Stability theorems

Tamás Szőnyi

ELTE, CAI HAS

May 2nd, 2013, Szeged

Stability theorems

Stability theorem:
An almost nice structure can always be obtained from a nice structure by modifying it a little bit.
nice: e.g. extremal in some sense

Stability theorems

Stability theorem:
An almost nice structure can always be obtained from a nice structure by modifying it a little bit.
nice: e.g. extremal in some sense
A prototype of a stability theorem:
Turán graph $(T(n, p))$, extremal graph with n vertices, not containing K_{p+1}. Number of edges of $T(n, p):=t(n, p)$.
Stability of the Turán graph: $\forall \varepsilon>0, \exists \delta$ and $n(\varepsilon)$, so that: if the graph G_{n} on n vertices, $n>n(\varepsilon)$, does not contain K_{p+1}, and the number of edges $>t(n, p)-\delta n^{2}$
$\Rightarrow G_{n}$ can be obtained from $T(n, p)$, by changing (adding or deleting) $\leq \varepsilon n^{2}$ edges.

A special case

Theorem (Mantel)

A K K -free (simple) graph on n vertices has at most $m \leq n^{2} / 4$ edges.

Let $\{x, y\}$ be an edge. Then $N(x) \cap N(y)=\emptyset$, hence $\operatorname{deg}(x)+\operatorname{deg}(y) \leq n$. Summing for all edges we get

$$
\sum_{x}(\operatorname{deg}(x))^{2} \leq n m
$$

As $\sum_{x}(\operatorname{deg}(x))^{2} \geq n\left(\sum_{x}(\operatorname{deg}(x) / n)^{2}=4 m^{2} / n\right.$ we get Mantel's result.

Towards a stability theorem: 1) In case of equality the graph is bipartite with classes of size $n / 2, n / 2($ or $(n+1) / 2,(n-1) / 2$.

A special case: stability version

2) If $\operatorname{deg}(x)+\operatorname{deg}(y)=n$, then the graph is bipartite. Hence if $m>n(n-1) / 4$, then the graph is bipartite. Indeed, $N(x)$ and $N(y)$ are the two classes (these are always independent sets).
3) What happens if $\operatorname{deg}(x)+\operatorname{deg}(y)=n-1$?

If the remaining point is connected to a points in $N(x)$ and b points in $N(y)$ then we loose $a b$ edges and win $a+b$ edges. Maximum no. of edges: $a=1$ (or $b=1$): $1+(n-1)^{2} / 4$ if n is odd, $1+\left((n-1)^{2}-1\right) / 4$, if n is even.
4) Otherwise, $m \leq n(n-2) / 2$.

A special case: Erdős-Simonovits

Assume we find two adjacent points with $\operatorname{deg}(x)+\operatorname{deg}(y) \geq(1-\gamma) n$. Then $N(x)$ and $N(y)$ induce a large bipartite subgraph. To get this from the original graph, we have to modify at most $(\gamma-\gamma / 2) n^{2}$ edges.

If there is no such pair (x, y) then there are at most $(1-\gamma) n^{2} / 4$ edges. Hence for $\delta=\gamma / 4, \varepsilon=\left(4 \delta-8 \delta^{2}\right)$ is good if n is large enough.

More general stability theorems take into account the number of copies of K_{p+1} 's in G: LOVÁSZ, SIMONOVITS

A classical result in extremal combinatorics

ERDŐS-KO-RADO, 61: If \mathcal{F} is a k-uniform intersecting family of subsets of an n element set S, then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$ provided $2 k \leq n$.

If $2 k+1 \leq n$, then equality holds if and only if \mathcal{F} is the family of all subsets containing a fixed element $s \in S$. In other words, $\tau(\mathcal{F})=1$. What if $\tau \geq 2$?

This was answered by HILTON, MILNER, see next slide.
Non-uniform version (exercise!): $|\mathcal{F}| \leq 2^{n-1}$.
Proof: (matching: $X, S \backslash X$) At most one can be in \mathcal{F}.

