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INTRODUCTION

We deal with convex solids/bodies in R2 and R3, with uniform
density.
Centre of gravity: defined in the usual way via integrals.
Static equilibrium: when the body rests under gravity on a
horizontal plane.
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INTRODUCTION

QUESTION

If we want to change the number of static equilibria of a given
convex body by a suitable truncation, how large truncation do
we need to make? (Largeness is measured, say, as the volume
of the truncated part, relative to the full volume of the body)

⇓
robustness

QUESTION (MODIFIED)
If we want to decrease the number of static equilibria of a given
convex body by a suitable truncation, how large truncation do
we need to make?

⇓
downward robustness
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INTRODUCTION

FIGURE: Beach with pebbles
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INTRODUCTION

Difficulty: there is a coupling between the centre of gravity and
the shape⇒ truncation changes the centre of gravity
Solution: decoupling the system

robustness
↙ ↘

internal external
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PRELIMINARIES

We distinguish three subclasses of convex bodies.
Pn: family of n-dimensional convex polytopes,
On: family of n-dimensional convex bodies with smooth

(C∞-class) boundary,
Kn: family of n-dimensional convex bodies with piecewise

smooth boundary.

DEFINITION

For any K ∈ K2 and p ∈ int K , q ∈ bd K is an equilibrium point
of K with respect to p, if the line passing through q and
perpendicular to q − p, supports K .

REMARK

If bd K is smooth at q, it is equivalent to saying that q is a critical
point of the Euclidean distance function z 7→ |z − p|, z ∈ bd K .
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PRELIMINARIES

DEFINITION

We call the equilibrium at q nondegenerate, if one of the
following holds:

if bd K is smooth at q, then the second derivative of
z 7→ |z − p|, z ∈ bd K at q is not zero,
if bd K is not smooth at q, then both angles between p − q
and one of the two one-sided tangent half lines of bd K at q
are acute.

REMARK

If K ∈ O2 or K ∈ P2, then this definition reduces to the usual
concept of nondegeneracy in these classes.
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PRELIMINARIES

DEFINITION

In the case of a smooth point, we call the nondegenerate
equilibrium point q stable or unstable, if the second derivative of
the distance function at q is positive or negative, respectively. In
the nonsmooth case, we call the equilibrium point unstable.

REMARK

Poincaré-Hopf Theorem: the numbers of the stable and
unstable equilibrium points of any K ∈ K2 are equal.
These two types of points form an alternating sequence in
bd K .
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PRELIMINARIES

What about these concepts in R3?

equilibrium: in the same way.
nondegeneracy: in P3 ∪ O3 in the natural way .
There are three types of points: stable, unstable and
saddle.
Poincaré-Hopf Theorem:

S + U − H = 2.

Notation:

{S}: family of convex bodies in K2, with S stable points
with respect to their centres of gravity.
{S,U}: family of convex bodies in P3 ∪ O3, with S stable
and U unstable points with respect to their centres.
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ROBUSTNESS

For K ∈ {S}, set

F<(K ) = {K ′ ⊂ K : K ′ ∈ {S′} for some S′ < S}.

DEFINITION

Let K ∈ {S}. Then we define the downward robustness (or
simply robustness) of K as the quantity

ρ(K ) =
inf{Area(K \ K ′) : K ′ ∈ F<(K )}

Area(K )
.

REMARK

In R3, we may define ρ(K ) in an analogous way. Set
ρS = sup{ρ(K ) : K ∈ {S}}, ρS,U = sup{ρ(K ) : K ∈ {S,U}}.
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EXTERNAL ROBUSTNESS

For K ∈ K2 with S stable points with respect to p ∈ int K , set

F<(K ,p) = {K ′ ⊂ K : K ′ ∈ K2 has S′ < S stable pts wrt p}.

DEFINITION

Let K ∈ K2 have S stable points with respect to p int K . Then
we define the downward robustness (or simply robustness) of
K , with respect to p, as the quantity

ρex(K ,p) =
inf{Area(K \ K ′) : K ′ ∈ F<(K ,p)}

Area(K )
.

REMARK

In R3, we may define ρex(K ,p) in an analogous way. Set
ρex

S = sup{ρex(K ,G) : K ∈ {S},G is the centre of K},
ρex

S,U = sup{ρex(K ,G) : K ∈ {S,U},G is the centre of K}.
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INTERNAL ROBUSTNESS

For K ∈ K2 with S stable points with respect to p ∈ int K , set

R(K ,p) = {q ∈ R2 : K has S stable points with respect to q}

DEFINITION

Let K ∈ K2 has S stable points with respect to p ∈ int K . The
internal robustness of K with respect to p is

ρin(K ,p) =
min {|q − p| : q /∈ R(K ,p)}

perim K
.

REMARK

In R3, we define ρin(K ,p) similarly, by replacing perim K with√
surf K . We set

ρin
S = sup{ρin(K ,G) : K ∈ {S},G is the centre of K},
ρin

S,U = sup{ρin(K ,G) : K ∈ {S,U},G is the centre of K}.
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RESULTS: EXTERNAL ROBUSTNESS IN THE PLANE

THEOREM

Let K ∈ K2 contain the origin in its interior, and assume that K
has S ≥ 3 stable points with respect to o. Then

ρex(K ,o) ≤
tan π

S −
π
S

S tan π
S
,

with equality if, and only if K is a regular S-gon and o is its
centre.

