Recent results on k-arcs in Galois Geometries

Angelo Sonnino

Università decli Studi della Basilicata Potenza, Italy

Kerékjártó Geometriai Szeminárium Szeged, Ith April 2013

Arcs in PG(r,q)

Let $q=p^{h}$ Be a power of a prime integer. An arc of size k (Briefly a k-arc) in $\operatorname{PG}(r, q)$ is a set \mathcal{K} consisting of k points no $r+1$ of which are contained in a hyperplane.

A k-arc is said to be complete if it is not contained in a $(k+1)$-arc.

Motivations

- k-res in projective spaces (and planes) are interesting objects in their own right.
- k-ares and linear M.D.S. codes are equivalent objects; J. A- Thas, (1992).
- Many known "GOOd" covering codes and saturatina sets arise from complete k-ares; M. Giulietti and R. Vincenti (2O12).
- k-arcs in finite projective spaces can be used in cryptography in order to produce multilevel secret sharing schemes; G. J. Simmons (1989, 1990), M. Giulietti and R. Vincenti (2O12), G. Korchmáros, V. Lanzone and AS (2O12).

Ares in $\operatorname{PG}(3, q)$
A k-are in $\mathrm{PG}(3, q)$ is a set \mathcal{K} consisting of k points no four of which are coplanar.
$-k \leq q+1$.

- If $k=q+1$, then the collineation aroup fixina \mathcal{K} contains PGL $(2, q)$ and acts on its points as a 3-transitive permutation Group.
- A k-arc whose collineation Group G acts transitively on its points is called a "G-transitive" k-arc.

The problem

- Find a collineation croup G acting faithfully on PG(3, q).
- Give some sufficient condition for the orbit P^{G} of some point $P \in \operatorname{PG}(3, q)$ to Be a k-arc.
- In other words: does a G-transitive k-arc exist in PG $(3, q)$ for a fixed k and infinitely many values of $q=p^{h}$?
- Investigate the completeness of such k-arcs in view of the lower Bound for the size of a complete k-arc in $\operatorname{PG}(3, q)$.

Background
Previuos work in the projective plane $\operatorname{PG}(2, q)$.

- Construction of a PSL $(2,7)$-transitive 24 -arc in PG(2, 29); J. M. Chao and H. Kaneta (1996).
- An infinite family of $\operatorname{PSL}(2,7)$-transitive 42 -arcs in $\mathrm{PG}(2, q)$ for any $q=p^{h} \geq 53$ with $p \neq 7$ an odd prime, $q^{3} \equiv 1(\bmod 7)$, apart from finitely many values of q; L. Indaco and G. Korchmáros (2O12).
- An infinite family of A_{6}-transitive 90-ares in either $\operatorname{PG}(2, q)$ or $\operatorname{PG}\left(2, q^{2}\right)$, with $q \geq 349$ and $q \neq 421$, which turn out to Be complete for $q \in\{349,409,529,601,661\} ;$ M. Giulietti, G. Korchmáros, S. MarcuGini and F. Pambianco (online 2O12).

Background
So far very little is known about k-ares in $\mathrm{PG}(3, q)$.

- The maximum size for a k-arc in $\operatorname{PG}(3, q)$ is $q+1$.
- If q is odd and $q>4$ then any $(q+1)$-arc is projectively equivalent to a normal rational curve:

$$
\left\{\left(t^{2}: t^{2}: t: 1\right) \mid t \in \mathbb{F}_{q}\right\} \cup\{(1: 0: 0: 0)\} .
$$

- If $q=2^{h}$ with $h>1$ then any $(q+1)$-arc is projectively equivalent to a curve

$$
\left\{\left(t^{2 n+1}: t^{2 n}: t: 1\right) \mid t \in \mathbb{F}_{q}\right\} \cup\{(1: 0: 0: 0)\}
$$

with $\operatorname{MCD}(n, h)=1$.

- Large k-ares lying on elliptic quadrics in PG(3,q); AS (1995, 1999).

