Stability theorems

Tamás Szőnyi ELTE, CAI HAS

May 2nd, 2013, Szeged

Stability theorem:

An almost nice structure can always be obtained from a nice structure by modifying it a little bit.

nice: e.g. extremal in some sense

Stability theorem:

An almost nice structure can always be obtained from a nice structure by modifying it a little bit.

nice: e.g. extremal in some sense

A prototype of a stability theorem:

Turán graph (T(n, p)), extremal graph with *n* vertices, not containing K_{p+1} . Number of edges of T(n, p):=t(n, p).

Stability of the Turán graph: $\forall \varepsilon > 0$, $\exists \delta$ and $n(\varepsilon)$, so that: if the graph G_n on n vertices, $n > n(\varepsilon)$, does not contain K_{p+1} , and the number of edges $> t(n, p) - \delta n^2$

⇒ G_n can be obtained from T(n, p), by changing (adding or deleting) $\leq \varepsilon n^2$ edges. (ERDŐS, SIMONOVITS)

Theorem (Mantel)

A K₃-free (simple) graph on n vertices has at most $m \le n^2/4$ edges.

Let $\{x, y\}$ be an edge. Then $N(x) \cap N(y) = \emptyset$, hence $\deg(x) + \deg(y) \le n$. Summing for all edges we get

$$\sum_{x} (\deg(x))^2 \le nm$$

As $\sum_{x} (\deg(x))^2 \ge n (\sum_{x} (\deg(x)/n)^2 = 4m^2/n \text{ we get Mantel's result.}$

Towards a stability theorem: 1) In case of equality the graph is bipartite with classes of size n/2, n/2 (or (n + 1)/2, (n - 1)/2.

2) If deg(x) + deg(y) = n, then the graph is bipartite. Hence if m > n(n-1)/4, then the graph is bipartite. Indeed, N(x) and N(y) are the two classes (these are always independent sets).

3) What happens if $\deg(x) + \deg(y) = n - 1$? If the remaining point is connected to *a* points in N(x) and *b* points in N(y) then we loose *ab* edges and win a + b edges. Maximum no. of edges: a = 1 (or b = 1): $1 + (n - 1)^2/4$ if *n* is odd, $1 + ((n - 1)^2 - 1)/4$, if *n* is even.

4) Otherwise, $m \leq n(n-2)/2$.

Assume we find two adjacent points with

 $\deg(x) + \deg(y) \ge (1 - \gamma)n$. Then N(x) and N(y) induce a large bipartite subgraph. To get this from the original graph, we have to modify at most $(\gamma - \gamma/2)n^2$ edges.

If there is no such pair (x, y) then there are at most $(1 - \gamma)n^2/4$ edges. Hence for $\delta = \gamma/4$, $\varepsilon = (4\delta - 8\delta^2)$ is good if *n* is large enough.

More general stability theorems take into account the number of copies of K_{p+1} 's in G: LOVÁSZ, SIMONOVITS

ERDŐS-KO-RADO, 61: If \mathcal{F} is a *k*-uniform intersecting family of subsets of an *n* element set *S*, then $|\mathcal{F}| \leq {n-1 \choose k-1}$ provided $2k \leq n$.

If $2k + 1 \le n$, then equality holds if and only if \mathcal{F} is the family of all subsets containing a fixed element $s \in S$. In other words, $\tau(\mathcal{F}) = 1$. What if $\tau \ge 2$?

This was answered by HILTON, MILNER, see next slide.

Non-uniform version (exercise!): $|\mathcal{F}| \leq 2^{n-1}$. Proof: (matching: $X, S \setminus X$) At most one can be in \mathcal{F} .

