Recent results on k-arcs in Galois Geometries

Angelo Sonnino

Università degli Studi della Basilicata Potenza, Italy

Kerékjártó Geometriai Szeminárium Szeged, llth April 2013

Arcs in PG(r,q)

Let $q=p^h$ be a power of a prime integer. An arc of size k (briefly a k-arc) in $\mathrm{PG}(r,q)$ is a set $\mathcal K$ consisting of k points no r+1 of which are contained in a hyperplane.

A k-arc is said to be complete if it is not contained in a (k+1)-arc.

Motivations

- k-rcs in projective spaces (and planes) are interesting objects in their own right.
- k-arcs and linear M.D.S. codes are equivalent objects; J. A- Thas, (1992).
- Many known "good" covering codes and saturating sets arise from complete k-arcs; M. Giulietti and R. Vincenti (2012).
- k-arcs in finite projective spaces can be used in cryptography in order to produce multilevel secret sharing schemes; G. J. Simmons (1989, 1990),
 M. Giulietti and R. Vincenti (2012), G. Korchmáros,
 V. Lanzone and AS (2012).

Ares in PG(3,q)

A k-arc in PG(3,q) is a set \mathcal{K} consisting of k points no four of which are coplanar.

- $k \le q + 1.$
- If k=q+1, then the collineation group fixing $\mathcal K$ contains $\operatorname{PGL}(2,q)$ and acts on its points as a 3-transitive permutation group.
- A k-arc whose collineation group G acts transitively on its points is called a "G-transitive" k-arc.

The problem

- Find a collineation group G acting faithfully on $\operatorname{PG}(3,q)$.
- Give some sufficient condition for the orbit P^G of some point $P \in PG(3,q)$ to be a k-arc..
- In other words: does a G-transitive k-arc exist in PG(3,q) for a fixed k and infinitely many values of $q=p^h$?
- Investigate the completeness of such k-arcs in view of the lower bound for the size of a complete k-arc in PG(3,q).

Background

Previuos work in the projective plane PG(2, q).

- Construction of a PSL(2,7)-transitive 24-arc in PG(2,29); J. M. Chao and H. Kaneta (1996).
- An infinite family of PSL(2,7)-transitive 42-arcs in PG(2,q) for any $q=p^h\geq 53$ with $p\neq 7$ an odd prime, $q^3\equiv 1\pmod 7$, apart from finitely many values of q; L. Indaco and G. Korchmáros (2012).
- An infinite family of A_6 -transitive 90-arcs in either PG(2,q) or $PG(2,q^2)$, with $q\geq 349$ and $q\neq 421$, which turn out to be complete for $q\in\{349,409,529,601,661\}$; M. Giulietti, G. Korchmáros, S. Marcugini and F. Pambianco (online 2O(2)).

Background

So far very little is known about k-arcs in PG(3, q).

- The maximum size for a k-arc in PG(3,q) is q+1.
 - ▶ If q is odd and q > 4 then any (q+1)-arc is projectively equivalent to a normal rational curve:

$$\{(t^2:t^2:t:1)\mid t\in\mathbb{F}_q\}\cup\{(1:0:0:0)\}.$$

▶ If $q = 2^h$ with h > 1 then any (q + 1)-arc is projectively equivalent to a curve

$$\{(t^{2n+1}:t^{2n}:t:1)\mid t\in\mathbb{F}_q\}\cup\{(1:0:0:0)\}$$

with MCD(n, h) = 1.

- Large k-arcs lying on elliptic quadrics in PG(3, q); AS (1995, 1999).

Choose the group

If $q\equiv 1\pmod{7}$, then the projective special linear group $\mathrm{PSL}(2,7)$ can be regarded as a distinguished subgroup of $\mathrm{PGL}(4,q)$ generated by the projective collineations with matrices:

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \gamma & 0 & 0 \\ 0 & 0 & \gamma^4 & 0 \\ 0 & 0 & 0 & \gamma^4 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$
$$Q = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & \gamma^2 + \gamma^5 & \gamma^3 + \gamma^4 & \gamma + \gamma^6 \\ 2 & \gamma^3 + \gamma^4 & \gamma + \gamma^6 & \gamma^2 + \gamma^5 \\ 2 & \gamma + \gamma^6 & \gamma^2 + \gamma^5 & \gamma^3 + \gamma^4 \end{pmatrix},$$

with $1+\gamma+\gamma^2+\gamma^3+\gamma^4+\gamma^5+\gamma^6=0$; see Blichfeldt (1905).