Choose the Group

If $q \equiv 1(\bmod 7)$, then the projective special linear eroup PSL $(2,7)$ can Be regarded as a distincuished subcroup of PGL $(4, q)$ Generated By the projective collineations with matrices:

$$
\begin{gathered}
S=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \gamma & 0 & 0 \\
0 & 0 & \gamma^{4} & 0 \\
0 & 0 & 0 & \gamma^{4}
\end{array}\right), \quad T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right), \\
Q=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & \gamma^{2}+\gamma^{5} & \gamma^{3}+\gamma^{4} & \gamma+\gamma^{6} \\
2 & \gamma^{3}+\gamma^{4} & \gamma+\gamma^{6} & \gamma^{2}+\gamma^{5} \\
2 & \gamma+\gamma^{6} & \gamma^{2}+\gamma^{5} & \gamma^{3}+\gamma^{4}
\end{array}\right),
\end{gathered}
$$

with $1+\gamma+\gamma^{2}+\gamma^{3}+\gamma^{4}+\gamma^{5}+\gamma^{6}=0$; see Blichfeldt (1905).

Choose the group

Let S, T, Q denote the collineations of $\operatorname{PGL}(4, q)$ associated to the matrices S, T and Q. The map

$$
\vartheta:=\left\{\begin{array}{l}
S \mapsto \mathbf{S} \\
T \mapsto \mathbf{T} \\
Q \mapsto \mathbf{Q}
\end{array}\right.
$$

extends to an isomorphism from PSL(2,7) into $\operatorname{PGL}(4, q)$. Further, the matrix $M=Q^{7} S T$ has projective order 4 as

$$
M^{4}=-7^{14} I_{4}
$$

Choose the Group

Let M denote the collineation of $\mathrm{PGL}(4, q)$ associated to the matrix M. Then, a representative system of the 42 right cosets of the cyclic subgroup $\langle M\rangle$ of order 4 in PSL $(2,7)$ is the following:
$\mathscr{T}=\left\{1, \mathrm{TQ}, \mathrm{QS}^{-2}, \mathrm{Q}, \mathrm{TQS}, \mathrm{QS}^{-1}, \mathrm{QSTS}, \mathrm{QS}, \mathrm{QT}, \mathrm{TQS}^{2}\right.$, QS $^{2}, \mathrm{~S}^{-1}$ QS 3, QS $^{-1} \mathrm{~T}, \mathrm{SQTS}, \mathrm{QST}, \mathrm{QSQ}, \mathrm{QTS}, \mathrm{QS}^{-1} \mathbf{T}^{-1}$, QS $^{-3}$, $\mathrm{TQS}^{2} \mathrm{Q}, \mathrm{QS}^{3}, \mathrm{~S}^{-1} \mathrm{QST}^{-1} \mathrm{~S}, \mathrm{TS}^{-1} \mathrm{Q}, \mathrm{S}^{-1} \mathrm{QTS}^{-1}$, QTS $^{-1}$, QST $^{-1}$, $\mathrm{ST}^{-1} \mathrm{SQS}, \mathrm{T}^{-1} \mathrm{~S}^{-1}$ QTS, QSQT, SQS ${ }^{-1}$ TQ, TS^{-1} QTS, T^{-1} SQST, $\mathrm{T}^{-1} \mathrm{SQTS}, \mathrm{T}^{-1} \mathrm{~S}^{-1} \mathrm{QTS}^{-1}, \mathrm{~S}^{-2} \mathrm{QS}^{2}, \mathrm{~S}^{-1}, \mathrm{QS}^{2} \mathrm{QS}^{-1}, \mathrm{QS}^{2} \mathrm{QS}^{-1} \mathrm{~T}$,

$$
\left.\mathrm{S}^{-1} \mathrm{QSQS}^{-1}, \mathrm{~S}^{2} \mathrm{QS}^{-1}, \mathrm{~S}^{2} \mathrm{QS}^{-1} \mathbf{T}^{-1}, \mathrm{~S}^{2} \mathbf{Q S}^{-1} \mathbf{T}\right\},
$$

where 1 denotes the identical collineation of $\operatorname{PGL}(4, q)$.

Preliminary results

Let \mathbf{M} denote the collineation of $\operatorname{PGL}(4, q)$ associated to the matrix M.