A corresponding stability result

Theorem (Hilton-Milner, 67)

Let $\mathcal{F} \subset\binom{[n]}{k}$ be an intersecting family with $k \geq 3,2 k+1 \leq n$ and $\tau(\mathcal{F}) \geq 2$. Then $|\mathcal{F}| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$. The families achieving that size are

- for any k-subset F and $x \in[n] \backslash F$ the family

$$
\mathcal{F}_{H M}=\{F\} \cup\left\{G \in\binom{[n]}{k}: x \in G, F \cap G \neq \emptyset\right\},
$$

- if $k=3$, then for any 3-subset S the family

$$
\mathcal{F}_{3}=\left\{F \in\binom{[n]}{3}:|F \cap S| \geq 2\right\}
$$

Vector space analogues of EKR theorem: HSIEH, GREENE-KLEITMAN, FRANKL-WILSON
Vector space analogues of HM: BLOKHUIS, BROUWER, CHOWDHURY, FRANKL, MUSSCHE, PATKÓS, SZT for $n \geq 2 k+1$

BLOKHUIS, BROUWER, SZT: for $n=2 k$

Another extremal problem in graph theory

A bipartite graph $G=(A, B, E)$ is $K_{\alpha, \beta}$-free if it does not contain α nodes in A and β nodes in B that span a subgraph isomorphic to $K_{\alpha, \beta}$. We call $(|A|,|B|)$ the size of G. The maximum number of edges a $K_{\alpha, \beta^{-}}$free bipartite graph of size (m, n) may have is denoted by $Z_{\alpha, \beta}(m, n)$, and is called a Zarankiewicz number. Other formulation: Max. no. of 1 's in an $m \times n 0 / 1$ matrix without having an $\alpha \times \beta$ submatrix with only 1 's.

Results for general α, β : KŐVÁRI-T. SÓS- TURÁN, KOLLÁR-RÓNYAI-SZABÓ, ALON-RÓNYAI-SZABÓ

Constructions and bounds: GUY, BROWN, FÜREDI and the authors above.

We shall focus on the case $\alpha=\beta=2$.

Reiman's theorem

Theorem (Reiman)

Let $G=(A, B, E)$ be a $K_{2,2}$-free bipartite graph of size (n, n).
Then the number of edges in G,

$$
|E| \leq \frac{n}{2}(1+\sqrt{4 n-3})
$$

Equality holds if and only if $n=k^{2}+k+1$ for some k and G is the incidence graph of a projective plane of order k.

For bipartite graphs of size (m, n) the corresponding bound is

$$
|E| \leq \frac{1}{2}\left(n+\sqrt{n^{2}+4 n m(m-1)}\right)
$$

and in case of equality we have a $2-(n, k, 1)$ Steiner system with $m=v(v-1) / k(k-1)$ blocks.
Later REIMAN and ROMAN found that extremal constructions with larger α, β are related to block designs.

Roman's bound

Theorem (Roman's bound)

Let $G=(A, B, E)$ be a $K_{s, t}$-free bipartite graph of size (m, n), and let $p \geq s-1$. Then the number of edges in G,

$$
|E| \leq \frac{(t-1)}{\binom{p}{s-1}}\binom{m}{s}+n \cdot \frac{(p+1)(s-1)}{s} .
$$

Equality holds if and only if every vertex in B has degree p or $p+1$ and every s-tuple in A has exactly $t-1$ common neighbours in B.

Stability version?

What would be a stability version of Reiman's theorem?
Several possibilities (all too general):
(1) If a bipartite graph has somewhat less edges than projective planes (or designs), the it can be embedded in a plane (or design).
(2) If m and n are close to the parameters of a projective plane (or a design) then the extremum in Zarankiewicz' problem can be obtained by deleting/adding vertices (and perhaps edges) from a plane (or a design).
We would need incidence structures close to a projective/affine plane or a design. Candidates: linear spaces, partial projective planes etc.
The corresponding embeddability results are typically not strong enough.

Stability of projective planes

Result (Metsch)

Let $n \geq 15,(\mathcal{P}, \mathcal{L}, \mathcal{I})$ be an incidence structure with $|\mathcal{P}|=n^{2}+n+1,|\mathcal{L}| \geq n^{2}+2$ such that every line in \mathcal{L} is incident with $n+1$ points of \mathcal{P} and every two lines have at most one point in common. Then a projective plane Π of order n exists and $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ can be embedded into \mathcal{P}.

Lemma

Let $n \geq 15, G=(\mathcal{P}, \mathcal{L}, \mathcal{I})$ be an incidence graph with $|\mathcal{P}|=n^{2}+n+1,|\mathcal{L}| \geq n^{2}+2$ such that every line in \mathcal{L} is incident with at least $n+1$ points of \mathcal{P}, and every two lines have at most one point in common. Then a projective plane Π of order n exists, and $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ can be embedded into \mathcal{P}; specially, every line in \mathcal{L} is incident with exactly $n+1$ points of \mathcal{P}.

