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Actions - Orbits

Definition
Let α : G ×M → M be a differentiable action of a Lie group G
on a connected differentiable manifold M, i.e. the map α is
differentiable, α (g, α (h, x)) = α (g · h, x) holds for every
x ∈ M, g, h ∈ G and α (e, x) = x for the unit element e ∈ G.

The action α : G ×M → M induces an action on the tangent
bundle Tα : G × TM → TM. If (M,g) is a semi-Riemannian
manifold and the induced action Tα preserves the metric
tensor g then the action α is called isometric.

Definition
Let G (x) = {gx | g ∈ G} denote the orbit of x .
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Dense orbit by an isometric Riemannian action

Figure: Dense orbits
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Study of the orbits

Natural questions to study
Similarities and differences
The action on the orbits
The action in a neighbourhood of an orbit

Definition
The isotropy group of a point x , also called the stabilizer of x ,
is Gx

def
= {g ∈ G | gx = x}.

Definition
The orbit type of the orbit G (x) is the conjugacy class{

gGxg−1 | g ∈ G
}

.
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Principal Orbit Type Theorem

Definition
The orbit type of the orbit G (x) is greater than or equal to that
of G (y) if Gx ′ ⊆ Gy ′ for some x ′ ∈ G (x) and y ′ ∈ G (y) .

It is not a partial ordering in general!

Theorem (Principal Orbit Type Theorem M-S-Y)
Let α : G ×M → M be a differentiable action of a Lie group G
on a connected manifold M. If the action is proper or the group
is compact, then among the orbit types there is a maximal one,
called principal, such that the union of the orbits of this type is
an open and dense set in M.

Question
How to exclude compactness or properness?
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Dense orbit by an isometric Riemannian action

The action is not proper
The group R is not compact
But all the orbits have the same type

Figure: Dense orbits
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POT is not true without compactness in general

The action of SO(2,1) on the Minkowski space M3 shows that
without compactness POT is not true

Figure: Example 2
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Definition
Let α : G ×M → M be a differentiable action of a Lie group G
on a differentiable manifold M. The infinitesimal orbit type of an
orbit G (x) is the whole conjugacy class of the identity
component G0

x of the isotropy group Gx of x , i.e. the
infinitesimal orbit type of G (x) is

{
gG0

xg−1 |g ∈ G
}

. This
type will be denoted by inftypG (x).

This gives always a partial ordering
However, example 2 "works" in this case also (inside and
outside have different inftype)
BUT the separating orbit (the light cone) has a special
property
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Definition
Let α : G ×M → M be a differentiable action of a Lie group G
on a differentiable manifold M. The orbit G (x) is normalizable
if there is a subspace NxG (x) ⊂ TxM for which the following
holds:

NxG (x)⊕ TxG (x) = TxM is a decomposition;
NxG (x) is invariant under the action of Gx .

A normal bundle NG (x) of a normalizable orbit G (x) is a
bundle over G (x) obtained from a normal space NxG (x) by the
action Tα : G × TM → TM, i.e. the normal bundle is given by

NG (x) = ∪g∈GTαg (NxG (x)) .

Moreover, the action α is normalizable if every orbit of α is
normalizable.

In Example 2 the separating orbit (the light cone) is
non-normalizable!
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Dimension problems in general

Figure: An action of R on R2

Question
How to avoid this problem?
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Local model property

Definition
Let α : G ×M → M, β : G × N → N be differentiable actions of
a Lie group G on the differentiable manifolds M and N. A map
ϕ : M → N is G-equivariant, if for every x ∈ M, h ∈ G the
equality ϕ (α (h, x)) = β (h, ϕ (x)) holds.

Definition

Let α : G ×M → M be a differentiable action of a Lie group G
on a differentiable manifold M. Let G (x) be a normalizable orbit
and assume that there is a G-invariant neighbourhood
U ⊂ NG (x) of the zero section and a G-equivariant locally
diffeomorphic map ϕ : U → M for which ϕ (0x) = x . Then we
say that NG (x) is a local model.
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Why local model property?