Proposition (AS, 2013)
The collineation group $\langle\mathrm{M}\rangle$ generated by M admits four fixed points in PG(3, $\left.q^{2}\right)$.

The characteristic polynomial of M

$$
P_{m}(X)=\operatorname{det}\left(M-X I_{4}\right)=X^{4}+7^{14}
$$

yields four distinct eigenvalues in the quadratic extension $\mathbb{F}_{q^{2}}$ of \mathbb{F}_{q}.

The 42-ares

If λ is one of these eigenvalues, then from $\left(M-\lambda I_{4}\right)=0$ we Get

$$
\left\{\begin{array}{l}
(343-\lambda) x_{0}+343 \gamma^{2} x_{1}+343 \gamma x_{2}+343 \gamma^{4} x_{3}=0 \\
686 x_{0}+\left(343 \gamma+343 \gamma^{3}-\lambda\right) x_{1}-\left(343+343 \gamma+343 \gamma^{2}\right. \\
\left.\quad+343 \gamma^{4}+343 \gamma^{5}\right) x_{2}+(343+343 \gamma) x_{3}=0 \\
686 x_{0}+\left(343+343 \gamma^{4}\right) x_{1} \\
\quad+\left(343 \gamma^{4}+343 \gamma^{5}-\lambda\right) x_{2}+\left(343 \gamma^{3}+343 \gamma^{5}\right) x_{3}=0 \\
686 x_{0}-\left(343+343 \gamma+343 \gamma^{2}+343 \gamma^{3}+343 \gamma^{4}\right) x_{1} \\
\quad+\left(343+343 \gamma^{2}\right) x_{2}-\left(343+343 \gamma+343 \gamma^{3}\right. \\
\left.\quad+343 \gamma^{4}+343 \gamma^{5}+\lambda\right) x_{3}=0 .
\end{array}\right.
$$

The 42-arcs

For $q=p^{h}, q \geq 29$ and $q \equiv 1(\bmod 7)$, set

$$
\mathcal{O}=\{\mathbf{U}(P) \mid \mathbf{U} \in \mathscr{S}\}=\left\{P_{1}, \ldots, P_{42}\right\},
$$

where $P_{1}=P\left(1: x_{1}(\gamma, \lambda): y_{1}(\gamma, \lambda): z_{1}(\gamma, \lambda)\right)$ is one of the four points of $\mathrm{PG}(3, q)$ arising from the eigenvectors of M.

Each point of \mathcal{O} can Be written in terms of γ and λ as

$$
P\left(1: x_{i}(\gamma, \lambda): y_{i}(\gamma, \lambda): z_{i}(\gamma, \lambda)\right)
$$

for $1 \leq i \leq 42$.

The 42-arcs
Let $D_{i, j, k}$ Be the determinant of the matrix whose rows are the coordinate vectors of the points P_{1}, P_{i}, P_{j} and P_{k}, with $1<i<j<k \leq 42$. This can Be regarded as a polynomial in the indeterminates Γ and Λ, say $D_{i, j, k}(\Gamma, \Lambda)$.
Hence a necessary condition for the points P_{1}, P_{i}, P_{j} and P_{k} to produce a coplanar Quadruple in $\operatorname{PG}\left(3, q^{2}\right)$ is that the system of equations

$$
\left\{\begin{array}{l}
D_{i, j, k}(\Gamma, \Lambda)=0 \\
\Gamma^{6}+\Gamma^{5}+\Gamma^{4}+\Gamma^{3}+\Gamma^{2}+\Gamma+1=0 \\
\Lambda^{4}+7^{14}=0
\end{array}\right.
$$

admits a solution (γ, λ) in some algebraic extesion of the field \mathbb{F}_{q}.

Existence and completeness

Proposition (AS, 2013)
Let $q=p^{n}, q \geq 29$ and $q \equiv 1(\bmod 7)$. Then the orbits of the fixed points of the collineation M associated to the matrix M of projective order 4 are 42 -arcs in $\mathrm{PG}\left(3, q^{2}\right)$ except for a finite number of values of p.

