(v(7),1) + e4)
Alr) = Ka(r),0) 4 ORI gy
LU KAT




Homogeneous time-space-
manifold (I)

d28'(rg) dS'(rp) dS'(mp)
+1(8. 8 =)
dgz ( } dT.[) T0
, dr® or?
9(5',8) = oK~ o ks K pa — K"y

il Qo 1 \Va ag(sf S) 1,1 ag(sf SJ)\.V 5'5‘(51\ S] LA
1-(45"\5('] Ap = E_Q(S S’] { - F

' dz'* dr'
! . . :
Here R(S',5)% 4,5 is the Riemann curvature tensor defined by

R(S',8)% 008 =L(S',8) 3055 — I(S',8)% s + L', 8)2,T(S", S)5 ~ (S, $)3, (S, S)

ful ogp*

The Ricel Tensor and the scalar curvature defined by

R(S',9)s5 1= R(S',S)%as and R(S',S) = R(S,5)°,,

R(S', 8" - %g(s’, )™ R(S', S) - Ag(S', ) = ﬂfrw
i




Thank you for your
attention!