Consequence for the Zarankiewicz problem

Theorem (Damásdi, Héger, SzT)

Let $n \geq 15, c \leq n / 2$. Then

$$
Z_{2,2}\left(n^{2}+n+1-c, n^{2}+n+1\right) \leq\left(n^{2}+n+1-c\right)(n+1) .
$$

Equality holds iff a projective plane of order n exists. Moreover, graphs giving equality are subgraphs of the incidence graph of a projective plane of order n.

Is it true that $Z_{2,2}\left(n^{2}+1, n^{2}+n+1\right) \leq\left(n^{2}+1\right)(n+1)$ for every large enough n ?

Let $\mathcal{F}(m, n)=\{G=(A, B) \in \mathcal{F}:|A|=m,|B|=n\}$, and let $e x_{\mathcal{F}}(m, n)=\max \{e(G): G \in \mathcal{F}(m, n)\}$, and let $E x_{\mathcal{F}}(m, n)=\left\{G \in \mathcal{F}(m, n): e(G)=e x_{\mathcal{F}}(m, n)\right\}$. Elements of $E x_{\mathcal{F}}(m, n)$ are called extremal.

Theorem

Let \mathcal{F} be a subgraph-closed family of bipartite graphs, and let $e x_{\mathcal{F}}(m, n) \leq e=a(d+1)+b d, 0 \leq a, b \in \mathbb{N}, m=a+b, d \in \mathbb{N}$. Let $c \in \mathbb{N}$.
(1) If $b=0$, then $e x_{\mathcal{F}}(m+c, n) \leq(m+c)(d+1)$.
(2) If $b>0$ or $\operatorname{ex} \mathcal{F}_{\mathcal{F}}(m+1, n) \leq e+d$, then

$$
e x_{\mathcal{F}}(m+c, n) \leq e+c d
$$

Moreover, in both cases equality for some $c \geq 1$ implies that equality holds for all $c^{\prime} \in \mathbb{N}, 0 \leq c^{\prime}<c$ as well, and any $G \in E x_{\mathcal{F}}(m+c, n)$ induces a graph from $E x_{\mathcal{F}}(m+c-1, n)$.

Around affine planes

A useful embedding result for the complement of two lines in a projective plane.

Result (Totten)

Let $\mathcal{S}=(\mathcal{P}, \mathcal{L})$ be a finite linear space (that is, an incidence structure where any two distinct points are contained in a unique line) with $|\mathcal{P}|=n^{2}-n,|\mathcal{L}|=n^{2}+n-1,2 \leq n \neq 4$, and every point having degree $n+1$. Then \mathcal{S} can be embedded into a projective plane of order n.

A consequence for the Zarankiewicz problem

Proposition (Damásdi, Héger, SzT)

Let $c \in \mathbb{N}$. Then

$$
\begin{aligned}
& Z_{2,2}\left(n^{2}+c, n^{2}+n\right) \leq n^{2}(n+1)+c n \\
& Z_{2,2}\left(n^{2}-n+c, n^{2}+n-1\right) \leq\left(n^{2}-n\right)(n+1)+c n, \\
& Z_{2,2}\left(n^{2}-2 n+1+c, n^{2}+n-2\right) \leq\left(n^{2}-2 n+1\right)(n+1)+c n, \\
& \text { if } n \geq 4
\end{aligned}
$$

Equality can be reached in all three inequalities if a projective plane of order n exists and $c \leq n+1$, or $c \leq 2 n$, or $c \leq 3(n-1)$, respectively.
Moreover, if $c \leq n+1$, or $c \leq 2 n$ and $2 \leq n \neq 4$, then graphs reaching the bound in the first two cases, can be embedded into a projective plane of order n.

What would be the real question?

What is $Z_{2}, 2(m, n)$ if both m and n are close to $k^{2}+k+1$?
Warning: $n=m=8$: two examples, one from an affine plane of order 3, another a Fano plane plus one point! (They are different even from the combinatorial point of view.)

Other good question: if we have somewhat less than $\frac{n}{2}(1+\sqrt{4 n-3})$ edges in a bipartite graph of size (n, n) can one obtain it from the incidence graph of a projective plane by deleting some edges?