Proposition (AS, 2013)
Let \mathcal{K} be a complete k-arc in $\operatorname{PG}\left(3, q^{2}\right)$. Then

$$
\binom{k}{3}>q^{2} .
$$

Existence and completeness

A necessary condition for a k-arc K to Be complete in $\mathrm{PG}\left(3, q^{2}\right)$ is

$$
F(k, q)=\frac{k(k-1)(k-2)}{6}-q^{2}>0 .
$$

Some values:

- $q=29$ implies $F(k, 29)>0$ when $k>18$;
- $q=43$ implies $F(k, 43)>0$ when $k>23$;
- $q=71$ implies $F(k, 71)>0$ when $k>32$;
- $q=113$ implies $F(k, 113)>0$ when $k>43$.

The case $q=29$

We noted that no 42-are can Be complete in PG(3, $\left.q^{2}\right)$ unless $q \in\{29,43,71\}$.

Under the action of $\operatorname{PSL}(2,7)$, the four fixed points of the collineation M describe two distinct 42-orbits which are 42-arcs in PG(3, 29²).

Proposition (AS, 2013)
The two PSL(2,7)-transitive 42-arcs are both complete in PG(3, 29²).

42 is a relatively small value for a complete arc when compared to $\left|\mathrm{PG}\left(3, q^{2}\right)\right|=29^{6}+29^{4}+29^{2}+1=595531444$.

Applications in cryptography

In a 2-level secret sharing scheme, a secret is shared among a certain number of participants distributed in two levels of privilege, with the requirement that:

- just two participants from the top level are necessary and sufficient in order to reconstruct the secret;
- $n>2$ participants from the low level are necessary and sufficient in order to reconstruct the secret;
- the secret can Be reconstructed By $n-1$ participants from the low level if and only if they are joined By on participant from the top level.

Secret shares with $n=3$

Let the secret be defined at a point P in a plane $\pi_{d}=\operatorname{PG}(2, q)$, with $q=p^{h}$ and p a prime.

Then, in a 4-dimensional space $\operatorname{PG}(4, q)$ containing π_{d} :

- any pair of the private pieces of information (points) held By the members of the upper level define a line ℓ such that $\ell \cap \pi_{d}=\{P\}$;
- any three of the points held By the members of the lower level define a plane π such that $\pi \cap \pi_{d}=\{P\}$.

Secret shares with $n=3$

Representation of a two-level sharing scheme in a containing 4 -dimensional space

Further requirements

A member of the upper level and any two of the lower level should also be able to access the secret.

Sharply focused ares

A set \mathcal{K} consisting of k points in General position in the finite projective plane $\pi=\mathrm{PG}(2, q)$ is said to Be sharply focused on a line ℓ if the $\binom{k}{2}$ distinct lines defined By pairs of points in \mathcal{K} meet ℓ in only k distinct points (G. J. Simmons, 1990).

One step Beyond: hyperfocused arcs
A k-arc \mathcal{K} in the plane $\pi=\operatorname{PG}(2, q)$ is said to Be hyperfocused on a line ℓ if the $\binom{k}{2}$ distinct lines throuch pairs of points in \mathcal{K} meet ℓ in exactly $k-1$ distinct points.

Hyperfocused ares can exist only when q is even Theorem (A. Bichara, G. Korchmáros, 1987)
Let \mathcal{K} be a k-arc in $\operatorname{PG}(2, q)$ and \mathcal{I} a subset of a line ℓ such that $\mathcal{K} \cap \ell=\emptyset$ and no secant of \mathcal{K} has a point in \mathcal{I}. Then

- $|\mathcal{K} \cup \mathcal{I}| \leq q+2$ and
- if $|\mathcal{K} \cup \mathcal{I}|=q+2$ and $|\mathcal{K}| \geq 3$ then q is even and $|\mathcal{K}| \leq \frac{q}{2}$.

In other words:

- if \mathcal{K} is hyperfocused on ℓ then $|\mathcal{I}|=q+2-k$;
- hence $|\mathcal{K} \cup \mathcal{I}|=q+2$ and the previous result applies.