Theorem (Hilton-Milner, 67)

Let $\mathcal{F} \subset {[n] \choose k}$ be an intersecting family with $k \ge 3$, $2k + 1 \le n$ and $\tau(\mathcal{F}) \ge 2$. Then $|\mathcal{F}| \le {n-1 \choose k-1} - {n-k-1 \choose k-1} + 1$. The families achieving that size are

- for any k-subset F and $x \in [n] \setminus F$ the family $\mathcal{F}_{HM} = \{F\} \cup \{G \in {[n] \choose k} : x \in G, F \cap G \neq \emptyset\},\$
- if k = 3, then for any 3-subset S the family $\mathcal{F}_3 = \{F \in {[n] \choose 3} : |F \cap S| \ge 2\}.$

Vector space analogues of EKR theorem: HSIEH, GREENE-KLEITMAN, FRANKL-WILSON

Vector space analogues of HM: BLOKHUIS, BROUWER, CHOWDHURY, FRANKL, MUSSCHE, PATKÓS, SZT for $n \ge 2k + 1$

BLOKHUIS, BROUWER, SZT: for n = 2k

Another extremal problem in graph theory

A bipartite graph G = (A, B, E) is $K_{\alpha,\beta}$ -free if it does not contain α nodes in A and β nodes in B that span a subgraph isomorphic to $K_{\alpha,\beta}$. We call (|A|, |B|) the size of G. The maximum number of edges a $K_{\alpha,\beta}$ -free bipartite graph of size (m, n) may have is denoted by $Z_{\alpha,\beta}(m, n)$, and is called a Zarankiewicz number. Other formulation: Max. no. of 1's in an $m \times n \ 0/1$ matrix without having an $\alpha \times \beta$ submatrix with only 1's.

Results for general α, β : KŐVÁRI–T. SÓS– TURÁN, KOLLÁR–RÓNYAI–SZABÓ, ALON–RÓNYAI–SZABÓ

Constructions and bounds: GUY, BROWN, FÜREDI and the authors above.

We shall focus on the case $\alpha = \beta = 2$.

Theorem (Reiman)

Let G = (A, B, E) be a $K_{2,2}$ -free bipartite graph of size (n, n). Then the number of edges in G,

$$|E|\leq \frac{n}{2}(1+\sqrt{4n-3}).$$

Equality holds if and only if $n = k^2 + k + 1$ for some k and G is the incidence graph of a projective plane of order k.

For bipartite graphs of size (m, n) the corresponding bound is

$$|E| \leq \frac{1}{2}(n + \sqrt{n^2 + 4nm(m-1)}),$$

and in case of equality we have a 2 - (n, k, 1) Steiner system with m = v(v - 1)/k(k - 1) blocks. Later REIMAN and ROMAN found that extremal constructions with larger α, β are related to block designs.

Theorem (Roman's bound)

Let G = (A, B, E) be a $K_{s,t}$ -free bipartite graph of size (m, n), and let $p \ge s - 1$. Then the number of edges in G,

$$|E| \leq \frac{(t-1)}{\binom{p}{s-1}}\binom{m}{s} + n \cdot \frac{(p+1)(s-1)}{s}.$$

Equality holds if and only if every vertex in B has degree p or p+1 and every s-tuple in A has exactly t-1 common neighbours in B.

What would be a stability version of Reiman's theorem? Several possibilities (all too general):

- If a bipartite graph has somewhat less edges than projective planes (or designs), the it can be embedded in a plane (or design).
- If m and n are close to the parameters of a projective plane (or a design) then the extremum in Zarankiewicz' problem can be obtained by deleting/adding vertices (and perhaps edges) from a plane (or a design).

We would need incidence structures close to a projective/affine plane or a design. Candidates: linear spaces, partial projective planes etc.

The corresponding embeddability results are typically not strong enough.

Result (Metsch)

Let $n \ge 15$, $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ be an incidence structure with $|\mathcal{P}| = n^2 + n + 1$, $|\mathcal{L}| \ge n^2 + 2$ such that every line in \mathcal{L} is incident with n + 1 points of \mathcal{P} and every two lines have at most one point in common. Then a projective plane Π of order n exists and $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ can be embedded into \mathcal{P} .