Choose the group

Let S, T, Q denote the collineations of PGL(4,q) associated to the matrices S, T and Q. The map

$$artheta := egin{cases} S \mapsto \mathsf{S} \ T \mapsto \mathsf{T} \ Q \mapsto \mathsf{Q} \end{cases}$$

extends to an isomorphism from PSL(2,7) into PGL(4,q). Further, the matrix $M=Q^7ST$ has projective order 4 as

$$M^4 = -7^{14} I_4.$$

Choose the group

Let M denote the collineation of $\operatorname{PGL}(4,q)$ associated to the matrix M. Then, a representative system of the 42 right cosets of the cyclic subgroup $\langle M \rangle$ of order 4 in $\operatorname{PSL}(2,7)$ is the following:

$$\begin{split} \mathscr{T} = \big\{\, \mathbf{1}, \, \mathsf{TQ}, \, \mathsf{QS}^{-2}, \, \mathsf{Q}, \, \mathsf{TQS}, \, \mathsf{QS}^{-1}, \, \mathsf{QSTS}, \, \mathsf{QS}, \, \mathsf{QT}, \, \mathsf{TQS}^2, \\ \mathsf{QS}^2, \, \mathsf{S}^{-1}\mathsf{QS}^3, \, \mathsf{QS}^{-1}\mathsf{T}, \, \mathsf{SQTS}, \, \mathsf{QST}, \, \mathsf{QSQ}, \, \mathsf{QTS}, \, \mathsf{QS}^{-1}\mathsf{T}^{-1}, \, \mathsf{QS}^{-3}, \\ \mathsf{TQS}^2\mathsf{Q}, \, \mathsf{QS}^3, \, \mathsf{S}^{-1}\mathsf{QST}^{-1}\mathsf{S}, \, \mathsf{TS}^{-1}\mathsf{Q}, \, \mathsf{S}^{-1}\mathsf{QTS}^{-1}, \, \mathsf{QTS}^{-1}, \, \mathsf{QST}^{-1}, \\ \mathsf{ST}^{-1}\mathsf{SQS}, \, \mathsf{T}^{-1}\mathsf{S}^{-1}\mathsf{QTS}, \, \mathsf{QSQT}, \, \mathsf{QSQT}, \, \mathsf{SQS}^{-1}\mathsf{TQ}, \, \mathsf{TS}^{-1}\mathsf{QTS}, \, \mathsf{T}^{-1}\mathsf{SQST}, \\ \mathsf{T}^{-1}\mathsf{SQTS}, \, \mathsf{T}^{-1}\mathsf{S}^{-1}\mathsf{QTS}^{-1}, \, \mathsf{S}^{-2}\mathsf{QS}^2, \, \mathsf{S}^{-1}, \, \mathsf{QS}^2\mathsf{QS}^{-1}, \, \mathsf{QS}^2\mathsf{QS}^{-1}\mathsf{T}, \\ \mathsf{S}^{-1}\mathsf{QSQS}^{-1}, \, \mathsf{S}^2\mathsf{QS}^{-1}, \, \mathsf{S}^2\mathsf{QS}^{-1}\mathsf{T}^{-1}, \, \mathsf{S}^2\mathsf{QS}^{-1}\mathsf{T} \, \big\}, \end{split}$$

where 1 denotes the identical collineation of PGL(4,q).

Preliminary results

Let M denote the collineation of $\operatorname{PGL}(4,q)$ associated to the matrix M.

Proposition (AS, 2013)

The collineation group $\langle \mathbf{M} \rangle$ generated by \mathbf{M} admits four fixed points in $\mathrm{PG}(3,q^2)$.