Additive ares

In $\mathrm{PG}\left(2,2^{h}\right)$ let Ω Be the conic of equation

$$
X^{2}=Y Z
$$

and l its tangent line of equation $Z=0$.
Consider the subset \mathcal{K} of Ω given By

$$
\mathcal{K}=\left\{\left(t, t^{2}, 1\right) \mid t \in A\right\},
$$

with $A \subset \operatorname{GF}\left(2^{h}\right)$.

Additive ares

The points on ℓ covered By the chords of \mathcal{K} are those with coordinates $(1, s, 0)$ with s rancing over the set of all nonzero elements of A.

Theorem (W. E. Cherowitzo, L. D. Holder, 2005) If A is a non-trivial subgroup of the additive group of $\mathrm{GF}\left(2^{h}\right)$ then the k-arc \mathcal{K} is hyperfocused on ℓ and $k=|A|$.

The hyperfocused ares obtained By the above theorem are called "additive". Similar constructions provide "Multiplicative" hyperfocused arcs as well.

Arcs in translation ovals

In $\mathrm{PG}\left(2,2^{h}\right)$ set

$$
\mathcal{D}(F)=\left\{(t, F(t), 1) \mid t \in \operatorname{GF}\left(2^{h}\right)\right\} \cup\{(1,0,0)\}
$$

where $F(t) \in \operatorname{GF}\left(2^{h}\right)[t]$ is a permutation polynomial such that

$$
\begin{aligned}
& \text { - } \operatorname{deg} F<2^{h} ; \\
& \text { - } F(0)=0 \text { and } F(1)=1 \text {; } \\
& \text { - for each } s \in \operatorname{GF}\left(2^{h}\right) \text {, }
\end{aligned}
$$

$$
G_{s}(X)= \begin{cases}\frac{F(X+s)+F(s)}{X} & \text { if } X \neq 0 \\ 0 & \text { if } X=0\end{cases}
$$

is, in turn, a permutation polynomial.

Arcs in translation ovals

Theorem (S. E. Payne, 1971 and J. W. P. Hirschfeld, 1975) The set $\mathcal{D}(F)$ is a translation oval if and only if $F(t)=t^{2^{m}}$ with $\operatorname{gcd}(m, h)=1$.
This terminolocy is motivated By the fact that $\mathcal{D}(F)$ is preserved $B y$ the elation defined, for $c \in \operatorname{GF}\left(2^{h}\right)$, By

$$
\left\{\begin{array}{l}
\rho X^{\prime}=X+c Z \\
\rho Y^{\prime}=Y+F(c) Z \\
\rho Z^{\prime}=Z,
\end{array}\right.
$$

and in the affine plane whose ideal line has equation $Z=0$ this mapping is a translation

Arcs in translation ovals

In other words, a $\left(2^{h}+1\right)$-arc $\mathcal{D}(F)$ in $\mathrm{PG}\left(2,2^{h}\right)$ is a translation oval when it has a tancent, say l, called a special tancent, such that every point $Q \in \ell$ other than the tankency point T is the centre of an involutory elation φ_{Q} preserving $\mathcal{D}(F)$

Ares in translation ovals
Let $\ell \mathrm{Be}$ the infinite line of an affine plane $\mathrm{AG}\left(2,2^{h}\right)$ whose projective closure is $\operatorname{PG}\left(2,2^{h}\right)$. Then the involutory elations are translations, and they are the non-trivial elements of a translation Group of order 2^{h}.

- $\mathcal{D}(F)$ is a conic if and only if either $m=1$ or $m=h-1$.
- $\mathcal{D}(F)$ is preserved By a linear collineation aroup G fixing the point $(0,1,0)$ and acting 2 -transitively on the affine points of $\mathcal{D}(F)$.
- The translation group of $\mathcal{D}(F)$ comprises all translations $(X, Y) \mapsto\left(X+a, Y+a^{2^{m}}\right)$.
- The stabiliser of the oricin $O(0,0)$ in G is a cyclic group consisting of all affinities $(X, Y) \mapsto\left(c X, c^{2^{m}} Y\right)$.