Lemma

Let $n \ge 15$, $G = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ be an incidence graph with $|\mathcal{P}| = n^2 + n + 1$, $|\mathcal{L}| \ge n^2 + 2$ such that every line in \mathcal{L} is incident with at least n + 1 points of \mathcal{P} , and every two lines have at most one point in common. Then a projective plane Π of order n exists, and $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ can be embedded into \mathcal{P} ; specially, every line in \mathcal{L} is incident with exactly n + 1 points of \mathcal{P} .

< E

Theorem (Damásdi, Héger, SzT)

Let $n \ge 15$, $c \le n/2$. Then

$$Z_{2,2}(n^2 + n + 1 - c, n^2 + n + 1) \le (n^2 + n + 1 - c)(n + 1).$$

Equality holds iff a projective plane of order n exists. Moreover, graphs giving equality are subgraphs of the incidence graph of a projective plane of order n.

Is it true that $Z_{2,2}(n^2+1, n^2+n+1) \le (n^2+1)(n+1)$ for every large enough *n*?

Subgraph-closed families

Let $\mathcal{F}(m, n) = \{G = (A, B) \in \mathcal{F} : |A| = m, |B| = n\}$, and let $ex_{\mathcal{F}}(m, n) = \max\{e(G) : G \in \mathcal{F}(m, n)\}$, and let $Ex_{\mathcal{F}}(m, n) = \{G \in \mathcal{F}(m, n) : e(G) = ex_{\mathcal{F}}(m, n)\}$. Elements of $Ex_{\mathcal{F}}(m, n)$ are called extremal.

Theorem

Let \mathcal{F} be a subgraph-closed family of bipartite graphs, and let $e_{\mathcal{F}}(m,n) \leq e = a(d+1) + bd$, $0 \leq a, b \in \mathbb{N}$, m = a + b, $d \in \mathbb{N}$. Let $c \in \mathbb{N}$.

) If
$$b = 0$$
, then $ex_{\mathcal{F}}(m + c, n) \le (m + c)(d + 1)$.

② If b > 0 or $ex_{\mathcal{F}}(m+1, n) \le e + d$, then $ex_{\mathcal{F}}(m+c, n) \le e + cd$.

Moreover, in both cases equality for some $c \ge 1$ implies that equality holds for all $c' \in \mathbb{N}$, $0 \le c' < c$ as well, and any $G \in Ex_{\mathcal{F}}(m + c, n)$ induces a graph from $Ex_{\mathcal{F}}(m + c - 1, n)$.

A useful embedding result for the complement of two lines in a projective plane.

Result (Totten)

Let S = (P, L) be a finite linear space (that is, an incidence structure where any two distinct points are contained in a unique line) with $|P| = n^2 - n$, $|L| = n^2 + n - 1$, $2 \le n \ne 4$, and every point having degree n + 1. Then S can be embedded into a projective plane of order n.

Proposition (Damásdi, Héger, SzT)

Let $c \in \mathbb{N}$. Then

Equality can be reached in all three inequalities if a projective plane of order n exists and $c \le n + 1$, or $c \le 2n$, or $c \le 3(n - 1)$, respectively.

Moreover, if $c \le n + 1$, or $c \le 2n$ and $2 \le n \ne 4$, then graphs reaching the bound in the first two cases, can be embedded into a projective plane of order n.

What is Z_2 , 2(m, n) if both m and n are close to $k^2 + k + 1$? Warning: n = m = 8: two examples, one from an affine plane of order 3, another a Fano plane plus one point! (They are different even from the combinatorial point of view.)

Other good question: if we have somewhat less than $\frac{n}{2}(1 + \sqrt{4n-3})$ edges in a bipartite graph of size (n, n) can one obtain it from the incidence graph of a projective plane by deleting some edges?