The characteristic polynomial of M

$$P_m(X) = \det(M - XI_4) = X^4 + 7^{14}$$

yields four distinct eigenvalues in the quadratic extension \mathbb{F}_{q^2} of $\mathbb{F}_{q\cdot}$

The 42-arcs

If λ is one of these eigenvalues, then from $(M-\lambda I_4)=\mathbf{0}$ we get

$$\begin{cases} (343 - \lambda)x_0 + 343\gamma^2x_1 + 343\gamma x_2 + 343\gamma^4x_3 = 0 \\ 686x_0 + (343\gamma + 343\gamma^3 - \lambda)x_1 - (343 + 343\gamma + 343\gamma^2 + 343\gamma^4 + 343\gamma^5)x_2 + (343 + 343\gamma)x_3 = 0 \\ 686x_0 + (343 + 343\gamma^4)x_1 \\ + (343\gamma^4 + 343\gamma^5 - \lambda)x_2 + (343\gamma^3 + 343\gamma^5)x_3 = 0 \\ 686x_0 - (343 + 343\gamma + 343\gamma^2 + 343\gamma^3 + 343\gamma^4)x_1 \\ + (343 + 343\gamma^2)x_2 - (343 + 343\gamma + 343\gamma^3 + 343\gamma^4 + 343\gamma^5 + \lambda)x_3 = 0. \end{cases}$$

The 42-arcs

For $q = p^h$, $q \ge 29$ and $q \equiv 1 \pmod{7}$, set

$$\mathcal{O} = \{\, \textbf{U}(\textit{P}) \mid \textbf{U} \in \mathscr{S} \,\} = \{\textit{P}_1, \ldots, \textit{P}_{42}\},$$

where $P_1 = P(1: x_1(\gamma, \lambda): y_1(\gamma, \lambda): z_1(\gamma, \lambda))$ is one of the four points of PG(3, q) arising from the eigenvectors of M.

Each point of ${\mathcal O}$ can be written in terms of γ and λ as

$$P(1:x_i(\gamma,\lambda):y_i(\gamma,\lambda):z_i(\gamma,\lambda))$$

for $1 \le i \le 42$.

The 42-arcs

Let $D_{i,j,k}$ be the determinant of the matrix whose rows are the coordinate vectors of the points P_1 , P_i , P_j and P_k , with $1 < i < j < k \le 42$. This can be regarded as a polynomial in the indeterminates Γ and Λ , say $D_{i,j,k}(\Gamma,\Lambda)$.

Hence a necessary condition for the points P_1 , P_i , P_j and P_k to produce a coplanar quadruple in $PG(3, q^2)$ is that the system of equations

$$\begin{cases} D_{i,j,k}(\Gamma,\Lambda) = 0 \\ \Gamma^6 + \Gamma^5 + \Gamma^4 + \Gamma^3 + \Gamma^2 + \Gamma + 1 = 0 \\ \Lambda^4 + 7^{14} = 0 \end{cases}$$

admits a solution (γ,λ) in some algebraic extesion of the field \mathbb{F}_a .

Existence and completeness

Proposition (AS, 2013)

Let $q=p^n$, $q \ge 29$ and $q \equiv 1 \pmod{7}$. Then the orbits of the fixed points of the collineation **M** associated to the matrix M of projective order 4 are 42-arcs in $PG(3, q^2)$ except for a finite number of values of p.

Proposition (AS, 2013)

Let K be a complete k-arc in $PG(3, q^2)$. Then

$$\binom{k}{3} > q^2.$$

Existence and completeness

A necessary condition for a k-arc K to be complete in $\mathrm{PG}(3,q^2)$ is

$$F(k,q) = \frac{k(k-1)(k-2)}{6} - q^2 > 0.$$

Some values:

- q = 29 implies F(k, 29) > 0 when k > 18;
- q = 43 implies F(k, 43) > 0 when k > 23;
- q = 71 implies F(k, 71) > 0 when k > 32;
- q = 113 implies F(k, 113) > 0 when k > 43.

The case q = 29

We noted that no 42-arc can be complete in $PG(3, q^2)$ unless $q \in \{29, 43, 71\}$.

Under the action of $\mathrm{PSL}(2,7)$, the four fixed points of the collineation M describe two distinct 42-orbits which are 42-arcs in $\mathrm{PG}(3,29^2)$.

Proposition (AS, 2013)

The two PSL(2,7)-transitive 42-arcs are both complete in $PG(3,29^2)$.

42 is a relatively small value for a complete arc when compared to $|PG(3, q^2)| = 29^6 + 29^4 + 29^2 + 1 = 595531444$.