A characterisation

Let $\Omega=\mathcal{D}\left(X^{2^{m}}\right)$ Be a translation oval in $\operatorname{PG}\left(2,2^{h}\right)$ with $h \geq 3$.

Theorem (G. Korchmáros, V. Lanzone, AS, 2012)
Let \mathcal{K} be a k-arc contained in Ω which is hyperfocused on a special tangent of Ω. Then \mathcal{K} is additive. In particular, $k=2^{d}$ with $2 \leq d \leq h$.

Extendable ares

Let K Be a sharply focused arc contained in a translation oval Ω, with focus set \mathcal{F} contained in a special tangent ℓ of Ω.

- Since $k=|\mathcal{F}|$, through every point of \mathcal{K} there is a 1 -secant to \mathcal{K} (an \mathcal{F}-tangent) which meets l at a focus.
- K has exactly k such \mathcal{F}-tangents.
- If the \mathcal{F} tangents are concurrent at a point $U \in \Omega$, then:
- the $(k+1)$-arc $\mathcal{K} \cup\{U\}$ is hyper focused on ℓ with the same focus set \mathcal{F};
- we call \mathcal{K} an extendable sharply focused arc.

Extendable arcs

Let \mathcal{K} be a k-arc contained in a translation oval Ω, with focus set \mathcal{F} contained in a special tangent ℓ of Ω.

Theorem (G. Korchmáros, V. Lanzone, AS, 2012) If \mathcal{K} is sharply focused on ℓ then \mathcal{K} is extendable.

Theorem (G. Korchmáros, V. Lanzone, AS, 2012) If \mathcal{K} has as many as $k+1$ focuses on ℓ then \mathcal{K} is 2 -extendable.

A new description of the scheme
The secret is a point X contained in a line s in $\operatorname{PG}(4, q)$ so that planes and lines of a three-dimensional subspace PG $(3, q)$ not containing s can Be used to describe the scheme.

Let ℓ Be a line of $\operatorname{PG}(3, q)$ throuch X. The set of shadows (pieces of information given to the participants) is:

- a subset \mathcal{I} of points on ℓ in case of participants of the top level;
- a subset \mathcal{K} of points in $\operatorname{PG}(3, q)$ in case of participants of the lower level.

A new description of the scheme

Now \mathcal{K} must Be chosen in such a way that

- no point of \mathcal{K} lies on $\ell ;$
- no four points in \mathcal{K} are coplanar;
- no three points in \mathcal{K} are coplanar with a point in $\mathcal{I} \cup\{X\}$.

In other words, \mathcal{K} is a k-arc in $\operatorname{PG}(3, q)$ disjoint from ℓ such that no point from $\mathcal{I} \cup\{X\}$ is cut out By the plane determined by a triancle inscribed in \mathcal{K}.

A new description of the scheme

Points on ℓ which are coplanar with triplets of points on \mathcal{K} are called focuses and the set \mathcal{F} consisting of all focuses is called the focus set.

The trivial lower Bound on \mathcal{F} is

$$
|\mathcal{F}| \geq k-2
$$

and when the equality holds \mathcal{K} is called a spatial hyperfocused arc.

In the next cases, if $|\mathcal{F}|=k-1$ then the arc \mathcal{K} is called a spatial sharply focused arc, while if $|\mathcal{F}|=k$ then it is called a spatial equifocused arc.

Classification and symmetry

Up to a projectivity, any $\left(2^{h}+1\right)$ arc Γ in $\mathrm{PG}\left(3,2^{h}\right)$ is a set of points with coordinates (X, Y, Z, T) defined as follows:

$$
\Gamma=\left\{(t, F(t), t F(t), 1) \mid t \in \operatorname{GF}\left(2^{h}\right)\right\} \cup\left\{Z_{\infty}\right\},
$$

with $F(t)=t^{2^{m}}, \operatorname{gcd}(m, h)=1$, and Z_{∞} the point with projective coordinates ($0,0,1,0$).
Γ is a twisted cusic if and only if either $m=1$ or $m=h-1$.
Γ is contained in the hyperBolic quadric Q of equation

$$
X Y+Z T=0 .
$$

Classification and symmetry
The projection of Γ from its point Z_{∞} onto the plane π of equation $Z=0$ is a translation oval Ω minus its infinite point.