The previous embedding theorems (Metsch, Totten) are special cases, we don't know such a general result.

ARC: set of points no three of which are collinear complete arc: maximal w.r.t. inclusion BOSE: In a projective plane of order q an arc has AT MOST q + 2points. If q is odd then it has AT MOST q + 1 points. OVALS, HYPEROVALS EXAMPLES: CONICS in PG(2, q) (for q even an extra point can be added.)

More common name: SEGRE type results

Theorem (SEGRE)

If A is arc in PG(2, q) with $|A| \ge q - \sqrt{q} + 1$ when q is even and $|A| \ge q - \sqrt{q}/4 + 7/4$ when q is odd, then A is contained in an arc of maximum size (that is, in an oval or hyperoval).

Several improvements: THAS, VOLOCH, HIRSCHFELD-KORCHMÁROS

Beautiful improvement:

Theorem (HIRSCHFELD-KORCHMÁROS)

Let A be arc in PG(2, q) with $q - 2\sqrt{q} + 5 < |A| < q - \sqrt{q} + 1$. Then A is contained in a larger arc of size q + 2 or $q - \sqrt{q} + 1$. Smallest blocking sets: lines 2nd smallest: Baer subplanes, BRUEN (in Π_q) Stability of minimal blocking sets: in PG(2, q) small minimal blocking sets have size in certain subintervals of $[q + 1, \frac{3}{2}(q + 1))$, SZT, SZIKLAI In some cases small blocking sets can be classified/characterized: BLOKHUIS, SZT, POLVERINO, POLVERINO-STORME BLOKHUIS: In PG(2, p) there are no small blocking sets. Another stability version:

Theorem (Erdős and Lovász)

A point set of size q in PG(2,q), with less than $\sqrt{q+1}(q+1-\sqrt{q+1})$ 0-secants always contains at least $q+1-\sqrt{q+1}$ points from a line.

For planes PG(2, q), with q prime.

Theorem (Weiner-SzT)

Let B be a set of points of PG(2, q), q = p prime, that has at most $\frac{3}{2}(q+1) - \beta$ ($\beta > 0$) points. Suppose that the number of 0-secants, δ is less than $(\frac{2}{3}(\beta+1))^2/2$. Then there is a line that contains at least $q - \frac{2\delta}{q+1}$ points.

Note that for |B| = cq, $c \ge 1$ the bound on δ in the above theorem is $c'q^2$.

Theorem (Weiner-SzT)

Let B be a point set in PG(2, q), $q \ge 16$, of size less than $\frac{3}{2}(q+1)$. Denote the number of 0-secants of B by δ , and assume that

$$\delta < \min\left((q-1)rac{2q+1-|B|}{2(|B|-q)},rac{1}{2}(q-\sqrt{q})^{3/2}
ight).$$
 (1)

Then B can be obtained from a blocking set by deleting at most $\frac{\delta}{2q+1-|B|} + \frac{1}{2}$ points of it.

When |B| is relatively far from q and gets closer to $\frac{3}{2}(q+1)$ then the bound on δ gets worse.

SzT

 Π_q : projective plane of order q

set of even type: intersects each line in an even number of points Only exist for q even. Hence from now on

q IS EVEN

We shall concentrate on PG(2, q).

More general structures (e.g. Steiner systems): TALLINI Smallest example has q + 2 points: hyperoval.

Small sets of even type are close to arcs, hence we cannot expect a stability result for arcs from above.

KORCHMÁROS, MAZZOCCA:

(q + t, t)-arc of type (0, 2, t): set of q + t points such that every line meets it in either 0,2 or t points

In PG(2, q) KORCHMÁROS, MAZZOCCA: t divides q Conjecture that for every 4|t|q there is such an arc

GÁCS, WEINER: t-secants are concurrent

Constructions: KM, GW infinite classes, e.g. for $t = \sqrt{q}$. VANDENDRIESSCHE: infinite class for t = q/4Sporadic ones: q = 32, t = 4, KEY, MCDONOUGH, MAVRON even more examples: LIMBUPASIRIPORN set of almost even type: has only few odd secants Typical example: modify ε pts of a set of even type No. of odd secants is roughly $\delta = \varepsilon(q+1)$.