The previous embedding theorems (Metsch, Totten) are special cases, we don't know such a general result.

Arcs in finite planes

ARC: set of points no three of which are collinear complete arc: maximal w.r.t. inclusion
BOSE: In a projective plane of order q an arc has AT MOST $q+2$ points. If q is odd then it has AT MOST $q+1$ points.
OVALS, HYPEROVALS
EXAMPLES: CONICS in $\operatorname{PG}(2, q)$ (for q even an extra point can be added.)

Stability results in finite geometry: arcs

More common name: SEGRE type results

Theorem (SEGRE)

If A is arc in $\operatorname{PG}(2, q)$ with $|A| \geq q-\sqrt{q}+1$ when q is even and $|A| \geq q-\sqrt{q} / 4+7 / 4$ when q is odd, then A is contained in an arc of maximum size (that is, in an oval or hyperoval).

Several improvements: THAS, VOLOCH, HIRSCHFELD-KORCHMÁROS
Beautiful improvement:

Theorem (HIRSCHFELD-KORCHMÁROS)

Let A be arc in $\operatorname{PG}(2, q)$ with $q-2 \sqrt{q}+5<|A|<q-\sqrt{q}+1$.
Then A is contained in a larger arc of size $q+2$ or $q-\sqrt{q}+1$.

Stability results in finite geometry: blocking sets

Smallest blocking sets: lines
2nd smallest: Baer subplanes, BRUEN (in Π_{q})
Stability of minimal blocking sets: in $\operatorname{PG}(2, q)$ small minimal blocking sets have size in certain subintervals of $\left[q+1, \frac{3}{2}(q+1)\right)$, SZT, SZIKLAI
In some cases small blocking sets can be classified/characterized:
BLOKHUIS, SZT, POLVERINO, POLVERINO-STORME BLOKHUIS: In PG $(2, p)$ there are no small blocking sets.
Another stability version:

Theorem (Erdős and Lovász)

A point set of size q in $\operatorname{PG}(2, q)$, with less than
$\sqrt{q+1}(q+1-\sqrt{q+1}) 0$-secants always contains at least
$q+1-\sqrt{q+1}$ points from a line.

Stability of small blocking sets I

For planes $\operatorname{PG}(2, q)$, with q prime.

Theorem (Weiner-SzT)

Let B be a set of points of $\operatorname{PG}(2, q), q=p$ prime, that has at most $\frac{3}{2}(q+1)-\beta(\beta>0)$ points. Suppose that the number of 0 -secants, δ is less than $\left(\frac{2}{3}(\beta+1)\right)^{2} / 2$. Then there is a line that contains at least $q-\frac{2 \delta}{q+1}$ points.

Note that for $|B|=c q, c \geq 1$ the bound on δ in the above theorem is $c^{\prime} q^{2}$.

Stability of small blocking sets II

Theorem (Weiner-SzT)

Let B be a point set in $\operatorname{PG}(2, q), q \geq 16$, of size less than $\frac{3}{2}(q+1)$. Denote the number of 0 -secants of B by δ, and assume that

$$
\begin{equation*}
\delta<\min \left((q-1) \frac{2 q+1-|B|}{2(|B|-q)}, \frac{1}{2}(q-\sqrt{q})^{3 / 2}\right) . \tag{1}
\end{equation*}
$$

Then B can be obtained from a blocking set by deleting at most $\frac{\delta}{2 q+1-|B|}+\frac{1}{2}$ points of it.

When $|B|$ is relatively far from q and gets closer to $\frac{3}{2}(q+1)$ then the bound on δ gets worse.

Sets of even type

Π_{q} : projective plane of order q
set of even type: intersects each line in an even number of points Only exist for q even. Hence from now on

q IS EVEN

We shall concentrate on $\operatorname{PG}(2, q)$.
More general structures (e.g. Steiner systems): TALLINI Smallest example has $q+2$ points: hyperoval.

Small sets of even type are close to arcs, hence we cannot expect a stability result for arcs from above.