Let G Be the symmetry group of Γ, that is, the linear collineation group of $\mathrm{PG}\left(3,2^{h}\right)$ preserving Γ.

- G has order $2^{h}\left(2^{2 h}-1\right)$;
- G is isomorphic to the projective linear aroup PGL($2,2^{h}$);
- G acts on Γ as $\operatorname{PGL}\left(2,2^{h}\right)$ on the projective line PG $\left(1,2^{h}\right)$ in its natural sharply 3 -transitive permutation representation

The focus line

Let r Be a real axis of Γ, that is, r is the meet of two tangent planes of Γ. Then dual line r^{\perp} of r is a chord of Γ.

- Let $\Gamma \cap r^{\perp}=\{P, Q\}$.
- There exists $g \in G$ such that $g(P)=O(0,0,0,1)$ and $g(Q)=Z_{\infty}(0,0,1,0)$.
- Take $\ell=g(r)$.

Henceforth, the line ℓ will Be our choice for the focus sets of k-arcs \mathcal{K} contained Γ.

The focus set on ℓ

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)
For three pairwise distinct points in Γ with homogeneous coordinates $P_{u}\left(u, u^{2^{m}}, u^{2^{m}+1}, 1\right), P_{v}\left(v, v^{2^{m}}, v^{2^{m}+1}, 1\right)$ and $P_{w}\left(w, w^{2^{m}}, w^{2^{m}+1}, 1\right)$, the plane determined by them cuts out on ℓ the point with homogeneous coordinates

$$
\left(1, \frac{(u v)^{2^{m}}(u+v)+(u w)^{2^{m}}(u+w)+(v w)^{2^{m}}(v+w)}{u v(u+v)^{2^{m}}+u w(u+w)^{2^{m}}+v w(v+w)^{2^{m}}}, 0,0\right) .
$$

The stabiliser of a line

- The subgroup H of G which preserves ℓ is a dihedral group of order $2\left(2^{h}-1\right)$.
- $H_{0, Z_{\infty}}$ is a cyclic croup of order $2^{h}-1$ acting on $\Gamma \backslash\left\{O, Z_{\infty}\right\}$ as a sharply transitive permutation group.

If \mathcal{K} is a k-arc contained in Γ such that $O, Z_{\infty} \in \mathcal{K}$, then up to a symmetry in H it contains the point P_{1} with homogeneous coordinates $(1,1,1,1)$.

Spatial hyperfocused ares

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)
Let \mathcal{K} be a k-arc contained in Γ which is spatial hyperfocused on the line ℓ_{∞} of equations $Z=T=0$. Assume that $O, P_{1}, Z_{\infty} \in \mathcal{K}$. The projection of \mathcal{K} from Z_{∞} onto the plane of equation $Z=0$ is a hyperfocused $(k-1)$-arc \mathcal{K}^{\prime} on ℓ_{∞} which belongs to the family of additive hyperfocused arcs as seen before.

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)
Let \mathcal{K} be a k-arc as as in the previous theorem. Then some triangle inscribed in \mathcal{K} with vertex P_{1} determines a plane that passes through the point X_{∞}; the same holds for Y_{∞}.

Spatial hyperfocused ares

Theorem (G. Korchmáros, V. Lanzone, AS, 2012)
Let \mathcal{K} be a k-arc contained in Γ. Let ℓ be a real axis of Γ whose dual line ℓ^{\perp} contains two points of \mathcal{K}. Then \mathcal{K} is not a spatial hyperfocused arc on ℓ.

The existence of spatial hyperfocused arcs in PG $\left(3,2^{h}\right)$ is yet an open problem.

Spatial sharply focused arcs

From the previous theorem the question arises whether such an arc \mathcal{K} may at least Be spatial sharply focused.