COROLLARY

For any S ≥ 3, we have ρex
S =

tan π
S−

π
S

S tan π
S

, and the convex bodies in
{S} with maximal external robustness are the regular S-gons.
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RESULTS: INTERNAL ROBUSTNESS IN THE PLANE

THEOREM

For any K ∈ K2 and p ∈ int K , if K has S ≥ 3 stable points with
respect to p, then

ρin(K ,p) ≤ 1
2S

,

with equality if, and only if, K is a regular S-gon, and p is its
centre.

COROLLARY

For any S ≥ 3, we have ρin
S = 1

2S , and the plane convex bodies
K ∈ {S} with maximal internal robustness with respect to their
centres of gravity are the regular S-gons.
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RESULTS: INTERNAL ROBUSTNESS IN 3-SPACE

THEOREM

Let P be a regular polyhedron with S faces, U vertices and
H = S + U − 2 edges, and let o be the centre of P. Let P ′ be a
convex polyhedron with S faces, U vertices and H edges, each
containing an equilibrium point with respect to some fixed
q ∈ int P ′. Then

ρin(P ′,q) ≤ ρin(P,o),

with equality if, and only if P ′ is a similar copy of P, with q as its
centre.

REMARK

If, say, P and P ′ have the same number of stable points,
unstable points and edges, then they have the same number of
faces, vertices and saddle points.
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RESULTS: INTERNAL ROBUSTNESS IN 3-SPACE

EXAMPLE

Let P be a regular tetrahedron of unit surface area with centre
o. Truncate P near a vertex, in such a way that does not
change the numbers of the three types of equilibria of P, and
the truncated part does not intersect the incircle of any face of
P, and denote the truncated polyhedron by P ′. Then P ′ has the
same numbers of stable, saddle and unstable points with
respect to any point of int(ρin(P,o)B), but
surf(P ′) < surf(P) = 1. Thus, ρin(P ′,o) > ρin(P,o).
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RESULTS: (FULL) ROBUSTNESS IN 3-SPACE

DEFINITION

By definition, let ρ(K ) = 1 for any K where the number of
equilibria cannot be decreased by any trunction.

REMARK

We have ρ(K ) = 1 for any K ∈ {1,1}.

THEOREM

We have ρ12 = ρ21 = ρ22 = 1.
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RESULTS: PARTIAL ROBUSTNESS IN 3-SPACE

QUESTION

What if we want to decrease the number of only the stable
points, or only that of the unstable points?

DEFINITION

We may define partial robustness, i.e. the (relative) volume of a
truncation necessary to reduce either S or U, (the numbers of
stable and unstable points, respectively. We call this
S-robustness and U-robustness, denoted by ρs(K ), ρu(K ),
respectively.

Clearly, we have ρ(K ) = min{ρs(K ), ρu(K )}, and also
ρs

1,n = ρu
n,1 = 1 for any n > 2.

THEOREM

If n > 2, then ρs
2,n = ρu

n,2 = 1.
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RESULTS: PARTIAL ROBUSTNESS IN 3-SPACE

U=1 U=2 U=3 U=4
S=1 Gomboc
S=2 ellipsoids
S=3
S=4 regular

tetrahedron

REMARK

In coastal regions the percentage of pebbles in classes
{1,n}, {n,1} was found to be below 0.1%.
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REMARKS

REMARK

All our results (and proofs) can be applied for bodies with
piecewise C2-class boundaries.

REMARK (STABILITY OF INTERNAL/EXTERNAL ROBUSTNESS)

Let S ≥ 3. For every ε > 0, there is a δ = δ(ε,S) > 0, with
limε→0+0 δ = 0, such that if K ∈ K2 has S stable points with
respect to o ∈ int K , and ρin(K ,p) > 1

2S − ε, then the Hausdorff
distance of K and a regular S-gon, with o as its centre, is less
than δ. This is also true if replace ρin(K ,o) with ρex(K ,o).

REMARK

For every S ≥ 3, the maximum of ρin(K ,p) over K2 can be
approached by regions with smooth boundaries as well; or in
other words, 1

2S = sup{ρin(K ,p) : K ∈ O2,p ∈ int K}.
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QUESTIONS

It is known that the first nonempty class in K2 is {2}, thus
ρ2 = 1.

CONJECTURE

ρn = ρ(regular n-gon) if n > 2.

CONJECTURE

The theorem about the internal robustness of platonic solids is
valid also for downward external robustness, and for downward
full robustness.

We call the equilibrium classes containing platonic solids
(classes {4,4}, {6,8}, {8,6}, {20,12} and {12,20}) platonic
classes.
PROBLEM

Prove or disprove that in the platonic classes platonic solids
have maximal downward full robustness.
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QUESTIONS; ALTERNATIVE DEFINITION FOR

ROBUSTNESS

CONJECTURE

For n > 2, we have ρ2,n = ρn,2 = ρn.

CONJECTURE

If i ≥ k and j ≥ l then ρi,j ≤ ρk ,l .

Alternative definition: we may permit only truncations by
planes. Advantage:

numerical experiments are feasible;
this is the only truncation such that both resulting pieces
are convex.
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AVERAGE ROBUSTNESS

Problem: there is no nice measure on the family of truncations
(convex bodies).
Idea: there is a natural measure on the Grassmannian of the
hyperplanes, invariant under Euclidean motions. Using direct
product, this can be extended to a measure of the space of
truncations by finitely many subsequent planes (half spaces).
Given K , its nth order average robustness is the measure of
truncations by n planes that does not change the number of
equilibria, divided by the measure of truncations by n planes
that intersect K .
The average robustness of K is the limit of the nth order
average robustness, if it exists.
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AVERAGE ROBUSTNESS

DN=0

DN=1

DN=-1

FIGURE: Truncations of a unit square with one line.ZSOLT LÁNGI



AND NOW . . .

The End
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