Applications in cryptography

In a 2-level secret sharing scheme, a secret is shared among a certain number of participants distributed in two levels of privilege, with the requirement that:

- just two participants from the top level are necessary and sufficient in order to reconstruct the secret;
- n > 2 participants from the low level are necessary and sufficient in order to reconstruct the secret;
- the secret can be reconstructed by n-1 participants from the low level if and only if they are joined by on participant from the top level.

Secret shares with n=3

Let the secret be defined at a point P in a plane $\pi_d = \mathrm{PG}(2,q)$, with $q = p^h$ and p a prime.

Then, in a 4-dimensional space PG(4,q) containing π_d :

- any pair of the private pieces of information (points) held by the members of the upper level define a line ℓ such that $\ell \cap \pi_d = \{P\}$;
- any three of the points held by the members of the lower level define a plane π such that $\pi \cap \pi_d = \{P\}$.

Secret shares with n=3

Representation of a two-level sharing scheme in a containing 4-dimensional space

Further requirements

A member of the upper level and any two of the lower level should also be able to access the secret.

Sharply focused arcs

A set \mathcal{K} consisting of k points in general position in the finite projective plane $\pi = \mathrm{PG}(2,q)$ is said to be sharply focused on a line ℓ if the $\binom{k}{2}$ distinct lines defined by pairs of points in \mathcal{K} meet ℓ in only k distinct points (G. J. Simmons, 1990).

One step beyond: hyperfocused arcs

A k-arc $\mathcal K$ in the plane $\pi=\mathrm{PG}(2,q)$ is said to be hyperfocused on a line ℓ if the $\binom{k}{2}$ distinct lines through pairs of points in $\mathcal K$ meet ℓ in exactly k-1 distinct points.

Hyperfocused arcs can exist only when q is even. Theorem (A. Bichara, G. Korchmáros, 1987)
Let \mathcal{K} be a k-arc in $\mathrm{PG}(2,q)$ and \mathcal{I} a subset of a line ℓ such that $\mathcal{K} \cap \ell = \emptyset$ and no secant of \mathcal{K} has a point in \mathcal{I} . Then

- $|\mathcal{K} \cup \mathcal{I}| \leq q+2$ and
- if $|\mathcal{K} \cup \mathcal{I}| = q + 2$ and $|\mathcal{K}| \ge 3$ then q is even and $|\mathcal{K}| \le \frac{q}{2}$.

In other words:

- if K is hyperfocused on ℓ then $|\mathcal{I}| = q + 2 k$;
- hence $|\mathcal{K} \cup \mathcal{I}| = q + 2$ and the previous result applies.

Additive arcs

In $\mathrm{PG}(2,2^h)$ let Ω be the conic of equation

$$X^2 = YZ$$

and ℓ its tangent line of equation Z=0.

Consider the subset ${\mathcal K}$ of Ω given by

$$\mathcal{K} = \{ (t, t^2, 1) \mid t \in A \},\$$

with $A \subset GF(2^h)$.

Additive arcs

The points on ℓ covered by the chords of $\mathcal K$ are those with coordinates (1,s,0) with s ranging over the set of all nonzero elements of A.

Theorem (W. E. Cherowitzo, L. D. Holder, 2005) If A is a non-trivial subgroup of the additive group of $GF(2^h)$ then the k-arc \mathcal{K} is hyperfocused on ℓ and k = |A|.

The hyperfocused arcs obtained by the above theorem are called "additive". Similar constructions provide "multiplicative" hyperfocused arcs as well.

In $PG(2,2^h)$ set

$$\mathcal{D}(F) = \{ (t, F(t), 1) \mid t \in GF(2^h) \} \cup \{ (1, 0, 0) \},\$$

where $F(t) \in GF(2^h)[t]$ is a permutation polynomial such that

- $\deg F < 2^h$;
- F(0) = 0 and F(1) = 1;
- for each $s \in GF(2^h)$,

$$G_s(X) = egin{cases} rac{F(X+s)+F(s)}{X} & ext{if } X
eq 0 \\ 0 & ext{if } X = 0 \end{cases}$$

is, in turn, a permutation polynomial.

Theorem (S. E. Payne, 1971 and J. W. P. Hirschfeld, 1975) The set $\mathcal{D}(F)$ is a translation oval if and only if $F(t) = t^{2^m}$ with $\gcd(m,h) = 1$.