A class of examples

KORCHMÁROS, MAZZOCCA:
($q+t, t$)-arc of type $(0,2, t)$: set of $q+t$ points such that every line meets it in either 0,2 or t points
In PG(2, q) KORCHMÁROS, MAZZOCCA: t divides q
Conjecture that for every $4|t| q$ there is such an arc
GÁCS, WEINER: t-secants are concurrent
Constructions: KM, GW infinite classes, e.g. for $t=\sqrt{q}$.
VANDENDRIESSCHE: infinite class for $t=q / 4$
Sporadic ones: $q=32, t=4$, KEY, MCDONOUGH, MAVRON even more examples: LIMBUPASIRIPORN

Sets of almost even type

set of almost even type: has only few odd secants
Typical example: modify ε pts of a set of even type
No. of odd secants is roughly $\delta=\varepsilon(q+1)$.
AIM: show that a set of almost even type is "typical" if $\delta=$ no. of odd-secants is small

This is a stability theorem
Further motivation: small Kakeya-sets in $\operatorname{AG}(2, q), q$ even BLOKHUIS, DE BOECK, MAZZOCCA, STORME

Rough picture: dual of a (small Kakeya set + line of infinity) is a $(q+2)$-set having a small number of odd secants (almost all intersecting lines are 2 -secants) and a special point through which there pass only 2 -secants. More details later.

Our stability theorem

Theorem (Weiner-Szőnyi)

Assume that the point set \mathcal{H} in $\operatorname{PG}(2, q), 16<q$ even, has δ odd-secants, where $\delta<(\lfloor\sqrt{q}\rfloor+1)(q+1-\lfloor\sqrt{q}\rfloor)$. Then there exists a unique set \mathcal{H}^{\prime} of even type, such that $\left|\left(\mathcal{H} \cup \mathcal{H}^{\prime}\right) \backslash\left(\mathcal{H} \cap \mathcal{H}^{\prime}\right)\right|=\left\lceil\frac{\delta}{q+1}\right\rceil$.

So "small" on the previous slides is roughly $q \sqrt{q}$ and the number of modified points is what we expect.

Application to arcs

An arc with k points has $k(q+2-k)$ odd secants (tangents).
Hence for a complete k-arc in PG(2, q), q even we (almost) get SEGRE's bound, namely we get

$$
k \leq q-\lfloor\sqrt{q}\rfloor+1 .
$$

This is sharp for q square (proved earlier with essentially the same method by WEINER).
Also applies for sets, where "almost all" lines are 2-secants.

No. of lines intersecting a point set of size $(q+2)$

The minimum no. of lines is obtained for hyperovals. The next result gives the stability of hyperovals.

Theorem (Blokhuis, Bruen)

Let \mathcal{H} be a point set in $\operatorname{PG}(2, q)$, q even, of size $q+2$. Assume that the number of lines meeting \mathcal{H} in at least one point is $\binom{q+2}{2}+\nu$, where $\nu \leq \frac{q}{2}$. Then \mathcal{H} is a hyperoval or there exist two points P and Q, so that $(\mathcal{H} \backslash P) \cup Q$ is a hyperoval.

One cannot go further, since by deleting 2 points from a $(q+4,4)$-arc of type $(0,2,4)$ one gets a set of size $q+2$ having fewer lines meeting it in at least one point than a hyperoval ± 2 points, see the next slide.

$(q+2)$-sets with few lines meeting it

Sets with few lines meeting them are almost arcs.

Theorem

Let \mathcal{H} be a point set in $\operatorname{PG}(2, q), 16<q$ even, of size $q+2$.
Assume that the number of lines meeting \mathcal{H} in at least one point is $\binom{q+2}{2}+\nu$, where $\nu<\frac{1}{4}(\lfloor\sqrt{q}\rfloor+1)(q+1-\lfloor\sqrt{q}\rfloor)$. Then there exists a set \mathcal{H}^{*} of even type, such that $\left|\left(\mathcal{H} \cup \mathcal{H}^{*}\right) \backslash\left(\mathcal{H} \cap \mathcal{H}^{*}\right)\right| \leq\left\lceil\frac{4 \nu}{q+1}\right\rceil$.

Note that the number of points that have to be modified is again what we expect.

Small Kakeya sets

How to obtain a small dual Kakeya set?
(1) Start from a small set of even type
(2) Delete some of its points to get a $(q+2)$-set (with a special point through which there are only 2 -secants)

Smallest ones: hyperoval, hyperoval ± 1 points, $(q+4,4)$-arc of type ($0,2,4$), hyperoval ± 2 points, \ldots.

Problem: we do not know enough about sets of even type of size $q+6$ (do they exist?) or about larger ones ...

THANK YOU FOR YOUR ATTENTION