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)
Let \mathcal{K} be a k-arc contained in Γ which is spatial sharply focused on the line ℓ_{∞} of equations $X_{3}=X_{4}=0$. Assume that $O, P_{1}, Z_{\infty} \in \mathcal{K}$. Then the projection of \mathcal{K} from Z_{∞} onto the plane of equation $X_{3}=0$ is either a hyperfocused $(k-1)$-arc or it is 1 -extendable to a hyperfocused arc on the line ℓ_{∞} of equations $X_{3}=X_{4}=0$. Such hyperfocused arcs belong to the family of additive arcs with A the additive group of a subfield of $\mathrm{GF}\left(2^{h}\right)$.

Spatial sharply focused arcs

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)
Let \mathcal{K} be a k-arc contained in Γ which is spatial sharply focused on the line ℓ_{∞} of equations $X_{3}=X_{4}=0$. Assume that $O, P_{1}, Z_{\infty} \in \mathcal{K}$. Then some triangle inscribed in \mathcal{K} determines a plane that passes through the point X_{∞}; the same holds for Y_{∞}.

Theorem (G. Korchmáros, V. Lanzone, AS, 2012)
Let \mathcal{K} be a k-arc contained in Γ. Let ℓ be a real axis of Γ whose dual line ℓ^{\perp} contains two points of \mathcal{K}. Then \mathcal{K} is not a spatial sharply focused arc on ℓ.

As for the spatial hyperfocused arcs, the existence of spatial sharply focused arcs in PG $\left(3,2^{h}\right)$ is yet an open problem.

Spatial equifocused arcs
Set $\mathcal{K}=\Gamma$ and let ℓ Be a line whose dual line ℓ^{\perp} is a chord of \mathcal{K}. Then \mathcal{K} itself is equifocused on ℓ in the following sense.

- Since \mathcal{K} is complete, every point outside \mathcal{K} (in particular, each point on ℓ) is coplanar to some triplet of pairwise distinct points of \mathcal{K}.
- Embed PG($3,2^{h}$) into $\operatorname{PG}\left(3,2^{n h}\right)$, with $\operatorname{gcd}(m, n)=1$.
- In PG($\left.3,2^{\text {nh }}\right)$ the set \mathcal{K} is a $\left(2^{h}+1\right)$-arc contained in a $\left(2^{n h}+1\right)$-arc γ^{\prime}.
- ℓ viewed as a line of $\operatorname{PG}\left(3,2^{n h}\right)$ is a real axis of Γ^{\prime}.
- \mathcal{K} embedded in $\operatorname{PG}\left(3,2^{n h}\right)$ is a spatial equifocused $\left(2^{h}+1\right)$-arc on ℓ.
Spatial equifocused ares obtained that way are said to Be of subfield type.

A classification theorem

Theorem (G. Korchmáros, V. Lanzone, AS, 2012)
Let \mathcal{K} be a k-arc in PG $\left(3,2^{h}\right)$ contained in a $\left(2^{h}+1\right)$-arc Γ. Let ℓ be a real axis of Γ whose dual line ℓ^{\perp} contains two points of \mathcal{K}. If \mathcal{K} is a spatial equifocused arc on ℓ then it is of subfield type.

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)
For an additive subgroup A of $\mathrm{GF}\left(2^{h}\right)$ with $h \geq 4$ let B be a set of non-zero elements $b \in A$ whose inverse b^{-1} is also in A. If $|B| \geq|A|-2$ then $A=B \cup\{0\}$ and A is the additive group of a subfield of $\mathrm{GF}\left(2^{h}\right)$.

A dynamic system
Recall that the symmetry Group G of Γ admits a subgroup H which is is a dihecral group of order $2\left(2^{h}-1\right)$.

If $g \in H$, the imace $g(\mathcal{K})$ of \mathcal{K} also satisfies the following conditions:

- no point of $g(\mathcal{K})$ lies on $\ell_{;}$
- no four points in $g(\mathcal{K})$ are coplanar;
- no three points in $g(\mathcal{K})$ are coplanar with a point in $\mathcal{I}=\ell \backslash g(\mathcal{F})$, with $g(\mathcal{F})$ the focus set of $g(\mathcal{K})$ on ℓ.

In this version, Simmons' model Becomes "dynamic" in the sense that a random choice of the set of shares distributed to the participants enables to increase the security of the whole system.