This terminology is motivated by the fact that $\mathcal{D}(F)$ is preserved by the elation defined, for $c \in \mathrm{GF}(2^h)$, by

$$\begin{cases} \rho X' = X + cZ \\ \rho Y' = Y + F(c)Z \\ \rho Z' = Z, \end{cases}$$

and in the affine plane whose ideal line has equation Z=0 this mapping is a translation.

In other words, a (2^h+1) -arc $\mathcal{D}(F)$ in $\mathrm{PG}(2,2^h)$ is a translation oval when it has a tangent, say ℓ , called a special tangent, such that every point $Q \in \ell$ other than the tangency point T is the centre of an involutory elation φ_Q preserving $\mathcal{D}(F)$

Let ℓ be the infinite line of an affine plane $\mathrm{AG}(2,2^h)$ whose projective closure is $\mathrm{PG}(2,2^h)$. Then the involutory elations are translations, and they are the non-trivial elements of a translation group of order 2^h

- $\mathcal{D}(F)$ is a conic if and only if either m=1 or m=h-1.
- $\mathcal{D}(F)$ is preserved by a linear collineation group G fixing the point (0,1,0) and acting 2-transitively on the affine points of $\mathcal{D}(F)$.
- The translation group of $\mathcal{D}(F)$ comprises all translations $(X,Y)\mapsto (X+a,Y+\underline{a}^{2^m})$.
- The stabiliser of the origin O(0,0) in G is a cyclic group consisting of all affinities $(X,Y)\mapsto (cX,c^{2^m}Y)$.

A characterisation

Let $\Omega = \mathcal{D}(X^{2^m})$ be a translation oval in $\mathrm{PG}(2,2^h)$ with $h \geq 3$.

Theorem (G. Korchmáros, V. Lanzone, AS, 2012) Let $\mathcal K$ be a k-arc contained in Ω which is hyperfocused on a special tangent of Ω . Then $\mathcal K$ is additive. In particular, $k=2^d$ with $2\leq d\leq h$.

Extendable arcs

Let $\mathcal K$ be a sharply focused arc contained in a translation oval Ω , with focus set $\mathcal F$ contained in a special tangent ℓ of Ω .

- Since $k = |\mathcal{F}|$, through every point of \mathcal{K} there is a 1-secant to \mathcal{K} (an \mathcal{F} -tangent) which meets ℓ at a focus.
- K has exactly k such F-tangents.
- If the ${\cal F}$ tangents are concurrent at a point $U\in\Omega,$ then:
 - ▶ the (k+1)-arc $\mathcal{K} \cup \{U\}$ is hyperfocused on ℓ with the same focus set \mathcal{F} ;
 - lacktriangle we call ${\cal K}$ an extendable sharply focused arc.

Extendable arcs

Let $\mathcal K$ be a k-arc contained in a translation oval Ω , with focus set $\mathcal F$ contained in a special tangent ℓ of Ω .

Theorem (G. Korchmáros, V. Lanzone, AS, 2012) If K is sharply focused on ℓ then K is extendable.

Theorem (G. Korchmáros, V. Lanzone, AS, 2012) If K has as many as k+1 focuses on ℓ then K is 2-extendable.

A new description of the scheme

The secret is a point X contained in a line s in $\mathrm{PG}(4,q)$ so that planes and lines of a three-dimensional subspace $\mathrm{PG}(3,q)$ not containing s can be used to describe the scheme.

Let ℓ be a line of $\operatorname{PG}(3,q)$ through X. The set of shadows (pieces of information given to the participants) is:

- a subset ${\mathcal I}$ of points on ℓ in case of participants of the top level;
- a subset $\mathcal K$ of points in $\operatorname{PG}(3,q)$ in case of participants of the lower level.

A new description of the scheme

Now ${\mathcal K}$ must be chosen in such a way that

- no point of ${\mathcal K}$ lies on ℓ_{i}
- no four points in ${\cal K}$ are coplanar;
- no three points in $\mathcal K$ are coplanar with a point in $\mathcal I \cup \{X\}$.

In other words, $\mathcal K$ is a k-arc in $\operatorname{PG}(3,q)$ disjoint from ℓ such that no point from $\mathcal I \cup \{X\}$ is cut out by the plane determined by a triangle inscribed in $\mathcal K$.

A new description of the scheme

Points on ℓ which are coplanar with triplets of points on $\mathcal K$ are called focuses and the set $\mathcal F$ consisting of all focuses is called the focus set.