Figure: Local Model Property
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An Infinitesimal Principal Orbit Type Theorem

Theorem (IPOT)
Let α : G ×M → M be a differentiable action of a Lie group G
on a connected differentiable manifold M which is normalizable.
Assume that every normal bundle is a local model. Then there
is a unique maximal infinitesimal orbit type κ, such that the
union of the orbits of type κ is an open and dense set in M.
Moreover, type κ is stable.

In case of a Riemannian manifold (M,g) and an isometric
action on it α, it is easy to see that the orthogonal budle is a
normal bundle, and due to the expectational map, the local tube
theorem holds everywhere on M. Thus, we have the following
generalization of the principal orbit type theorem.
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Theorem

If α : G ×M → M is an isometric action of a Lie group on a
connected Riemannian manifold (M,g), then there is a unique
maximal infinitesimal orbit type, called infinitesimal principal,
and the union of the infinitesimal principal orbits is an open,
dense and connected set in M.

Theorem
Let α : G ×M → M be a differentiable action of a Lie group G
on a connected differentiable manifold M and assume, that α is
isometric on M with respect some semi-Riemannian metric.
Then the maximal dimensional orbits build an open and dense
set.
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Non-normalizable orbits in the Lorentzian case

Definition

Let (M,g) be a connected Lorentz manifold, X : M → TM a
Killing vector field and z ∈ M such that X (z) 6= 0z . If

∇X(z)X = µX (z) ,

holds for some µ ∈ R−{0} then the integral curve of X through
z, which is a pregeodesic, is called a genuine homogeneous
pregeodesic. If µ = 0 then the integral curve of X through z,
which is a geodesic, is called a homogeneous geodesic.

D. Szeghy On Infinitesimal Orbit Types



A geodesic can be both genuine homogeneous pregeodesic
and homogeneous geodesic with respect to different Killing
fields

Figure: different Killing fields to the same geodesic

D. Szeghy On Infinitesimal Orbit Types



Theorem
If (M,g) is a Lorentz manifold, α : G ×M → M an isometric
action of a Lie group G and the orbit G (x) is non-normalizable,
then G (x) is a light-like orbit, such that all the light-like curves
of the orbit are light-like homogeneous geodesics or light-like
genuine homogeneous pregeodesics, with respect to Killing
fields corresponding to the isometric action α.

Theorem
If the connected Lorentz manifold (M,g) is geodesically
complete and for every non-normalizable orbit its light-like
geodesics are genuine homogeneous pregeodesics, then the
union of the normalizable orbits is a dense set in M.
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Definition
Let α : G ×M → M be a differentiable action on a differentiable
manifold M. The orbit G (x) is locally stable if it has a
G-invariant neighbourhood U such that for every y ∈ U the
equality inftyp G (x) = inftyp G (y) holds, otherwise G (x) is
called locally unstable.

Definition
An infinitesimal orbit type κ is called stable, if every orbit G (x)
with infinitesimal orbit type κ is locally stable. An infinitesimal
orbit type η is called unstable, if every orbit G (x) with
infinitesimal orbit type η is locally unstable.
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Chaotic behavior

We can give an isometric action on M3 where:
all the orbits are non-normalizable
all the orbits are locally unstable
all the orbits have different infinitesimal types
the action is analytic

Question
Is there hope to extend POT?
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Theorem
Let (M,g) be a Lorentz manifold and α : G ×M → M an
isometric action of a Lie group G. Assume that in an open set
U ⊂ M, all the points belong to non-normalizable orbits. Then

there is no locally stable orbit intersecting U
there are uncountable different infinitesimal orbit types in U

Theorem
If (M,g) is a Lorentz manifold, α : G ×M → M an isometric
action of a Lie group G then among the maximal dimensional
orbits local stability and normalizability is the same, i.e. a
maximal dimensional orbit is locally stable if and only if it is
normalizable.
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Theorem
A special case If (M,g) is a connected, geodesically complete
Lorentz manifold, in which there are no conjugate point pairs
and α : G×M → M is an isometric action of a Lie group G then
every infinitesimal obits type is either stable or unstable.

Conjecture
In the case of an isometric action one of the following holds:

the normalizable orbits build a dense set, therefore, there
are countable stable types, such the union of the orbits of
these types
the non-normalizable orbits build an open and dense set,
therefore, there uncountable unstable types and the union
of the unstable orbits is a dense open set
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Thank your for your attention!
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