AIM: show that a set of almost even type is "typical" if $\delta{=}{\rm no.}$ of odd-secants is small

This is a stability theorem

Further motivation: small Kakeya-sets in AG(2, q), q even BLOKHUIS, DE BOECK, MAZZOCCA, STORME

Rough picture: dual of a (small Kakeya set + line of infinity) is a (q+2)-set having a small number of odd secants (almost all intersecting lines are 2-secants) and a special point through which there pass only 2-secants. More details later.

Theorem (Weiner-Szőnyi)

Assume that the point set \mathcal{H} in $\mathrm{PG}(2, q)$, 16 < q even, has δ odd-secants, where $\delta < (\lfloor \sqrt{q} \rfloor + 1)(q + 1 - \lfloor \sqrt{q} \rfloor)$. Then there exists a unique set \mathcal{H}' of even type, such that $|(\mathcal{H} \cup \mathcal{H}') \setminus (\mathcal{H} \cap \mathcal{H}')| = \lceil \frac{\delta}{q+1} \rceil$.

So "small" on the previous slides is roughly $q\sqrt{q}$ and the number of modified points is what we expect.

An arc with k points has k(q + 2 - k) odd secants (tangents). Hence for a complete k-arc in PG(2, q), q even we (almost) get SEGRE's bound, namely we get

 $k \leq q - \lfloor \sqrt{q} \rfloor + 1.$

This is sharp for q square (proved earlier with essentially the same method by WEINER).

Also applies for sets, where "almost all" lines are 2-secants.

The minimum no. of lines is obtained for hyperovals. The next result gives the stability of hyperovals.

Theorem (Blokhuis, Bruen)

Let \mathcal{H} be a point set in $\mathrm{PG}(2,q)$, q even, of size q + 2. Assume that the number of lines meeting \mathcal{H} in at least one point is $\binom{q+2}{2} + \nu$, where $\nu \leq \frac{q}{2}$. Then \mathcal{H} is a hyperoval or there exist two points P and Q, so that $(\mathcal{H} \setminus P) \cup Q$ is a hyperoval.

One cannot go further, since by deleting 2 points from a (q + 4, 4)-arc of type (0, 2, 4) one gets a set of size q + 2 having fewer lines meeting it in at least one point than a hyperoval ± 2 points, see the next slide.

Sets with few lines meeting them are almost arcs.

Theorem

Let \mathcal{H} be a point set in $\mathrm{PG}(2,q)$, 16 < q even, of size q + 2. Assume that the number of lines meeting \mathcal{H} in at least one point is $\binom{q+2}{2} + \nu$, where $\nu < \frac{1}{4}(\lfloor \sqrt{q} \rfloor + 1)(q + 1 - \lfloor \sqrt{q} \rfloor)$. Then there exists a set \mathcal{H}^* of even type, such that $|(\mathcal{H} \cup \mathcal{H}^*) \setminus (\mathcal{H} \cap \mathcal{H}^*)| \leq \lceil \frac{4\nu}{q+1} \rceil$.

Note that the number of points that have to be modified is again what we expect.

How to obtain a small dual Kakeya set?

- Start from a small set of even type
- 2 Delete some of its points to get a (q + 2)-set (with a special point through which there are only 2-secants)

Smallest ones: hyperoval, hyperoval ± 1 points, (q + 4, 4)-arc of type (0, 2, 4), hyperoval ± 2 points,

Problem: we do not know enough about sets of even type of size q + 6 (do they exist?) or about larger ones ...

THANK YOU FOR YOUR ATTENTION

個 と く き と く き と

æ