The trivial lower bound on \mathcal{F} is

$$|\mathcal{F}| \geq k-2$$

and when the equality holds ${\mathcal K}$ is called a spatial hyperfocused arc.

In the next cases, if $|\mathcal{F}|=k-1$ then the arc \mathcal{K} is called a spatial sharply focused arc, while if $|\mathcal{F}|=k$ then it is called a spatial equifocused arc.

Classification and symmetry

Up to a projectivity, any $(2^h + 1)$ arc Γ in $PG(3, 2^h)$ is a set of points with coordinates (X, Y, Z, T) defined as follows:

$$\Gamma = \{ (t, F(t), tF(t), 1) \mid t \in GF(2^h) \} \cup \{Z_{\infty}\},$$

with $F(t) = t^{2^m}$, gcd(m, h) = 1, and Z_{∞} the point with projective coordinates (0, 0, 1, 0).

 Γ is a twisted cubic if and only if either m=1 or m=h-1.

 Γ is contained in the hyperbolic quadric $\mathcal Q$ of equation

$$XY + ZT = 0.$$

Classification and symmetry

The projection of Γ from its point Z_{∞} onto the plane π of equation Z=0 is a translation oval Ω minus its infinite point.

Let G be the symmetry group of Γ , that is, the linear collineation group of $\mathrm{PG}(3,2^h)$ preserving Γ .

- G has order $2^h(2^{2h}-1)$;
- G is isomorphic to the projective linear group $PGL(2,2^h)$;
- G acts on Γ as $\operatorname{PGL}(2,2^h)$ on the projective line $\operatorname{PG}(1,2^h)$ in its natural sharply 3-transitive permutation representation.

The focus line

Let r be a real axis of Γ , that is, r is the meet of two tangent planes of Γ . Then dual line r^{\perp} of r is a chord of Γ .

- Let $\Gamma \cap r^{\perp} = \{P, Q\}$.
- There exists $g\in G$ such that g(P)=O(0,0,0,1) and $g(Q)=Z_{\infty}(0,0,1,0).$
- Take $\ell = g(r)$.

Henceforth, the line ℓ will be our choice for the focus sets of k-arcs $\mathcal K$ contained Γ .

The focus set on ℓ

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)

For three pairwise distinct points in Γ with homogeneous coordinates $P_u(u, u^{2^m}, u^{2^m+1}, 1)$, $P_v(v, v^{2^m}, v^{2^m+1}, 1)$ and $P_w(w, w^{2^m}, w^{2^m+1}, 1)$, the plane determined by them cuts out on ℓ the point with homogeneous coordinates

$$\left(1,\frac{(uv)^{2^m}(u+v)+(uw)^{2^m}(u+w)+(vw)^{2^m}(v+w)}{uv(u+v)^{2^m}+uw(u+w)^{2^m}+vw(v+w)^{2^m}},0,0\right).$$

The stabiliser of a line

- The subgroup H of G which preserves ℓ is a dihedral group of order $2(2^h-1)$.
- $H_{O,Z_{\infty}}$ is a cyclic group of order 2^h-1 acting on $\Gamma\setminus\{O,Z_{\infty}\}$ as a sharply transitive permutation group.

If K is a k-arc contained in Γ such that $O, Z_{\infty} \in K$, then up to a symmetry in H it contains the point P_1 with homogeneous coordinates (1,1,1,1).

Spatial hyperfocused arcs

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)

Let $\mathcal K$ be a k-arc contained in Γ which is spatial hyperfocused on the line ℓ_∞ of equations Z=T=0. Assume that $O,P_1,Z_\infty\in\mathcal K$. The projection of $\mathcal K$ from Z_∞ onto the plane of equation Z=0 is a hyperfocused (k-1)-arc $\mathcal K'$ on ℓ_∞ which belongs to the family of additive hyperfocused arcs as seen before.

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)

Let K be a k-arc as as in the previous theorem. Then some triangle inscribed in K with vertex P_1 determines a plane that passes through the point X_{∞} ; the same holds for Y_{∞} .

Spatial hyperfocused arcs

Theorem (G. Korchmáros, V. Lanzone, AS, 2012) Let $\mathcal K$ be a k-arc contained in Γ . Let ℓ be a real axis of Γ whose dual line ℓ^{\perp} contains two points of $\mathcal K$. Then $\mathcal K$ is not a spatial hyperfocused arc on ℓ .

The existence of spatial hyperfocused arcs in $PG(3, 2^h)$ is yet an open problem.

Spatial sharply focused arcs

From the previous theorem the question arises whether such an arc $\mathcal K$ may at least Be spatial sharply focused.

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)

Let \mathcal{K} be a k-arc contained in Γ which is spatial sharply focused on the line ℓ_{∞} of equations $X_3=X_4=0$. Assume that $O,P_1,Z_{\infty}\in\mathcal{K}$. Then the projection of \mathcal{K} from Z_{∞} onto the plane of equation $X_3=0$ is either a hyperfocused (k-1)-arc or it is 1-extendable to a hyperfocused arc on the line ℓ_{∞} of equations $X_3=X_4=0$. Such hyperfocused arcs belong to the family of additive arcs with A the additive group of a subfield of $\mathrm{GF}(2^h)$.

Spatial sharply focused arcs

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)

Let $\mathcal K$ be a k-arc contained in Γ which is spatial sharply focused on the line ℓ_∞ of equations $X_3=X_4=0$. Assume that $O,P_1,Z_\infty\in\mathcal K$. Then some triangle inscribed in $\mathcal K$ determines a plane that passes through the point X_∞ ; the same holds for Y_∞ .

Theorem (G. Korchmáros, V. Lanzone, AS, 2012)

Let $\mathcal K$ be a k-arc contained in Γ . Let ℓ be a real axis of Γ whose dual line ℓ^\perp contains two points of $\mathcal K$. Then $\mathcal K$ is not a spatial sharply focused arc on ℓ .

As for the spatial hyperfocused arcs, the existence of spatial sharply focused arcs in $\mathrm{PG}(3,2^h)$ is yet an open problem.

Spatial equifocused arcs

Set $\mathcal{K}=\Gamma$ and let ℓ be a line whose dual line ℓ^\perp is a chord of \mathcal{K} . Then \mathcal{K} itself is equifocused on ℓ in the following sense.

- Since $\mathcal K$ is complete, every point outside $\mathcal K$ (in particular, each point on ℓ) is coplanar to some triplet of pairwise distinct points of $\mathcal K$.
- Embed $PG(3,2^h)$ into $PG(3,2^{nh})$, with gcd(m,n)=1.
- In $PG(3,2^{nh})$ the set \mathcal{K} is a (2^h+1) -arc contained in a $(2^{nh}+1)$ -arc γ' .
- ℓ viewed as a line of $PG(3,2^{nh})$ is a real axis of Γ' .
- \mathcal{K} embedded in $\mathrm{PG}(3,2^{nh})$ is a spatial equifocused (2^h+1) -are on ℓ .

Spatial equifocused arcs obtained that way are said to be of subfield type.

A classification theorem

Theorem (G. Korchmáros, V. Lanzone, AS, 2012)

Let $\mathcal K$ be a k-arc in $\mathrm{PG}(3,2^h)$ contained in a (2^h+1) -arc Γ . Let ℓ be a real axis of Γ whose dual line ℓ^\perp contains two points of $\mathcal K$. If $\mathcal K$ is a spatial equifocused arc on ℓ then it is of subfield type.

Lemma (G. Korchmáros, V. Lanzone, AS, 2012)

For an additive subgroup A of $GF(2^h)$ with $h \ge 4$ let B be a set of non-zero elements $b \in A$ whose inverse b^{-1} is also in A. If $|B| \ge |A| - 2$ then $A = B \cup \{0\}$ and A is the additive group of a subfield of $GF(2^h)$.

A dynamic system

Recall that the symmetry group G of Γ admits a subgroup H which is is a dihecral group of order $2(2^h-1)$.

If $g \in H$, the image $g(\mathcal{K})$ of \mathcal{K} also satisfies the following conditions:

- no point of $g(\mathcal{K})$ lies on ℓ ;
- no four points in g(K) are coplanar;
- no three points in $g(\mathcal{K})$ are coplanar with a point in $\mathcal{I} = \ell \setminus g(\mathcal{F})$, with $g(\mathcal{F})$ the focus set of $g(\mathcal{K})$ on ℓ .

In this version, Simmons' model becomes "dynamic" in the sense that a random choice of the set of shares distributed to the participants enables to increase the security of the whole system.